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Recently, Ribault and Teschner pointed out the existence of a one-to-one correspondence

between N-point correlation functions for the SL(2, C)k/SU(2) WZNW model on the
sphere and certain set of 2N − 2-point correlation functions in Liouville field theory.
This result is based on a seminal work by Stoyanovsky. Here, we discuss the impli-
cations of this correspondence focusing on its application to string theory on curved
backgrounds. For instance, we analyze how the divergences corresponding to worldsheet
instantons in AdS3 can be understood as arising from the insertion of the dual screen-
ing operator in the Liouville theory side. We also study the pole structure of N-point
functions in the 2D Euclidean black hole and its holographic meaning in terms of the
Little String Theory. This enables us to interpret the correspondence between CFT’s as
encoding a LSZ-type reduction procedure. Furthermore, we discuss the scattering ampli-
tudes violating the winding number conservation in those backgrounds and provide a
formula connecting such amplitudes with observables in Liouville field theory. Finally,
we study the WZNW correlation functions in the limit k → 0 and show that, at the point
k = 0, the Stoyanovsky–Ribault–Teschner dictionary turns out to be in agreement with
the FZZ conjecture at a particular point of the space of parameters where the Liouville
central charge becomes cL = −2. This result makes contact with recent studies on the
dynamical tachyon condensation in closed string theory.
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1. Introduction

One of the most useful tools among those employed in the study of noncompact

WZNW models is its connection with the Liouville field theory (LFT). This is due to

the fact that LFT is the best understood nonrational CFT and hence, any analogy
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with such theory turns out to be a promising way to extend our understanding of

various physics involved in this set of theories.

Examples of such a connection between LFT and the noncompact WZNW

models are some identities which relate, as dictionaries, correlation functions of

the SL(2,C)k/SU(2) WZNW model with those of the Liouville theory. Since this

particular WZNW model describes the worldsheet dynamics of strings in Euclidean

AdS3, these dictionaries turn out to be very important in the study of dualities in

string theory. In this context, the ultimate goal of this note is to achieve a deeper

understanding of the structure of the WZNW model aiming at the AdS3/CFT2

correspondence.

To be more concise, one such dictionary is the Fateev–Zamolodchikov correspon-

dence,1 i.e. a relation between four-point functions in WZNW model and five-point

functions in LFT. In the last years this correspondence was extensively used to

learn about the SL(2,C)k/SU(2) WZNW model. In particular, this led to the proof

of its crossing symmetry,2 to the explicit representations of its monodromy,3 to

the understanding of the physical meaning of the KZ logarithmic solutions,4 to the

interpretation of certain symmetries in WZNW model, etc.

More recently, a new dictionary connecting correlation functions in SL(2,C)k/

SU(2) WZNW model and those in LFT was presented by Ribault and Teschner,5

which shows the existence of a one-to-one correspondence between N -point cor-

relation functions for the SL(2,C)k/SU(2) WZNW model and a certain set of

2N − 2-point correlation functions in Liouville field theory. This correspondence

is based on a map between solutions of the BPZ and the Knizhnik–Zamolodchikov

(KZ) systems of partial differential equations that was discovered by Stoyanovsky

in Ref. 6. The main purpose of this note is to discuss physical consequences of

this map, focusing our attention on applications to the string scattering amplitudes

in noncompact curved backgrounds such as Euclidean AdS3 and two-dimensional

Euclidean black hole.

1.1. Motivation and main results

The string theory in AdS3 and in the 2D black hole

String theory in AdS3 has attracted much attention recently because, unlike the

higher dimensional AdS/CFT correspondence, the worldsheet CFT has a NS–NS

background and can be studied in the ordinary RNS formulation. Our first appli-

cation of the Stoyanovsky–Ribault–Teschner (SRT) dictionary, therefore, would be

to understand scattering amplitudes in AdS3 from the Liouville theory. The SRT

dictionary, connecting observables of both CFT’s, provides us a useful tool to reveal

several features of the noncompact WZNW model in terms of Liouville theory and

possibly vice versa (the latter is certainly better understood). In particular, this

enables us to infer properties of the analytic structure of the scattering amplitudes

in string theory in Euclidean AdS3. In this note, after a brief introduction to the

CFT’s involved and the review of the SRT dictionary, we study the pole structure
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of the scattering amplitudes and winding number violating process in string theory

on AdS3 in terms of the corresponding Liouville correlation functions. From this

viewpoint, we will show that the worldsheet instanton effects7 are encoded in the

bulk Liouville interaction.

Moreover by gauging a U(1) subgroup of the WZNW model, we can study the

correlation functions of SL(2,R)k/U(1) coset model by utilizing the SRT map. This

coset model was interpreted as a two-dimensional black hole8–11 and the study of the

string theory on this space is, again, an excellent laboratory to enhance our under-

standing of the stringy physics involving black holes. In addition, SL(2,R)k/U(1)

coset model is related to the physics near the NS5-brane (the so-called Little String

Theory12–14) by the holographic principle. In this note, we will show that the SRT

map yields a comprehensive understanding of the pole structure of the correlation

functions in LST. Especially, the SRT map separates the LSZ poles and bulk poles

naturally in accord with the prediction15 from the consistency with the holographic

dual theory.

The homogeneity limit of tachyon condensation

The second motivation to study the SRT map is applications to time-dependent

string theories. Recently, much attention was payed to the timelike versions of non-

compact conformal field theories.a This is mainly motivated by the fact that these

models raise the hope to achieve an exact description of the closed string tachyon

condensation. Important steps were made in recent works on these topics by con-

sidering the analytic continuation of known nonrational CFT’s. In their seminal

paper,18 Strominger and Takayanagi initiated a line of investigation mainly based

on the computation of correlation functions for these CFT’s. In particular, a con-

siderable progress was done in Ref. 19, where Schomerus worked out the exact

solution of three-point functions in c < 1 Liouville theory on the sphere, describing

the dynamics of the homogeneous tachyon condensation process in bosonic string

theory (see also Ref. 20).

In the context of the nonhomogeneous tachyon condensation phenomena, Hikida

and Takayanagi studied in Ref. 21 the SL(2,R)k WZNW model in the range 0 ≤
k < 2. By assuming an extrapolation of the Fateev–Zamolodchikov–Zamolodchikov

(FZZ) conjecture22 (relating the WZNW model and the sine-Liouville field theory)

they discussed the observables of the timelike version of this CFT. In particu-

lar, the authors consider the limit k → 0 of their expressions and compared such

limit with the independent computation from the (Wick rotated) Liouville field

theory in order to present a consistency check of their results. Their study of the

nonhomogeneous tachyon condensation21 is currently based on the following two

assumptions.

aRecently, an interesting idea relating dynamical tachyon condensation phenomena and super-
critical string theory was studied in Refs. 16 and 17.
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(i) The FZZ conjecture is assumed for the range of parameters 0 ≤ k < 2 in

order to connect the timelike sine-Liouville theory and the WZNW model with

k < 2.b

(ii) It is assumed that the limit k → 0 of the WZNW model (i.e. of the sine-Liouville

theory once assumed (i) leads to Liouville theory (times a U(1) free boson).

This is, of course, consistent with a heuristic analysis based on the form of the

actions of both CFT’s. However, in this range of the space of parameters, where

the conformal theories become strongly coupled, the analysis simply based on

the functional form of the actions is certainly not enough and it is necessary to

be proven at the level of the exact correlation functions.c

Then, the question arises as to whether there is enough evidence to assume

the two points listed above. In fact, the geometrical interpretation of both

SL(2,R)k/U(1) coset model with k < 2 and Liouville-like models with Re(b) = 0

are far from being completely understood.

One of the purposes of this note is to present some evidence that FZZ conjecture

seems to be consistent in the limit k → 0. To be more specific, we will argue here

that any of the two following assertions implies the other one.

(a) The SL(2,R)k/U(1) coset model is equivalent to the sine-Liouville model (as

stated by the FZZ conjecture) at the point k = 0.

(b) The Liouville theory with b−2 = −2 coincides with the sine-Liouville model

with k = 0 (this means that it is proven at the level of N -point functions on

the sphere).

The first of these items can be thought as the simple extrapolation of the FZZ

conjecture. The second assertion, the one regarding the coincidence of Liouville and

sine-Liouville models at b−2 = −2, is supported by the heuristic argument based

on the equivalence of both actions at that particular point. At the level of the

two-point function, this equivalence was already proven to be consistent in Ref. 21.

The strategy of the proof (i.e. the proof of that (a) iff (b)) is rather a simple

application of the SRT map. Although the SRT map, in general, gives a corre-

spondence between N -point functions in sine-Liouville theory and 2N − 2-point

functions in Liouville theory, in this particular limit (k = 0) we will establish a

correspondence between N -point functions in both theories by observing a set of

remarkable cancellations occurring at the point k = 0.

In this way, we will discuss in this note the limit k → 0 of the SL(2,R)k/U(1)

coset model and prove that, if one assumes the FZZ conjecture, the N -point func-

tions in both Liouville theory (times a U(1) free boson) and those in sine-Liouville

bIt is well known that the previous consistency checks of this conjecture, based on the functional
form of correlation functions in the two CFT’s involved, are not valid in this range of parameters
(cf. Refs. 23 and 24). This is due to the substantial change in the functional form of the three-point
functions.
cG. Giribet thanks V. Schomerus for comments regarding this point.
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field theory actually coincide (at quantum level). This represents a proof of the

homogeneity limit considered in Ref. 21. Conversely, if one feels that the equiv-

alence between Liouville and sine-Liouville conformal models at b−2 = −2 (i.e.

k = 0) is guaranteed ab initio by the coincidence of both actions at that point

(thus, the check of the agreement of correlation functions would be a trivial con-

sequence of that), then our result could be regarded as a consistency check of the

FZZ conjecture at the particular point k = 0.

1.2. Overview

We will dedicate the following section to preliminary points. After a brief introduc-

tion to the conformal field theories involved, we review the dictionary between

WZNW correlation functions and those of LFT. In Sec. 3 we will discuss the

applications of such dictionary to the study of string scattering amplitudes in non-

compact curved backgrounds. In Subsec. 3.1 we will analyze the pole structure of

SL(2,C)k/SU(2) WZNW correlation functions with the intention to identify those

poles which were interpreted in Ref. 7 as worldsheet instantons in AdS3. In Sub-

sec. 3.2 we continue our analysis of the pole structure and study the separation of

the LSZ poles from the bulk poles in the 2D black hole. This is of importance in the

context of holography and Little String Theory. In Subsec. 3.3, the correlation func-

tions that represent violating winding processes are studied. We present a closed

formula which extends the SRT dictionary in order to include winding violating

amplitudes. Our generalization is based on the FZZ prescription for the computa-

tion of such amplitudes in the Euclidean black hole. Then, we study the limit k → 0

of sine-Liouville correlation functions and discuss its relation with the FZZ conjec-

ture. The analysis of this limit, whose result is presented in Subsec. 3.4, is related to

recent studies on dynamical tachyon condensation in closed bosonic string theory.

In Sec. 4, we present discussions and conclusions.

2. Preliminary: Conformal Field Theory

In this section we will describe some useful aspects of both the SL(2,C)k/SU(2)

WZNW model and Liouville field theory and establish the correspondence between

the correlation functions in these theories. Let us begin with the WZNW theory.

2.1. The SL(2, C)k/SU(2) WZNW model

Besides the Liouville model, there are not many nonrational conformal theories

for which our understanding can be considered satisfactory. However, the exam-

ple which is clearly closest to that situation is the WZNW model formulated on

SL(2,C)k/SU(2), where k denotes the level of the current algebra. Among other

applications, this field theory represents the nonlinear sigma-model describing the

string theory in Euclidean AdS3 space (∼ H+
3 ) in presence of NS-NS magnetic field.



August 10, 2006 15:19 WSPC/139-IJMPA 03169

4008 G. Giribet & Y. Nakayama

The action of this theory is

SWZNW =
1

2π

∫
d2z

(
∂φ∂̄φ−

√
2

4

1√
k − 2

Rφ+ ∂γ̄∂̄γe−
√

2
k−2φ

)
, (1)

where R is the worldsheet scalar curvature, and this action defines a noncompact

conformal field theory with a central charge c = 3 + 6
k−2 .d Alternative way to

describe the system is to utilize a group theoretical representation of the vertex

operators of this theory: these are often denoted as Φj and are the operators that

create states of the ŝl(2)k representations from the invariant vacuum |0〉. For con-

venience, we will employ two different bases to represent these operators: first, let

us introduce the often called (m, m̄)-basis, creating the vectors |Φ〉 = |j,m〉⊗ |j, m̄〉
of the representations of the affine Kac–Moody algebra ŝl(2)k ⊗ ŝl(2)k by means

of the application limz,z̄→0 Φj,m,m̄(z, z̄)|0〉 = |j,m〉. These states have conformal

dimension hj given by

hj = −j(j + 1)

k − 2
.

In the context of string theory in AdS3, where the WZNW model plays a central

role, the spectrum is constructed in terms of a subset of representations (see Ref. 25).

Local operators Φj,m,m̄(z) are also associated to differential functions Φj(x|z) on the

hyperbolic upper-half hyperplane H+
3 . These functions are given by the following

decomposition:

Φj,m,m̄(z) =

∫
d2xΦj(x|z)x−1−j+mx̄−1−j+m̄ , (2)

which defines what we will call the (x, x̄)-basis. Because of the geometrical reason

(or the locality of the vertex operator), (m, m̄) has a quantization condition

m =
n+ kω

2
, m̄ =

−n+ kω

2
, n ∈ Z , ω ∈ Z . (3)

For these (x, x̄)-basis vertex operators, we will make use of the harmonic function

realization that connects with the WZNW action (1), namely

Φj(x|z) =
2j + 1

π
e2jψ(x|z) , ψ(x|z) = log(|γ − x|2eφ + e−φ) , (4)

which holds for the classical theory. This representation in terms of variables x and

x̄ is quite useful in the study of the AdS3/CFT2 correspondence due to the fact

that these complex variables (x, x̄) turn out to correspond to the coordinates on

the boundary of the AdS3, where the dual 2D CFT is defined.

After introducing quantum (finite k or finite α′) corrections, it is feasible to

show that the large φ behavior of the vertex operators is given by

Φj,m,m̄(z) ∼ γ−1−j+mγ̄−1−j+m̄e−
√

2
k−2 (j+1)φ + Rk(j,m)γj+mγ̄j+m̄e

√
2

k−2 jφ , (5)

dWe will use α′ = 2 notation throughout this paper.
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where

Rk(j,m) = −
(
πM−1

Γ
(
k−3
k−2

)

Γ
(
k−1
k−2

)
)2j+1

Γ(2j+1)Γ
(
1+ 2j+1

k−2

)
Γ(−j+m)Γ(−j−m̄)

Γ(−2j−1)Γ
(
1− 2j+1

k−2

)
Γ(j+1+m)Γ(j+1−m̄)

.

(6)

In the interpretation of the SL(2,R)k/U(1) model as a two-dimensional black hole,

the parameter M precisely represents the black hole mass.

Correlation functions in the WZNW model are known to satisfy the KZ system

of differential equations. In the case of SL(2,R)k WZNW model, the correlation

functions involving the primaries (2) are defined as

AWZNW
j1,...,jN ;m1,m2,...,jN = 〈Φj1,m1,m̄1(z1) · · ·ΦjN ,mN ,m̄N

(zN )〉

and were first computed by Becker and Becker in Ref. 26 by using free field tech-

niques. This realization involves the insertion of s screening charges ∼ e−
√

2
k−2φ,

being

s = 1 −N −
N∑

i=1

ji (7)

as can be obtained by integrating the zero-mode of the field φ in the correlation

functions.26,27 The explicit expression of two- and three-point correlation functions

(for k > 2) are known and reviewed in the following.

The two-point function takes the form

AWZNW
j1 ,j2 (x1, x2) = |z1 − z2|−4hj1 (|x1 − x2|−4j1B(j1)δ(j1 − j2)

+ δ(2)(x1 − x2)δ(j1 + j2 − 1)) , (8)

where

B(j) =
k − 2

π

(
πM−1

Γ
(
k−3
k−2

)

Γ
(
k−1
k−2

)
)2j+1

Γ
(
1 + 2j+1

k−2

)

Γ
(
− 2j+1

k−2

) . (9)

This is the SL(2,R)k reflection coefficient and satisfiese

B(j)B(−1 − j) = − 1

π2
(2j + 1)2 , (10)

B(j)B

(
− k

2
− j

)
=

1

π2
B

(
1 − k

2

)
. (11)

On the other hand, we have the following expression for the three-point function:

AWZNW
j1,j2,j3;m1,m2,m3

=

3∏

a=1

∫
d2xa x

−1−ja+ma
a x̄−1−ja+m̄a

a AWZNW
j1,j2,j3 (x1, x2, x3) (12)

eIn these equations we consider M = 1 for simplicity.
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with

AWZNW
j1 ,j2,j3 (x1, x2, x3) =

∏

a<b

|za − zb|2(hjc−hja−hjb
)|xa − xb|2(jc−ja−jb)CH(j1, j2, j3) ,

(13)

where a, c, b ∈ {1, 2, 3} and

CH(j1, j2, j3) =
k − 2

2π3

(
πM−1

Γ
(
k−3
k−2

)

Γ
(
k−1
k−2

)
)2+j1+j2+j3

Gk(1 + j1 + j2 + j3)

Gk(−1)

×
4∏

a=2

Gk(−2ja + j1 + j2 + j3)

Gk(2ja + 1)
.

In this expression, Gk(x) are special functions that can be written in terms of

Γ2(x|1, y) Barnes functions, namely

Gk(x) ≡ (k − 2)
x(k−1−x)

2k−4 Γ2(−x|1, k − 2)Γ2(k − 1 + x|1, k − 2)

with

log(Γ2(x|1, y)) ≡ lim
ε→0

∂

∂ε

( ∞∑

n=0

∞∑

m=0

(x+ n+my)−ε

+
∞∑

n=0

∞∑

m=0

(δn,0δm,0 − 1)(n+my)−ε
)
.

Alternatively, these functions can be written in terms of the Υb(x) functions intro-

duced in Liouville literature by Zamolodchikov and Zamolodchikov,28 see below.

The physical information of the formula (13) is encoded in the analytic proper-

ties of G functions; for our purpose it is enough to mention that Gk(x) presents

poles in the set x ∈ Z<0 + Z<0(k − 2) and x ∈ Z≥0 + Z≥0(k − 2).

The functions CH(j1, j2, j3) are denoted as structure constants and are clearly

invariant under any permutation of the set {j1, j2, j3}. Moreover, these satisfy the

following functional properties:

lim
j3→0

CH (j1, j2, j3) = B(j)δ(j1 − j2) , (14)

lim
j3→− k

2

CH (j1, j2, j3) =
1

π
B

(
1 − k

2

)
δ

(
j1 + j2 +

k

2

)
, (15)

which realize the relation between the structure constants and reflection coefficients.

These correlation functions were studied in detail in the context of the

SL(2,C)k/SU(2) WZNW model in Refs. 29–31, where alternative derivations were

presented. Regarding the applications to string theory on AdS3, correlation func-

tions describing scattering amplitudes in this space were carefully analyzed by Mal-

dacena and Ooguri in Ref. 7, proposing an analytic extension to the case of SL(2,R)

which describes the Lorentzian AdS2+1 (see also Ref. 27 and references therein).

Now, let us move on to Liouville field theory.



August 10, 2006 15:19 WSPC/139-IJMPA 03169

The Stoyanovsky–Ribault–Teschner Map and String Scattering Amplitudes 4011

2.2. The Liouville field theory

Liouville field theory is one of the best understood nonrational conformal field

theories and its importance in the context of string theory and 2D quantum gravity

has made this model one of the central subjects of investigation in mathematical

physics. Due to this, in the last ten years we have made a substantial improvement in

understanding the structure of the correlation functions on the sphere (see Refs. 32

and 33 for reviews).

The action of the quantum Liouville theory is written as follows:

SL =
1

2π

∫
d2z

(
∂ϕ∂̄ϕ+

√
2

4
QRϕ+ 2πµ+e

√
2bϕ

)
, (16)

where µ+ is the Liouville cosmological constant and R is the two-dimensional scalar

curvature. The theory has a central charge cL = 1 + 6Q2, where the background

charge is given by Q = (b+ b−1).

The cosmological constant term (i.e. the last term in (16)) corresponds to one

of the two exponential screening operators of this theory. Indeed, in Liouville field

theory, there are two different screening operators:

S± = µ±

∫
d2z Vb±1(z) = µ±

∫
d2z e

√
2b±1ϕ(z) ,

where the dual cosmological constant µ− is given by

µ− =
Γ(1 − b−2)

πΓ(b−2)

(
π

Γ(b2)

Γ(1 − b2)
µ+

)b−2

(17)

(see Refs. 32, 28 and 27).

The exponential primary fields of the following form turn out to be very impor-

tant objects in Liouville field theory:

Vα(z) = e
√

2αϕ(z) .

These have conformal dimension ∆α = α(Q−α). Notice that ∆α is invariant under

the reflection α → Q − α, and corresponding states would be related by such a

conjugation since one can consider the composed vertex operator including both

contributions Vα and VQ−α as

Vα(z) = Vα(z) +Rb(α)VQ−α(z) , (18)

where Rb(α) is the Liouville reflection coefficient (i.e. given by Liouville two-point

function). The explicit expression of the reflection coefficient takes the form

Rb(α) = −
(
πµ+

Γ(b2)

Γ(1 − b2)

)1−2αb−1+b−2

Γ(2bα− b2)Γ(2b−1α− b−2)

Γ(2 − 2bα+ b2)Γ(2 − 2b−1α+ b−2)
.

Thus we have an operator identification

VQ−α(z) ≡ Rb(Q− α)Vα(z) . (19)
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In the large ϕ region, the correlation functions are controlled by the expectation

values of local operators Vα(z) and are written as

AL
α1,...,αN

= 〈Vα1 (z1)Vα2(z2) · · ·VαN
(zN )〉 .

The basic observation to derive Liouville correlation functions is to notice that the

residue of the poles in the correlation functions should be given by the following

screening integral:

Aα1,...,αN
=
µ
n+

+ µ
n−

−
n+!n−!

〈
N∏

i=1

e
√

2αiϕ(zi)

n−∏

r=1

∫
d2vr e

√
2b−1ϕ(vr)

n+∏

r=1

∫
d2wr e

√
2bϕ(wr)

〉
,

(20)

where n± refers to the amount of screening operators of the type S± required to

satisfy the charge symmetry condition coming from the integration over the zero-

mode of ϕ field (and treat ϕ as if it were a free field):

N∑

i=1

αi + n+b+ n−b
−1 = Q . (21)

In the full correlation functions, we expect poles such as Γ
(
Q −∑N

i=1 αi + n+b +

n−b−1
)
.

The explicit form of the two- and three-point correlation functions for real values

of b are known and we write them here to archive a self-contained presentation. Let

us start with the two-point function, which is just given in terms of the reflection

coefficient as

AL
α1,α2

= |z2 − z1|−4∆α1 (Rb(α1)δ(α1 − α2) + δ(α1 + α2 −Q)) . (22)

On the other hand, the three-point function is given by

AL
α1,α2,α3

= |z1 − z2|2(∆α3−∆α2−∆α1 )|z1 − z3|2(∆α2−∆α3−∆α1 )

× |z3 − z2|2(∆α1−∆α2−∆α3 )CL(α1, α2, α3) (23)

with the structure function CL(α1, α2, α3) defined as follows:

CL(α1, α2, α3) =

(
πµ+

Γ(1 + b2)

Γ(1 − b2)
b−2b2

)1+b−2−b−1∑3
n=1 αn

× Υ′
b(0)

Υb

(∑3
t=1 αt −Q

)
3∏

i=1

Υb(2αi)

Υb

(∑3
l=1 αl − 2αi

) . (24)

Here the special functions Υb(x) can be written in terms of the special functions

Gk(x) introduced before by means of the equivalence

Υ−1
b (−bx) = bb

2x2+(1+b2)xGb−2+2(x) , (25)

where b−2 = k − 2.
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The two- and three-point functions written above were originally computed by

Dorn–Otto and Zamolodchikov brothers in Refs. 34 and 28, where they derived them

as interpolations of the screening integral (20). Later, Teschner35 reobtained this

expression from the consistency condition of the crossing symmetry of a certain

four-point function with one degenerate operator insertion (conformal bootstrap

approach).

In Liouville field theory, there exist particular representations of Virasoro

algebra which correspond to degenerate states. The use of them turned out to

be a crucial tool in our understanding of the spectrum and the set of observables of

this nonrational theory. This is basically due to the fact that correlation functions

involving such states are known to satisfy BPZ partial differential equations. The

values of momenta corresponding to those representations are given by

α = αm,n =
1 −m

2
b+

1 − n

2
b−1 ,

where (m,n) is any pair of positive integers. The state with momentum α = α1,2

will play a distinguishing role in what follows.

2.3. The Stoyanovsky Ribault Teschner dictionary

Based on a relation between the BPZ and the KZ systems of partial differential

equations, Stoyanovsky described in Ref. 6 a map between correlation functions

between SU(2) WZNW models and minimal models. On this basis, Ribault and

Teschner recently presented a precise formula connecting correlation functions in

SL(2,C)k/SU(2) WZNW theory and those in Liouville theory.5 The formula, which

we will call Stoyanovsky–Ribault–Teschner (SRT) dictionary, maps N -point func-

tions in WZNW theory to 2N − 2-point functions in Liouville theory. Explicitly,
〈

N∏

i=1

Φji,mi,m̄i
(zi)

〉
=

N∏

i=1

N ji
mi,m̄i

2N−2∏

r=N+1

∫
d2zr Fk(z1, . . . , z2N−2)

〈
2N−2∏

t=1

Vαt
(zt)

〉
,

(26)

where

Fk(z1, . . . , zN , zN+1, . . . , z2N−2)

=
2π3b

π2N

(
µ+π

2

Mb2

)b−1(α1+···+αN−N
2 b

−1)−1

×
∏N

1≤r<l(zr − zl)
mr+ml+k/2(z̄r − z̄l)

m̄r+m̄l+k/2
∏2N−2
N<r<l |zr − zl|k

∏N
t=1

∏2N−2
r=N+1(zr − zt)mt+k/2(z̄r − z̄t)m̄t+k/2

, (27)

and

N j
m,m̄ = − sin(π(2j −m− m̄))Γ(−j + m̄)Γ(−j +m)

2π cos(π(j −m))
=

Γ(−j +m)

Γ(1 + j − m̄)
. (28)
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The map of the vertex operators is given by

αr = bjr + b+ b−1/2 , 1 ≤ r ≤ N , (29)

αr = α1,2 = −b−1/2 , N < r ≤ 2N − 2 . (30)

In the expression above we have also identified the parameters b−2 = k − 2 and

taken into account the following constraints:f

N∑

i=1

mi =

N∑

i=1

m̄i = 0 . (31)

Expression (26) can also be written down in terms of the variables (µ, µ̄) introduced

in Ref. 5 as a Laplace–Fourier transform of (x, x̄)-basis:

Φj(µ|z) =
1

π
|µ|2j+2

∫
d2x eµx−µ̄x̄Φj(x|z) . (32)

The correlation functions in this basis are proportional to the factor

∝
∣∣∣∣∣ΘN (µ|z)−1

N∑

i=1

µizi

∣∣∣∣∣

−2−4b2

, (33)

where the function ΘN(µ|z) and the variables µ and µ̄ are defined by the following

relations:

|ΘN (µ|z)|2 =

∣∣∣∣∣
N∑

i=1

ziµi

∣∣∣∣∣

2 N−1,N∏

i<r≤N
|zi − zr|b

−2

×
2N−3,2N−2∏

N<i<r

|zi − zr|b
−2

N∏

1≤i

2N−2∏

N<r

|zi − zr|−b
−2

(34)

and

N∑

i=1

µi = 0 ,

N∑

i=1

µi(t− zi)
−1 =

N∏

1≤r
(t− zr)

−1
2N−2∏

N<r

(t− zr)

N∑

i=1

ziµi (35)

and, of course, the corresponding anti-holomorphic part (see Ref. 5 for the details).

2.4. Some remarks on SRT correspondence

Before concluding this section and move on to our main study of the SRT corre-

spondence (26) in the applications to string theory formulated on AdS3 and on

the 2D black hole background and homogeneous tachyon condensation, we would

like to briefly make several remarks on the SRT correspondence purely from the

CFT point of view, which is of its own interest and also is of importance in our

applications.

fLater we will discuss the winding number violating correlation functions and relax (30).
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• The original derivation of the SRT map implicitly assumes that α = Q
2 + iP and

j = − 1
2 + ip with real P and p (continuous series).g In the following applications,

we assume that the SRT map can be applied to real α and j by postulating

sufficient analyticity of the correlation functions in both theory (defined as an

analytic continuation). Such an analytic continuation is believed to hold for higher

point functions and shown explicitly in lower (two and three) point functions.

• The relation between the quantum numbers α and j is such that the Liouville

reflection symmetry α → Q− α corresponds to the Weyl symmetry transforma-

tion j → −1 − j of SL(2,R) representations. Moreover, (30) also shows that the

degenerate representations αm,n of the Liouville spectrum (corresponding to non-

normalizable states) are mapped to the j−m,n representations of the Kac–Kazhdan

series of the ŝl(2)k algebra (we will return to this point in the conclusion).

• It is also worthwhile mentioning that the Liouville theory possesses a self-duality

under the interchange b → b−1. However, this symmetry, under the SRT map,

apparently is not present in the SL(2,R)k WZNW model, whose central charge

c = 3 + 6
k−2 is asymmetric under k − 2 → 1/(k − 2) unlike the Liouville theory

(c = 1 + 6(b + b−1)2). This difference is encoded in the fact that the function

Fk(z1, . . . , z2N−2) in (26) explicitly depends on k. However, it is also true that

under the transformation k − 2 → 1/(k − 2) the WZNW correlation functions

transform in such a way that a relation of the form (17) also holds, considering

M instead of µ (see Ref. 27 for the details). This is consistent with the fact that

µ+ and M appear together in the KPZ scale factor in (27).

• Related to this point, it is now widely believed there is a phase transition (known

as the String/Black Hole transition36) at k = 3 of the SL(2,R)k WZNW model.

Since the Liouville part of the SRT map is invariant under b → b−1, the whole

information of the phase transition should be encoded in Fk(z1, . . . , z2N−2). It

would be interesting to study this aspects further, but beyond the scope of this

note (see also Refs. 37 and 38 for an explicit realization of this transition in the

open string sector).

3. Applications to String Theory

The aim of the following subsections is to investigate how we can extract physically

useful information about the functional properties of string scattering amplitudes

from the SRT map.

3.1. The instantons in Euclidean AdS3

As a first simple application, we study the pole structure of N -point scattering

amplitudes on AdS3. The analytic structure of string amplitudes in Euclidean AdS3

gThis is because in more general amplitudes, we have to specify the contour of the intermediate
channel when one applies the OPE in order to accommodate the contribution from discrete states.
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was extensively studied by Maldacena and Ooguri in Ref. 7, where it was shown

that the four-point scattering amplitude in this space presents additional poles

with respect to the analytic structure one could naively expect a priori. These

additional poles are located in the middle of the moduli space whenh x = z. By

means of semiclassical arguments, these poles were interpreted in Ref. 7 as due to

instantonic contributions in the worldsheet theory and happen when a holomorphic

map γ(z) → z does exist (typically, one can consider the case γ(z) = zω). In

that case, the third term in action (1) vanishes and no potential that prevents the

worldsheet from expanding to the boundary is present. From the viewpoint of the

dual boundary conformal field theory, these nonperturbative effects (finite k-effects)

are seen as nonlocal phenomena.

In Ref. 7, it was also inferred (from the semiclassical analysis) that in a generic

N -point function on the sphere, after integrating over zi, one finds those points in

the x-plane where the holomorphic map is possible and, thus, one would expect

poles at

k +N − 3 +

N∑

i=1

ji = 0 , (36)

corresponding to instantons wrapping ω = 1 times around themselves and expand-

ing to the S2 that is the boundary of AdS3. Here, we argue that these “expected”

poles actually occur in AdS3 N -point amplitudes. By using the SRT dictionary,

it is easy to show that the N -point functions in SL(2,C)k/SU(2) WZNW model

actually present the pole structure that Maldacena and Ooguri predicted. They

simply appear from the bulk poles coming from the corresponding 2N − 2-point

Liouville correlation functions. The mechanism creating these poles in the Liou-

ville side is explained as follows. While in the AdS3 picture they correspond to

worldsheet configurations expanding to the boundary (φ → ∞) with no potential

preventing that, from the viewpoint of Liouville theory these poles arise due to the

noncompactness of the target space and the integration over the zero-mode ϕ0 on

it when the configuration is such that an integer amount of screening charges S− is

inserted.i

To be precise, let us consider the integral representation of the Liouville correla-

tion functions (a Coulomb gas-type representation). For instance, let us consider the

case where only screenings of the kind S− ∼
∫
d2v e

√
2b−1ϕ(v) are present in (20).

Then, when computing the Liouville correlation functions, one picks up a factor

Γ(−n−) coming from the integration over the zero-mode of the Liouville field when

n− screening charges are inserted according to (21). Consequently, the correlation

hWhere x and z refer to the cross-ratios of both xi and zi insertions in the case of four-point func-

tions written in terms of the (x, x̄)-basis. Namely, x =
(x1−x3)(x4−x2)
(x4−x1)(x2−x3)

and z =
(z1−z3)(z4−z2)
(z4−z1)(z2−z3)

.
iG. Giribet thanks J. M. Maldacena for earlier conversations on this point. Actually, Maldacena
suggested before5 that it could be possible to find a connection between the instantonic poles in
AdS3 and the dual screening operator. This seems to be the explicit realization.
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functions present poles for those configurations such that n− ∈ Z≥0 (see for instance

Ref. 39). In particular, the case n− = 1 precisely corresponds to the Maldacena–

Ooguri condition (36). For a generic nonnegative integer n−, the pole we get is the

one corresponding to a worldsheet instanton wrapping ω = n− times in AdS3. If we

consider the case n− = 1 in (21), bulk poles for the four-point functions also arise

for n+ ≥ 0; these correspond to the fact that the monodromy invariant solution

of the SL(2,R)k KZ equation have a contribution of the form ∼ |z − x|−2n+ . The

poles at integer n± appear here because of the integration over the variables (x, x̄),

which was already performed when writing the correlation functions in terms of the

(m, m̄)-basis.

According to the space–time picture, the poles due to the function Γ(−n+)

that stands in Liouville correlation functions are interpreted as contributions due

to tachyons scattering in the bulk with n+ zero-momentum tachyons of the back-

ground, which correspond to the interaction with the microscopic composites of the

Liouville potential.39 In the case of n− screenings of the type S− (the dual inter-

action term) this would correspond to instantonic contributions. In more general

situations, the both effects contribute as a bulk pole.

3.2. Separation of LSZ poles from bulk poles

In Ref. 15, it was claimed that the pole structure of the SL(2,R)k/U(1) theory

yields a holographic meaning in the context of the dual Little String Theory (LST).

Roughly speaking, each vertex operator corresponding to operators in the dual

theory which creates a one particle state gives LSZ-like poles. On the other hand,

there are other kinds of poles coming from the bulk interaction related to the

noncompact cigar geometry (known as bulk poles); this was discussed in the context

of SRT map in the last subsection. As we will see in this subsection, the separation

of LSZ poles from bulk poles studied in Ref. 15 can be shown manifestly by using

the SRT map.j

The SRT map, when we write in the m basis, assigns a normalization factor

N j
m,m̄ to each vertex of the WZNW model. This factor is based on the group

theoretical integral, which transforms the µ-basis to the m-basis of the SL(2,R)

representation. On the other hand, in Ref. 15 from the dual LST description, it

was suggested that every vertex operator representing the off-shell source for the

Green function should possess a definite pole structure predicted from the LSZ

reduction.

From the usual gauge/string correspondence, the on-shell string amplitudes cal-

culate off-shell Green functions of the gauge theory (LST in this case). Therefore

if we tune the parameter j for each vertex operator, there should exist some limit

jIt was explicitly discussed in two- and three-point functions; we will show that the structure holds
for arbitrary N-point functions.
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which enforces the LST Green functions on-shell. In that case, the general field

theoretic argument suggests that we have LSZ poles:

〈O1(p1) · · ·On(pn)〉 ∼
∏

i

1

p2
i +M2

i

〈0|O(norm)
1 (p1) · · ·O(norm)

n (pn)|0〉 , (37)

where Oi(pi) is the operator whose corresponding string vertex operator is Φji,mi,m̄i

in the SL(2,R)k/U(1) part, and O
(norm)
i (pi) is the normalizable (amputated) vertex

operator creating a particle from the vacuum. Thus one expects that such poles

should appear also from the explicit string calculation. Indeed, it was discussed in

Ref. 15, for a given mi and m̄i, which fixes the operator of the LST (from the mass-

shell condition of the string theory), that one finds single poles of ji for particular

values. In this context ji can be seen as a momentum of the dual theory.

In general, it is difficult to separate these LSZ poles of SL(2,R)k/U(1) theory

from the bulk poles discussed in the last subsections. However, as we will see here,

the SRT map provides us with a beautiful framework to do this in quite a manifest

way. The first step is to realize that the Liouville part of the SRT map gives the

bulk divergence and the group theoretical part encoded in N j
m,m̄ gives the LSZ

poles. Since N j
m,m̄ is attached to every vertex, this is naturally expected, but it is

important to see it explicitly and compare with the results of Ref. 15 as we will do

in the following.

From its definition (2), (32),

Φj,m,m̄(z) = N j
m,m̄

∫
d2µ

|µ|2 µ
−mµ̄−m̄Φj(µ|z) , (38)

where the normalization factor N j
m,m̄ is given by

1

N j
m,m̄

=
1

π

∫
d2s s−m+j s̄−m̄+jes−s̄ . (39)

The result of the integration is

∫
d2s s−m+j s̄−m̄+jes−s̄ = − 2π2 cosπ

(
j − n+kω

2

)

sinπ(2j − kω)Γ
(
−j + −n+kω

2

)
Γ
(
−j + n+kω

2

) , (40)

where

m =
n+ kω

2
, m̄ =

−n+ kω

2
, n ∈ Z , ω ∈ Z . (41)

It is easy to see that we can show that the reflection amplitudes (6) are consistent

by using this formula and SRT map.

Let us now study the pole structures of N j
m,m̄. As we mentioned above, this

is related to the LSZ pole. To compare with the results in Ref. 15, we first note

that the index used to label the representations of SL(2,R) in that reference (let us

denote it jAGK) is related to ours (let us denote it jRT since our convention agrees
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with the one used in Ref. 5) by the Weyl conjugation: jRT = −1 − jAGK . Thus

we have

N jAGK

m,m̄ =
sinπ(−2jAGK − 2 −m− m̄)Γ(1 + jAGK +m)Γ(1 + jAGK + m̄)

−2π cosπ(−1 − jAGK −m)
. (42)

This amplitude has LSZ pole precisely at

j = M − 1,M − 2, . . . > −1

2
, M = min{|m|, |m̄|} , m, m̄ < −1

2
, (43)

which agrees with Ref. 15 (see Eq. (2.22) there). On the other hand, in Ref. 15, it

was also pointed out that there are further LSZ poles in the two-point function at

j = M − 1,M − 2, . . . > −1

2
, M = min{m, m̄} , m, m̄ >

1

2
, (44)

which do not appear in N jAGK

m,m̄ . However, as far as two-point function concerns,

there is no contradiction because the second inserted operator involves the factor

N jAGK

−m,−m̄, which yields the necessary poles because of the momentum conservation.k

Therefore we claim that the SRT maps enable us to separate LSZ poles from bulk

poles without an ambiguity.

In this way, we have established a holographic meaning of the SRT map: it is a

LSZ reduction procedure. We first separate the LSZ poles from the correlation func-

tions of SL(2,R)k/U(1) theory and the net interaction is reduced to the Liouville

correlation functions. It would be interesting to understand the structure of the

remaining Liouville correlation function as a normalized S-matrix (the right-hand

side of (37)). This seems feasible because the Liouville correlation function itself

gives an S-matrix of a certain noncritical string theory.

3.3. The violation of winding number conservation

Our intention here is to extend the correspondence presented in Ref. 5 to the case of

WZNW correlation functions that violate the winding number in a generic amount

(let us say
∑N

i=1 ωi = M). We will see that it is feasible to do this by using the

FZZ prescription.l This prescription was reproduced in detail in Ref. 7. Then, first,

let us discuss how to represent WZNW correlation functions violating the winding

number conservation in terms of Liouville correlation functions. In the following,

we review the mechanism of violation of the winding number ω in several related

nonrational CFT’s.

kIn more general amplitudes, these poles arise in the integration over zr (and the momentum
conservation). We will also observe the similar (apparent) asymmetry between m → −m in the
winding violating correlation function in Subsec. 3.3.
lG. Giribet thanks D. Kutasov for a discussion about the details of Ref. 22 at ICTP in April 2001.



August 10, 2006 15:19 WSPC/139-IJMPA 03169

4020 G. Giribet & Y. Nakayama

The winding number violation in AdS3 and in the 2D black hole

The violation of the winding number conservation was first observed by Fateev,

Zamolodchikov and Zamolodchikov (in their quoted unpublished paper22) for the

case of the Euclidean version of the Witten’s 2D black hole.8–11 It was pointed

out that the conservation of the winding number is not ensured because of the

topology of the cigar. Furthermore, an interesting prescription was presented to

compute correlation functions violating the winding number conservation. As the

preliminary step of their prescription, the concept of “conjugate representation

of the identity operator” was introduced. This is an operator that basically has

the same conformal properties of the identity operator (notice that the conformal

dimension of the states in the coset is given by h
SL(2)/U(1)
j,m = hj + m2/k); in the

case of the cigar, the operators Φj=− k
2 ,m=±k

2 ,m̄=± k
2

are of this sort.

Then, the FZZ prescription continues as follows. First, one takes the N -point

function one wants to calculate and then one introduces an additional operator

(a (N + 1)th operator) with quantum numbers j = ±m = −k/2 inserted at the

point z0:

ÃWZNW
j1,...,jN ;m1,...,mN

=

〈
N∏

i=1

Φji,mi,m̄i
(zi)Φj0=− k

2 ,m0=
k
2 ,m̄0=

k
2
(z0)

〉
. (45)

In the case one is interested in computing correlation functions that violate the

winding number conservation in a generic amount M , then M of these conjugate

representations of the identity should be included in the correlation functions.

The second step is taking the coincidence limit z0 → z1 (let us choose z1 as

the position of the vertex operator corresponding to the string state whose winding

number will change in the scattering) and then extract ad hoc the divergence arising

in the coincidence limit (this is given by a factor that develops a pole in m0 →
±k/2). In order to eliminate the z0-dependence one has to add the overall factor

N∏

i=1

(zi − z0)
mi(z̄i − z̄0)

m̄i .

Besides, when M conjugate representations of the identity are included, this factor

would be

M∏

r=1

N∏

i=1

(zi − ur)
mi(z̄i − ūr)

m̄i

M∏

r<t

|ur − ut|k , (46)

where the points ur are those where the additional M operators are inserted

(replacing z0 = u1 which corresponds to the case M = 1).

The third step is to notice that the operator product expansion takes the form

Φj0,m0,m̄0(z0)Φj1,m1,m̄1(z1)

∼z0→z1

∑

j,m

Q(j, j0, j1;m,m0,m1)|z0 − z1|2(hj−hj0−hj1 )Φj,m,m̄(z1) + · · · , (47)
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where the Fourier coefficients Q(j1, j2, j3;m1,m2,m3) are given in terms of the

structure constant as follows:

Q(j1, j2, j3;m1,m2,m3)

= CH(j1, j2, j3)W
H (j1, j2, j3;m1,m2,m3)R−1

k (j1,m1) , (48)

while the function WH(j1, j2, j3;m1,m2,m3) is the group theoretical factor coming

from the integration over the (xi, x̄i)-coordinates in changing the base to (mi, m̄i)-

variables (i ∈ {1, 2, 3}) and its explicit form (in terms of hypergeometric functions)

is given in Refs. 40 and 41. By making use of the functional properties of the

structure constant (15), one finds

lim
j0→− k

2

〈Φj0,j0(z0)Φj1,m1(z1) · · ·ΦjN ,mN
(zN )〉

∼z0→z1

1

π

B(1 − k/2)

B(−j1 − k/2)
W̃N (j1, . . . , jN ;m1, . . . ,mN)

×
〈
Φ− k

2−j1,m1− k
2
(z1) · · ·ΦjN ,mN

(zN )
〉
, (49)

where, now, the function W̃N (j1, . . . , jN ;m1, . . . ,mN ) is given by the integration

over the variables xa when Fourier transforming the expression from the (x, x̄)-basis

to the (m, m̄)-basis, including in the integrand the factor required for extracting the

z0-dependent divergence mentioned before. For instance, in the case of three-point

function (i.e. N + 1 = 4) the integration is

lim
x0→∞

3∏

a=1

∫
d2xa

3∏

a=1

x−1−ja+ma
a x̄−1−ja+m̄a

a |x30|4j3 |x21|2j1+2j2+2j3+k

× |x01|2j1−2j2−2j3−k|x02|−2j1+2j2−2j3−k|x0|2k|z − x|2j1+2j2+2j3+k , (50)

where xab = xa − xb, x = (x0−x1)(x3−x2)
(x2−x1)(x3−x0)

and z = (z0−z1)(z3−z2)
(z2−z1)(z3−z0) , while the factor

|x0|2k (in the limit x0 → ∞) stands for the regularization required because of the

divergence of the Fourier modes m0 = ±k/2. Besides, the factor |x−z|k+2j1+2j2+2j3

comes from solving the KZ equation which has a solution presenting poles at z = x.

For the details of the explicit form of W̃3(j1, j2, j3;m1,m2,m3), see Ref. 7, where

the Maldacena and Ooguri (see Ref. 22 for the original computation) find the result

being proportional to

〈Φj1,m1(z1)Φj2,m2(z2)Φj3,m3(z3)〉violating ω

∼ Γ(1 + j1 + j2 + j3 + k/2)

Γ(−j1 − j2 − j2 − k/2)

3∏

i=1

Γ(−ji +mi)

Γ(1 + ji − m̄i)

× (−1)m3−m̄3πB(j1)C
H

(
− k

2
− j1, j2, j3

)

× δ

(
m1 +m2 +m3 +

k

2

)
δ

(
m̄1 + m̄2 + m̄3 +

k

2

)
. (51)
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Here, the symbol ∼ stands because the dependence on zi was omitted in writing

this for simplicity (the details can be found in Ref. 7). See also Ref. 27 for a related

calculation.

Then, due to the fact that the starting point of the prescription was an observ-

able with N +1 insertions (originally, this is a N +1-point function (45) that turns

out to be the N -point function (49) after the coincidence limit described above),

the conservation law (coming from the integration over the zero-mode of the orig-

inal vertex-arrange) is m1 + m2 + m3 + · · · +mN + k/2 = 0 instead of the usual

m1 + m2 + m3 + · · · + mN = 0. Hence, since in the 2D black hole the winding

number is given by ωi = mi + m̄i, this procedure enables us to calculate the N -

point function violating one unit of the winding number in this background. On the

other hand, notice that this construction does not imply that the momentum J 3

is not conserved. The conservation law described above comes from the integration

over the zero-mode of the field X(z) which precisely realizes the U(1) part of the

gauged SL(2,R)k/U(1) generated by the Cartan current J3(z) ∼ i
√
k/2∂X(z). It

is just the fact that there are conjugate (additional) representations of the identity

operator and the U(1) charge of the accompanying field X(z) is not trivial.

The details of the adaptation of the FZZ prescription described above to the

case of string theory in AdS3 can be found in Sec. 5 of Ref. 7. On the other hand,

another important remark in Ref. 22 is that (by means of explicit computation) in

a given N -point function the winding number conservation can be violated in an

amount which is bounded by
∣∣∑N

i=1 ωi
∣∣ ≤ N − 2. In particular, this means that

in a three-point function the winding number can be violated in −1, 0 or 1 while

in a two-point function the violation cannot occur. The reason for the correlation

functions with
∑N

i=1 ωi > N − 2 to vanish is the regularization factor required to

cancel the divergence that is a remnant of the insertion of the conjugate identity

operator with m = ±k/2.

In string theory formulated on AdS3 the winding number ω (as a degree of

freedom classifying the states of the spectrum) is understood as follows: though

Anti-de Sitter space is a simply connected manifold, the winding number has to be

introduced to describe the Hilbert space. This ω is certainly not a winding number

with a topological origin but it is simply due to an energetic reason: in AdS3, the

strings are supported by the competition between gravity and the action of the

Bµν NS-NS field which pushes the strings to the boundary and prevents them from

unwrapping in the generic case. However, with enough energy (and under certain

circumstances) it is possible for the strings to unwrap and change the winding

number ω (by changing m accordingly to ensure that the bulk energy m+ m̄+ kω

is conserved). Unlike the 2D black hole, in AdS3 the winding number is not given by

the sum of the momenta m and m̄ but they represent three independent quantum

numbers.

On the other hand, since the eigenvalue of the Cartan generator J 3
0 for a generic

state in the spectrum of the SL(2,R)k WZNW theory is not zero, one could naively

argue that in this case, unlike the case of the gauged SL(2,R)k/U(1), a state with
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m = −k/2 does not share the conformal properties with the state having m = 0

and, then, the operator j = m = −k/2 would not correspond to a conjugate rep-

resentation of the identity operator j = m = 0 (because they would have different

eigenvalue for J3
0 ). However, by noticing that in the SL(2,R)k WZNW model one

has to include the spectral flow symmetry in order to parametrize the whole spec-

trum (and consequently an infinite new set of states appear in the spectrum), one

eventually finds that the state j = m = −k/2 with winding number (i.e. spec-

tral flow parameter) ω = 1 does share the conformal properties with the identity

j = m = ω = 0. Hence, in the case of AdS3 string theory the state with winding

number ω = 1 is the one that corresponds to the conjugate representation of the

identity (this was called spectral flow operator in Ref. 7). Hence, the prescription

for computing violating winding amplitudes in AdS3 turns out to be similar to the

one for the 2D black hole and one finds analogous results and the same bound for

the violation of ω (see App. D of Ref. 7).

The SRT dictionary and the violation of winding number

At this point, the question arises as to whether there is a description of the WZNW

correlation functions that violate the winding number conservation in terms of

Liouville correlation functions (i.e. in an analogous way as (26) describes such a map

for the winding number conserving correlation functions). In order to undertake

the task of including the winding number violating correlation functions in the

framework, we have to start with the following simple observation: from the relation

between the quantum numbers ji and αi in (26), one notices that a correlation

function of the form (45) which includes a (N + 1)th operator with momentum

j = −k
2 , corresponds to the insertion of the identity operator Vα0=0 ∼ 1 in the

Liouville theory side. Then, correlation functions of the form (45) are actually

proportional to Liouville correlation functions as

lim
α0→0

N−1∏

l=1

∫
d2vl

〈
Vα0(z0)

N∏

i=1

Vαi
(zi)

N−1∏

l=1

Vα1,2 (vl)

〉
. (52)

Then, since the Liouville structure constants CL(α1, α2, α3), like their analogues

CH(j1, j2, j3), satisfy

lim
α0→0

CL(α0, α1, α) = Rb(α)δ(α − α1) . (53)

One notices that the OPE (49) in the WZNW theory side leads to a result propor-

tional to
〈

N∏

i=1

Vαi
(zi)

2N−1∏

l=N+1

V− 1
2b

(zl)

〉
(54)

in the Liouville theory side. Notice that in (54), there are 2N − 1 Liouville vertex

operators Vα instead of 2N − 2. Then, the correspondence between (49) and (54)
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suggests a way to extend the SRT dictionary in such a way that the winding vio-

lating processes can be represented also in terms of Liouville correlation functions.

Following the analysis presented above and extending to the M winding vio-

lating case, one concludes that the N -point WZNW correlation functions violating

the total winding number conservation in an amount
∑N
i=1 ωi = M can be written

as 2N + M − 2-point functions in Liouville field theory (in the case M = 0 one

recovers the particular case (26) valid for the winding preserving process). This is

due to the fact that each spectral flow operator Φj=− k
2

that needs to be inserted

in the WZNW side in order to change (in one unit) the winding number of a given

SL(2,R)-state corresponds to an identity operator Vα=0 ∼ 1 in the Liouville theory

side and then one observes that
〈

M∏

r=1

Φ− k
2
(ur)

N∏

i=1

Φji(zi)

〉
∝

N+M−2∏

l=1

∫
d2vl

〈
N+M−2∏

l=1

Vα1,2(vl)

N∏

i=1

Vαi
(zi)

〉
. (55)

For instance, the three-point scattering amplitudes (violating winding number with

M = 1) in AdS3 would be given in terms of five-point Liouville correlation functions

(extracting the appropriate divergent factor coming from the coincidence limit of

spectral flow operator and the evaluation at m = m̄ = ±k/2 (see below)). Thus,

according to this digression, only those Liouville correlation functions involving

N +n vertex operators with n of them being degenerate states with momenta α1,2

and N −2 ≤ n ≤ 2N −2 can be thought as WZNW correlation functions (violating

the winding number conservation in an amount
∑N

i=1 ωi = n− (N − 2)).

Hence, the closed formula realizing the map would be
〈

N∏

i=1

Φji,mi,m̄i
(zi)

〉

violating ω

=
π3b

22N+2M−1
lim

p1→−k/2
· · · lim

pM→−k/2

M∏

r=1

(
pr +

k

2

) M∏

r<t

|ur − ut|2(pr+pt+k)

×
N∏

i=1

N ji
mi,m̄i

M∏

r=1

N−k/2
pr,pr

M∏

r=1

N∏

i=1

(zi − ur)
2mipr/k+mi+pr+k/2

× (z̄i − ūr)
2m̄ipr/k+m̄i+pr+k/2

×
N∏

i<j

(zi − zj)
2mimj/k+mi+mj+k/2(z̄i − z̄j)

2m̄im̄j/k+m̄i+m̄j+k/2

×
N+M−2∏

l=1

∫
d2vl

M+N−2∏

l<t

|vl − vt|k

×
N∏

i=1

N+M−2∏

l=1

(zi − vl)
−mi−k/2(z̄i − v̄l)

−m̄i−k/2
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×
M∏

r=1

N+M−2∏

l=1

|ur − vl|−2pl−k
〈

N∏

i=1

Vαi
(zi)

N+M−2∏

l=1

V− 1
2b

(vl)

〉

× δ

(
N∑

i=1

mi −Mk/2

)
δ

(
N∑

i=1

m̄i −Mk/2

)
, (56)

where we have denoted vl = zN+M+1+l for 0 < l ≤ N + M − 2 while the ur
correspond to the points where the M spectral flow operators are inserted (ana-

logues to the z0 in (52)). The factors of the form (zi − zj)
2mimj/k come from the

fact that we are computing correlation functions in the gauged SL(2,R)/U(1), and

these correspond to the contraction of two operators ei
√

2
k
miX(zi)ei

√
2
k
mjX(zj).

The factor
∏M
r=1(pr + k/2) in the expression above stands because of the regu-

larization required in order to cancel the pole arising in the limit pr → −k/2. This

regularization is explained in Ref. 7 by introducing the infinite volume factor 1/Vconf

which is attached to each spectral flow operator. In terms of the (m, m̄)-basis, such a

divergence that arises in the limit pr → ±k/2 is due to the factor N
−k/2
pr,pr . Thus, the

regularization factors (pr+k/2) precisely cancel such a divergence in the right-hand

side of the last equation, namely

lim
pr→−k/2

(pr + k/2)N−k/2
pr,pr

= lim
pr→−k/2

− (pr + k/2) sin(π(k + 2pr))Γ
2(k/2 + pr)

2π cos(π(k/2 + pr))
= −1 .

Besides, notice that this also verifies that the factor (46) is the appropriate one in

order to cancel the ur-dependence coming from the insertion of the M additional

spectral flow operators Φ− k
2 ,−k

2 ,− k
2
. This is observed from the fact that in the limit

pr → −k/2 the ur-dependent factors cancel (see equation above). Then, one finally

obtains
〈

N∏

i=1

Φji,mi,m̄i
(zi)

〉

violating ω

=
(−1)Mπ3b

22(N+M)−1

N∏

i=1

Nji
mi,m̄i

N∏

i<j

(zi − zj)
2mimj/k+mi+mj+k/2(z̄i − z̄j)

2m̄im̄j/k+m̄i+m̄j+k/2

×
N+M−2∏

l=1

∫
d2vl

M+N−2∏

l<t

|vl − vt|
k
N∏

i=1

N+M−2∏

l=1

(zi−vl)
−mi−k/2(z̄i− v̄l)

−m̄i−k/2

×

M∏

r=1

N+M−2∏

l=1

|ur − vl|
−2pl−k

×

〈
N∏

i=1

Vαi (zi)

N+M−2∏

l=1

V− 1
2b

(vl)

〉
δ

(
N∑

i=1

mi − Mk/2

)
δ

(
N∑

i=1

m̄i − Mk/2

)
. (57)
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Hence, the formula (56) generalizes the SRT correspondence (26) since it enables

us to describe winding violating processes in WZNW model in terms of Liouville

correlation functions.m

Let us focus on the winding number violating (M = ±1) three-point function

as the first nontrivial example. We first note that the nontrivial group theoretical

factor (m, m̄ dependence) is given by (see (51))

W̃N (j1, j2, j3,m1,m2,m3) ∝
3∏

i=1

Γ(−ji +mi)

Γ(1 + ji − m̄i)
. (58)

On the other hand, this factor is nothing but the product of the normalization

factor N j
m,m̄ appearing in (57):

N∏

i=3

N ji
mi,m̄i

=

3∏

i=1

Γ(−ji +mi)

Γ(1 + ji − m̄i)
, (59)

so we have successfully separated the group theoretical factor again. We also notice

that the leading singularity of the Liouville five-point function in the v1 → z1 ∼ z0,

v2 → z1 ∼ z0 limitn gives a factor proportional to CH(−k
2 − j1, j2, j3) by a direct

calculation, agreeing with the WZNW model computation (51).

For completeness, we would like to review the mechanism leading to the vio-

lation of the winding number conservation in other (though closely related) non-

rational CFT’s. In the sine-Liouville field theory, which was conjectured to be dual

to SL(2,R)k/U(1) coset model, the mathematical reason for the violation of winding

conservation is more evident than in the case of the SL(2,R)k/U(1) coset model

(even though the geometrical picture for such a mechanism is quite clear in the

space–time interpretation). This is due to the fact that the winding number in

sine-Liouville theory is explicitly broken by the interaction term (which, unlike the

WZNW theory, explicitly depends on the field X(z)). The sine-Liouville potential is

chiral in the sense that a distinction between right-moving-modes and left-moving-

modes of the field X(z) manifestly appears in the nontrivial part of the action.

Fukuda and Hosomichi showed in Ref. 24 that one can rewrite the interaction term

(see (60) below) as two exponential terms and these terms turn out to represent

two different screening charges of the model. Then, the correlation functions can

be computed by using an amount n and m of both screenings respectively. The

computation that uses the same amount of both (m = n in the notation of Ref. 24)

conserves the winding number while the one employing a different amount violates

the winding number in
∑N

i=1 ωi = n−m units.

mIn Ref. 5 it was noted that V. Fateev derived a formula relating winding violating correlation

functions in WZNW model with Liouville correlation functions in his unpublished paper.
nIn the case of m = k

2
, the divergent contribution comes from this part because limpr→+k/2 N

−k/2
pr,pr

is now finite. Instead the integration over vi develops a diverging factor when approaching z0.
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At this point one could feel tempted to reproduce this procedure in the case

of the SL(2,R)k WZNW model where, as well as in the sine-Liouville model, one

finds two different screening charges. However, in the WZNW model both screening

charges are similar with respect to the winding charge; thus (as proven in Ref. 27)

all the computations using a generic amount of screening of any kind in the case of

the WZNW theory agree and the violation of winding comes from a rather different

aspect.

Fukuda and Hosomichi also showed that the violation (at least up to the level

of three-point function) is bounded by
∑N=3

i=1 ω ≤ N − 2 (this seems consistent

with the upper bound N −2 in the WZNW model). This upper bound also appears

in the context of the N = 2 superconformal SL(2,R)k+2/U(1) model. In the case

one is dealing with a supersymmetric model (i.e. the model with N = 2 SCA

superconformal symmetry) one finds two basic aspects which can lead to a simpler

understanding of the winding number violation. First of all, the SCA algebra also

presents the spectral flow symmetry and under this transformation the local super-

currents G+(z) and G−(z) change in such a way that their modes are shifted. On

the other hand, in the supersymmetric case the calculation of N -point functions

involves N − 2 states written in the picture 0 and two states in the picture −1. In

order to write the operators in the picture 0 one should insert N − 2 supercurrents

in the correlation functions and then, under the application of the spectral flow

symmetry, some of these N − 2 currents can change (one of the contribution of the

complete expression containing N − 2 supercurrents insertions) and the violation

of the winding number can be understood from this fact (for details, see Ref. 42).

This mechanism led Giveon and Kutasov to remark the parallelism between the

supersymmetric case and what happens in the bosonic case (i.e. the fact that the

winding number can be violated up to N − 2 units).o

3.4. The k → 0 limit: The homogeneity limit of the tachyon field

As we commented in the introduction, the WZNW model formulated on SL(2,R)k,

in addition to its natural application to string theory on AdS3 and on the 2D black

hole, is also connected to the tachyon physics in string theory through the FZZ

conjecture. These aspects are reviewed in the following paragraph as an introduction

to this subsection.

Preliminary: On the FZZ conjecture

Let us begin with the FZZ conjecture,22 which will be of primary importance in this

section. This conjecture states the equivalence between N -point correlation func-

tions in the two-dimensional black hole or SL(2,R)k/U(1) coset model, andN -point

oThe supersymmetry version of the FZZ duality was proven in Ref. 43. From this gauged linear
sigma model viewpoint, the violation of winding number conservation is due to instanton effects.
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functions in the sine-Liouville conformal model. The latter model is described by

the following action:

SFZZ =
1

2π

∫
d2z

(
∂ϕ∂̄ϕ+ ∂X∂̄X − 1

2
√
k − 2

Rϕ

)
+ λ

∫
d2z T (60)

with the interaction

T (z, z̄) = e−
√

k−2
2 ϕ cos

(√
k

2
(XL(z) −XR(z̄))

)

defining an exact conformal background that can be thought as a deformation of the

c = 1 matter model.23 The central charge is given by c = 2+ 6
k−2 and consistent with

the FZZ conjecture. The primary fields we are going to deal with are represented

by operators of the form

V FZZ
α,pL,pR

(z, z̄) = Vα(z, z̄)ei
√

2(pLXL(z)+pRXR(z̄)) . (61)

The three-point correlation functions involving these fields were computed in Ref. 24

and were shown to be consistent with the FZZ conjecture (see also Ref. 44).

According to the FZZ conjecture, the sine-Liouville model (60) is dual to the

string theory formulated on the Euclidean black hole, i.e. the SL(2,R)k/U(1) coset

model. The spectrum of this model, following the notation introduced before, is

given by operators having conformal dimension ∆̃α,pL
, given by

∆̃α,pL
= −α(α+ b) + p2

L (62)

and the analogous expression for pL → pR. It is convenient to introduce the follow-

ing notation:

m =
√
kpL , m̄ =

√
kpR , α = bj , b−2 = k − 2 , (63)

where the range of quantum numbers is defined by the grid

m+ m̄ = ωk , m− m̄ = n (64)

with (ω, n) being a pair of integers. The notation in (63) is convenient for making

the map between states of both sine-Liouville and the WZNW theory clear enough.

Notice that, with this nomenclature, the map between states is realized simply by

∆̃α,pL
= h

SL(2)/U(1)
j,m .

The k → 0 limit of sine-Liouville field theory

A preliminary remark that turns out to be important for our discussion here is that

the action SFZZ actually coincides with the Liouville action SL at the point k = 0 of

the space of parameters once we make the identification b−2 = k−2. This is simply

verified by noticing that, at k = 0, the background charges of both actions agree

and the sine-Liouville potential (i.e. the tachyon field) becomes a single exponential

term T (z, z̄) ∼ e−iφ(z,z̄). Let us also notice that the second screening operator S−
of Liouville theory decouples because µ− actually vanishes for b2 = −1/2. Finally,

the central charge of the sine-Liouville theory is given by c = 2 + 6
0−2 = −1, which

agrees with the Liouville theory at b2 = −1/2 + a free boson: c =
(
1−6· 12

)
+1 = −1.



August 10, 2006 15:19 WSPC/139-IJMPA 03169

The Stoyanovsky–Ribault–Teschner Map and String Scattering Amplitudes 4029

The equivalence between actions is a suggestive fact; however, as mentioned,

since the theories are strongly coupled for k < 2, inferring properties from the

coincidence of both actions is not sufficiently evident. The equivalence between

Liouville theory and sine-Liouville theory at k = 0, if any, should be tested at

the level of correlation functions. Here we will argue that, by assuming the FZZ

conjecture, the sine-Liouville model actually coincides with the Liouville theory ×
a free U(1) boson ∂X(z)∂̄X(z) in the limit k → 0 even at the quantum level. This

limit proves that the “homogeneity limit” analyzed in Ref. 21 is perfectly consistent.

In order to prove this, it is convenient to employ the dictionary (26). It is

feasible to show that the SRT dictionary, in the limit b2 → −1/2, turns out to give a

direct equivalence between correlation functions in both Liouville and sine-Liouville

theories. Once FZZ conjecture is assumed to hold for any value of k, proving the

coincidence of the correlation functions both in the Liouville theory and the sine-

Liouville theory in the limit b−2 → −2 is simply equivalent to observing a series of

remarkable facts (listed below) in the SRT map in this limit.

(a) The exponent of the function ΘN (µ|z) connecting Liouville correlation func-

tions and WZNW correlation functions vanishes when it is evaluated at k = 0

(recall (33)). In other words, nontrivial dependence (other than the Liouville

correlation function) on zN+1, . . . , z2N−2 in (26) vanishes if we setmi = m̄i = 0.

(b) Since we are taking a limit such that R =
√
k goes to zero (i.e. the asymptotic

radius of the cigar), it is enough to observe what happens with the modes

m = m̄ = 0 on the cigar (for instance, in order to make Eq. (62) to make sense).

From the point of view of sine-Liouville model, the dual radius R̃ ∼ 1/
√
k of the

cylinder goes to infinity and the states with finite momentum p = m√
k

(keeping p

fixed) decouple generating a U(1) factor ∼ ei
√

2pX in the correlation functions.

(c) Then, by using the formulae

Γ(2x) = 22x−1π−1/2Γ(x)Γ

(
x+

1

2

)
, sin(πx) = πΓ−1(x)Γ−1(1 − x) ,

we eventually obtain

〈
N∏

i=1

Φji,mi,m̄i
(zi)

〉
=

(
π2µ+

M

)∑N
i=1 ji+1 N∏

i=1

R0(ji, 0)

N−2∏

t=1

×
∫
d2vt

〈
N∏

i=1

Vbji (zi)

N−2∏

t=1

Vb(vt)

〉

× δ

(
N∑

i=1

pRi

)
δ

(
N∑

i=1

pLi

)
, (65)

where we have absorbed a j-independent factor in the normalization of vertex

Φj and a global N -independent factor in the definition of the inner product.
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Notice that the exponent of µ+ in the last formula precisely coincides with the one

expected from KPZ scaling in sine-Liouville theory and, consequently, enables one

to identify the couplings of both CFT’s as being λ ∼k=0 π
2µ+/M . Finally, we have

also used

Rk=0(j,m = 0) = 22j+1Γ(−j)/Γ(1 + j) ,

which is the reflection coefficient of WZNW model at k = 0 (and of course, the reflec-

tion coefficient of the Liouville theory at b2 = −1/2), whose presence is perfectly

in agreement with the representation used in (2). The existence of the reflection

amplitudes for each vertex operator is ultimately attributed to the fact that the sign

of the background charge is different between sine-Liouville theory and Liouville

theory in this convention.

We also observe in (65) that, besides the n+ integrals involved in the Liouville

correlation functions, we get N − 2 additional integrals over the variables vt. This

is consistent with what one would expect and it is explained by the following two

observations. First, notice that in the limit k → 0 the Liouville degenerate operator∫
d2vVα1,2(v) turns out to coincide with the screening charge

∫
d2vVb(v) ∼ S+; on

the other hand, when comparing (7) with (21), we find n+ − s = (N − 2). Accord-

ingly, the additional N − 2 integrated operators
∫
d2vt Vb(vt) do have to be present

in order to compensate the amounts of screening charges of both theories, which

guarantees that the correlation functions do not vanish. This is particularly true in

the Euclidean signature of k < 2 models because the zero-mode integration gives

not a pole of Γ-function but a δ-function enforcing the strict (Liouville) momen-

tum conservation. The necessity of “extra screening operators” becomes subtler

when one considers Lorentzian signature after the Wick rotation. One should note,

however, the screening integral is just a cosmological constant operator and seems

harmless in the general structure of the correlation functions.

Related to this point, it was recently pointed out in Refs. 45 and 46 (see also

Refs. 19 and 47 in the context of the timelike Liouville theory), that the higher

point functions than two-point functions in the imaginary b theory (in the Euclidean

theory such as the minimal model) are different from the analytic continuation from

the real b theory. Although this might potentially seem to invalidate our formula

(65), it is actually not. The reason is that the SRT map is derived both when b is real

and imaginary.p Therefore, as long as we interpret the both sides of (65) in the same

manner (i.e. if we interpret the correlation functions of the sine-Liouville theory in

the Euclidean (Lorentzian) manner, we should do so in the Liouville theory), we

obtain consistent correlation functions.

Then, the integrals over the vt variables are nothing more than screening inser-

tions in Liouville correlation functions, which is required to satisfy the conservation

laws from the integration over the zero-mode of the field ϕ. Hence, for k = 0 the map

pIn fact, Stoyanovsky proposed his map in the SU(2)k WZNW model corresponding to an imag-
inary b.
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(26) turns out to be an identity between N -point functions in Liouville theory and

N -point functions in the 2D black hole. This completes the proof of the equivalence

presented in the introduction.

4. Discussion and Conclusion

In this note, we have discussed the physical applications of the SRT map to string

theory in the noncompact curved background. In particular, we have shown that

the SRT dictionary encodes several important physical aspects of the pole struc-

ture of the string scattering amplitudes in AdS3 space and two-dimensional black

holes. The structure is perfectly consistent with the AdS3/CFT2 correspondence

and holographic dual description of the LST. Furthermore, we have proposed a

formula describing the winding violating correlation functions in SL(2,C)k/SU(2)

WZNW model in terms of Liouville correlation functions, extending the SRT map.

Finally, we have studied the WZNW correlation functions in the limit k → 0 and

shown that they agree with those of the Liouville field theory. This result makes

contact with recent studies on the dynamical tachyon condensation in closed string

theory. Our results are consistent with the FZZ conjecture and proved its validity

at k = 0.

There would be still other interesting applications of the SRT map. For ex-

ample, in his recent paper,48 Zamolodchikov introduced the higher equations of

motion (one-to-one corresponding to the BPZ equations) in the Liouville theory, and

pointed out that these equations might be important in the minimal string theory

(or minimal gravity). As we pointed out in Ref. 49, the derivation of Zamolod-

chikov’s higher equation of motion possesses some model independent feature, and

can be generalized to other noncompact CFT’s. Indeed, Ref. 50 derived the analo-

gous equations in SL(2,C)/SU(2) WZNW model.

The geometrical relation between the Zamolodchikov equations in the Liouville

theory and their counterpart in WZNW model was studied in Ref. 49 in the classical

branch, where we have observed that the hidden Liouville geometry of the WZNW

model plays a crucial role. The central question is whether the SRT map yields yet

another correspondence between these two equations in these two different theories.

Preliminary observations state

• the map of the parameter (30) suggests that the logarithmic operator of the

Liouville theory be mapped to logarithmic operator of the WZNW model in the

j̃−m,n = m−1
2 − n

2 (k − 2) branch:

α̃m,n =
m+ 1

2
b− (n− 1)

2b
= bj̃−m,n + b+

b−1

2
; (66)

• the Zamolodchikov coefficients in both theory take the similar functional depen-

dence on the parameter after the map (30).

It would be very interesting if one can derive the other Zamolodchikov operator

valued equation from the other one by using the SRT map.
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Regarding the applications of the SRT map as realizing string scattering am-

plitudes in AdS3, there are still some open questions. One of these is the question

about the constraints that have to be imposed on the external momenta of a given

scattering process for the amplitude to be well defined. From the viewpoint of the

AdS3/CFT2 correspondence, the N -point string amplitudes in AdS3 have a natural

physical interpretation only if the momenta of the incoming (and outgoing) strings

satisfy the relation

N∑

i=1

ji > 3 −N − k (67)

which, in terms of the Liouville theory, means

2N−2∑

i=1

αi > b (68)

with αi = −1/2b for N < i < 2N − 2. However, it does not seem to be simple to

explain such a bound within the context of Liouville theory. In the particular case

of the two-point function (N = 2) the above condition turns out to be

1 − k

2
< j , 2 < k , (69)

which corresponds to the (improved) unitarity bound.25 Moreover, the unitarity of

the free string spectrum in AdS3 requires

1 − k

2
< j < −1

2
(70)

and the upper bound of (70) precisely corresponds to the Seiberg bound in the

Liouville theory side:

α <
Q

2
. (71)

However, no such a clear identification holds for higher point functions (i.e. for

N > 2 in (67)).

Another interesting puzzle is the question about the meaning of the constraints

required for the OPE of the dual CFT to factorize. In Ref. 7, it was proven that, after

integrating over zi, only some of the whole set of integrated four-point functions in

AdS3 can be factorized with a clear interpretation of the intermediate states. These

special four-string amplitudes are those that satisfy certain constraints, which are

even more restrictive than (67). Then, the second open question would be the

interpretation of such constraints from the Liouville viewpoint. In the framework

of the AdS3/CFT2 correspondence, those constraints have a clear meaning as the

ones required to avoid nonlocal effects in the boundary of AdS. Their interpretation

from the point of view of the integrated six-point function in Liouville field theory

could be useful as well. Furthermore, it should be also interesting to understand

what are the interpretation of those as necessary conditions for the corresponding

Liouville-string amplitudes to be well defined.
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