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Abstract
Macroscopic quantum tunnelling is described using the master equation for the
reduced Wigner function of an open quantum system at zero temperature. Our
model consists of a particle trapped in a cubic potential interacting with an
environment characterized by dissipative and normal and anomalous diffusion
coefficients. A representation based on the energy eigenfunctions of the isolated
system, i.e. the system uncoupled to the environment, is used to write the
reduced Wigner function, and the master equation becomes simpler in that
representation. The energy eigenfunctions computed in a WKB approximation
incorporate the tunnelling effect of the isolated system and the effect of the
environment is described by an equation that is in many ways similar to a
Fokker–Planck equation. Decoherence is easily identified from the master
equation and we find that when the decoherence time is much shorter than the
tunnelling time the master equation can be approximated by a Kramers-like
equation describing thermal activation due to the zero point fluctuations of the
quantum environment. The effect of anomalous diffusion can be dealt with
perturbatively and its overall effect is to inhibit tunnelling.

PACS numbers: 03.65.Yz, 03.65.Sq, 05.40.Ca

1. Introduction

The observation of quantum tunnelling effects is now possible in some macroscopic
quantum variables such as the flux quantum transitions in a superconducting quantum
interference device, or the decay of a zero-voltage state in a current-biased Josephson junction
[1–4]. Macroscopic quantum systems pertain to the boundary between quantum and classical
physics. These systems are modelled by open quantum systems which are characterized
by a distinguished subsystem, the ‘system’ for short, interacting with an environment. The
environment acts as a source of dissipation and noise for the system and produces quantum
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decoherence which generally inhibits tunnelling [5, 6]. There is vast literature on this subject;
see [7–9] for comprehensive reviews.

Most work on macroscopic quantum tunnelling is based on imaginary time formalisms
such as the Euclidean functional techniques which have been introduced in the classical field
of noise-activated escape from a metastable state [10], or the instanton approach introduced for
quantum mechanical tunnelling or for vacuum decay in field theory [11–16]. These techniques
are specially suited for equilibrium or near equilibrium situations, but are difficult to generalize
to non-equilibrium situations.

There are theoretical and practical reasons for a formalism of non-equilibrium
macroscopic quantum tunnelling. On the theoretical side, dissipation and decoherence are
only truly understood in a dynamical real-time formalism. In the classical context, thermal
activation from metastable states is well understood since Kramers [17] in terms of the
dynamical Fokker–Planck transport equation, where the roles of dissipation and noise and
their inter-relations are known. On the other hand, an open quantum system may be described
by a dynamical equation for the reduced density matrix, the so-called master equation, or
the equivalent equation for the reduced Wigner function which has many similarities to the
Fokker–Planck equation. However, at present no compelling derivation of the tunnelling rate
is available in this dynamical framework, which might be compared to the instanton approach
for equilibrium systems. Consequently, the effect of dissipation, noise and decoherence on
tunnelling and their inter-connections is not yet fully understood. On the practical side, out-
of-equilibrium macroscopic quantum tunnelling is becoming necessary to understand arrays
of Josephson junctions, or time-dependent traps for cold atoms which are proposed for storing
quantum information in future quantum computers [18–21], or to understand first-order phase
transitions in cosmology [22, 23].

In recent years, we have considered different scenarios in which metastable quantum
systems are described by the master equation for the reduced Wigner function. By using
techniques similar to those used for thermal activation processes on metastable states [17, 24]
it was possible to compute the effect of the environment on the quantum decay probability.
This was used in some semiclassical cosmological scenarios for noise-induced inflation [25]
due to the back-reaction of the inflaton field, in the context of stochastic semiclassical gravity
[26–30]; see [31, 32] for reviews on this subject. It was also used for bubble nucleation
in quantum field theory, where the system was described by the homogeneous mode of the
field of bubble size and the environment was played by the inhomogeneous modes of the
field [33, 34], and on some simple open quantum systems coupled linearly to a continuum of
harmonic oscillators at zero temperature [35]. But in all these problems only the contribution
to tunnelling due to activation was considered. One of the purposes of this paper is to clarify
when this approximation is valid.

In this paper, we propose a formulation of macroscopic quantum tunnelling using the
master equation for the reduced Wigner function in which both the pure quantum tunnelling
effect and the environment are taken into account. This is possible by the introduction
of a representation of the reduced Wigner function based on the energy eigenfunctions of
the isolated system, i.e. the system not coupled to the environment. This representation is
useful in a way somewhat analogous to the way the energy representation is useful in the
Schrödinger equation. The key to this result is that quantum tunnelling is already encoded
in the energy eigenfunctions, which we can compute in a WKB approximation. It is quite
remarkable that in this representation the master equation can be solved analytically under
certain approximations.

In order to have a working model in a form as simple as possible, but that captures the
main physics of the problem, we use constant dissipation and normal and anomalous diffusion
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coefficients to describe the effect of the environment. These coefficients can be deduced
from microscopic physics: they take constant values when the environment is made by an
ohmic distribution of harmonic oscillators weakly coupled in thermal equilibrium at high
temperature; but at zero temperature they are time dependent [35–37]. Thus the model studied
here may be seen as a toy model at low temperature, generally valid at long time scales only.

Master equations also play an important role in elucidating the emergence of classicality
in open quantum systems as a result of their interaction with an environment. In fact, as the
master equation gives the quantum evolution of initial states, defined by the reduced Wigner
function at some initial time, it has been of great help to study decoherence. In particular, it
has been used to clarify the way in which the environment selects a small set of states of the
system which are relatively stable by this interaction, the so-called pointer states, whereas the
coherent superposition of the remaining states is rapidly destroyed by decoherence [38–42].
Using large-scale numerical simulations the effect of the interaction with the environment on
coherent tunnelling has been analysed in the framework of an open quantum system that is
classically chaotic: a harmonically driven quartic double well [43, 44]. More recently [45]
tunnelling in a simple double-well potential has been numerically simulated using the master
equation at high temperature as well as at zero temperature. It is found that at zero temperature
tunnelling is inhibited by the environment that produces decoherence, nevertheless at large
time scales tunnelling is still possible by an activation-like process due to the zero point
fluctuations of the quantum environment. In the model we consider in this paper, which
involves a cubic potential, we find a very similar behaviour when the decoherence time is very
short.

This paper is organized as follows. In sections 2 and 3 we review the theory of
tunnelling in closed systems and introduce the energy representation for Wigner functions.
This extended review is necessary both to establish our convention and to recall specific results
which are central to the main argument. In section 4 we introduce the environment and write
the master equation for the reduced Wigner function of the open quantum system, discuss the
different dissipation and diffusion coefficients, and derive the master equation in the energy
representation. In section 5 this master equation is explicitly computed and the different time
scales of the problem are discussed. In section 6 under the assumption of strong decoherence
we analytically solve the master equation, which is reduced to a Kramers-like equation, and
then perturbatively compute the effect of anomalous diffusion on tunnelling. Finally, in
section 7 we briefly summarize our results. In appendices we provide additional technical
details.

2. Tunnelling in quantum mechanics

In this section, we review the WKB method to tunnelling in quantum mechanics. The energy
eigenfunctions in the WKB approximation we obtain will play an important role in the energy
representation of the Wigner function that will be introduced later.

2.1. The system

We begin with the simple closed quantum mechanical system formed by a particle of mass M
in one dimension described by a Hamiltonian

H = p2

2M
+ U(x), (1)
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Figure 1. A schematic plot of the potential. For an energy E below the barrier there will be three
classical turning points, which are also shown.

(This figure is in colour only in the electronic version)

with a potential U given by

U(x) = 1

2
M�2

0x
2 − λ

6
x3, (2)

for small values of the coordinate x. This is a fairly general potential for a tunnelling system,
and it is the basic element in the dashboard potential, which is a very good model for a flux
trapped in a superconducting quantum interference device (SQUID), or a single Josephson
junction biased by a fixed external current [2, 6, 8, 46]. For technical reasons, it is convenient
to assume that for large x the potential flattens out and takes the value U(x) = −U∞,
both negative and constant. The tunnelling process ought to be independent of the form of
the potential far away from the potential barrier. We present a sketch of this potential in
figure 1.

There is one classically stable point at x = 0, and one unstable point x = xs = 2M�2
0

/
λ,

corresponding to an energy εs = 2M3�6
0

/
(3λ2). The curvature of the potential is U ′′(0) =

M�2
0 at x = 0, and −U ′′(0) at xs . The other point at which U(x) = 0 is x = xexit = (3/2)xs .

For x � xexit the potential flattens out and is constant.

2.2. The WKB approximation

If we assume that the particle is trapped in the potential well, that is, in its false ground
state or false vacuum, the tunnelling probability can be computed in this simple problem in
many ways. One of the most efficient methods is the instanton method which reduces to the
computation of the ‘bounce solution’. The most attractive aspect of this computation is that it
can be easily extended to field theory where the tunnelling probability is then interpreted as
the probability per unit time and volume to nucleate a bubble of the true vacuum phase. The
rate for quantum tunnelling is �closed = (�0/2π)aq exp(−SB/h̄), where SB is the action for
the ‘bounce’ (or instanton), namely the solution to the classical equations of motion which
interpolates between x = 0 and x = xexit in imaginary time SB = 2

∫ xexit

0 dx
√

2MU(x), and
the prefactor aq = (120πSB/h̄)1/2. Our expression for the potential is so simple that the above
integral can be computed explicitly: SB/h̄ = 18εs/(5ε0), where ε0 = 1

2h̄�0 is the zero point
energy of a harmonic oscillator with frequency �0.

Here, however, we will concentrate on a real-time approach by expanding the false vacuum
state as a linear combination of true eigenstates of the Hamiltonian. To the required accuracy, it
is enough to work with the WKB approximations to the true eigenfunctions; see, for instance,
[47, 48]. The instanton method reviewed in the previous paragraph can, in fact, be easily
justified by this semiclassical approximation. Here we explain in some detail this standard
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procedure to obtain the eigenfunctions by matching the WKB solutions in the different regions
of the potential. These solutions will play a crucial role in the energy representation for the
Wigner functions to be introduced later.

Let 0 < E < εs be the energy of the particle in the potential well, and ψE the
corresponding eigenfunction. The Schrödinger equation is

−h̄2

2M

∂2

∂x2
ψE + U(x)ψE = EψE. (3)

Let us define

p(x) =
√

2M|U(x) − E|, (4)

and the integral S(x, y) (note the order in the integration limits)

S(x, y) =
∫ x

y

dx ′p(x ′). (5)

The WKB solutions are obtained from these elements. We have to match the WKB
solutions in the different regions across the potential function. The details of this calculation
are given in appendix A. The WKB solution ψE for energies in the range 0 < E < εs is given
by equation (A.14), where xL < xR < xout are the three classical turning points for the cubic
potential (2); see figure 1. The normalization constant KE in equation (A.14) is obtained by
imposing the continuous normalization of the eigenfunctions given in equation (A.16) and it
is given in equation (A.23). Of particular relevance is the value of the eigenfunction ψE(x)

at values x � xout. This gives the main contribution to the continuous normalization integral.
The value of the eigenfunction at x � xout, as computed in appendix A, is

ψE(x) ∼
√

2M

h̄πp∞
sin

(p∞x

h̄
+ δE

)
, (6)

where the phase δE is introduced in equations (A.24) and p∞(E) is defined by equation (4)
when x � xout; see also equation (A.17).

We are interested in the details of the eigenfunctions near the false vacuum state, since
we will be dealing with tunnelling from vacuum. Thus, in the rest of this section we give
explicitly the values of the normalization constant KE and the phase shifts δE near this vacuum
state. Therefore let us impose the Bohr–Sommerfeld quantization condition (A.15) and let E0

be the corresponding lowest energy, that is, n = 0 in equation (A.15). As we will see in the
next subsection this defines the false vacuum energy. Expanding the integral in equation (5)
around E0 we find that close to the lowest energy value

S(xR, xL) ∼ πh̄

2
− τ(E − E0), (7)

where τ is defined by

τ =
∫ xR

xL

dx

√
2M

U(x) − E0
. (8)

Thus cos2(S(xR, xL)/h̄) ∼ (τ 2/h̄2)(E − E0)
2, and evaluating the right-hand side of (A.26) at

E0, we conclude that K2
E has poles at the complex energies

E± = E0 ± iε, ε ≡ h̄

4τ
e−2S0(xout,xR)/h̄, (9)

which is in agreement with the standard result [48]. To simplify the notation let us call
S0 = S0(xout, xR) and f0 = f (E0) + π/4, then we have from equations (A.21) and (A.22) that
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the functions A(E) and B(E) for E near E0 are A(E) = (τ/h̄) exp(S0/h̄)[F−(E) + F+(E)]
and B(E) = (−iτ/h̄) exp(S0/h̄)[F−(E) − F+(E)], where F−(E) = exp(if0/h̄)(E − E−) and
F+(E) = exp(−if0/h̄)(E − E+). Note that neither A nor B vanish at E±. Finally, from
equation (A.23) we can write the normalization constant near the false vacuum energy, as

K2
E = M

πh̄τ

ε

(E − E0)2 + ε2
= 4Mε2

πh̄2

e2S0/h̄

(E − E−)(E − E+)
, (10)

and from equations (A.24) the phase shifts are

eiδE = 2

√
ε2 e2S0/h̄

(E − E0)2 + ε2
(A + iB) = eif0/h̄

√
E − E−
E − E+

. (11)

Equations (6), (10) and (11) are the main results of this section. We note, in particular,
the poles of the norm and the phase shifts at E± near the false vacuum energy. The strong
dependence on the energy of these functions near the false ground energy will play an important
role in the next sections. We will need, in particular, the phase shift derivatives which are
given by

∂δE

∂E
= −i

2

(
1

E − E−
− 1

E − E+

)
. (12)

2.3. The false vacuum

Before we start with the computation of the tunnelling rate we have to define what we mean
by the decaying state; all the wavefunctions we have considered so far are true stationary
states and, obviously, show no decay whatsoever. We need to confine initially the particle
into the potential well in its lowest energy. To this end, we introduce an auxiliary potential
Uaux which agrees with U up to xs (where the true potential reaches its maximum value) and
increases thereafter. We may assume that the growth of Uaux is as fast as necessary to justify
the approximations below; the tunnelling rate is insensitive to the details of Uaux beyond xs .
Thus, we define the decaying state ψ0 as the ground state of a particle confined by Uaux [49].

It is obvious from the form of the WKB solutions that ψ0 agrees with ψE0 up to xs , i.e.
ψ0(x) = ψE0(x) for x � xs , where E0 is the Bohr–Sommerfeld ground state energy for the
auxiliary potential Uaux, which corresponds to n = 0 in the condition (A.15). Beyond xs, ψ0

will decay rapidly to zero, unlike ψE0 . Like any other wavefunction, ψ0 admits a development
in the complete base of energy eigenfunctions ψE , as

ψ0(x) =
∫

dE CEψE(x), (13)

where due to our normalization the Fourier coefficients are given by

CE =
∫

dx ψE(x)ψ0(x). (14)

To find these coefficients, we observe that ψ0(x) is a solution to the Schrödinger equation
with the auxiliary potential Uaux

−h̄2

2M

∂2

∂x2
ψ0 + Uaux(x)ψ0 = E0ψ0. (15)

Let us add to both sides of this equation the term [U(x) − Uaux(x)]ψ0 and then multiply both
sides by ψE(x) and integrate to obtain

(E − E0)CE = −
∫ ∞

xs

dx ψE(x)[Uaux(x) − U(x)]ψ0(x). (16)
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An important consideration is that ψ0(x) is a smooth function (as opposed to a distribution),
and unlike ψE0 it is normalizable, so CE must also be smooth. This means that it is allowable
to assume E �= E0 in equation (16); CE0 can then be found by analytical continuation. To
estimate the right-hand side of equation (16), let us introduce, cf equation (4),

paux(x) =
√

2M|Uaux(x) − E0|. (17)

To the right of xs we may use the WKB approximation with the decaying solution into the
forbidden region to write

ψ0(x) = ψ0(xs) exp

(
−1

h̄

∫ x

xs

paux(y) dy

)
. (18)

On the other hand, ψE(x) is given by equation (A.12) in appendix A. If E is close to E0,
then equation (7) applies, and we may write

ψE(x) ∼ 2KE

[
τ

h̄
(E − E0)F+(xs, xR) exp

(
1

h̄

∫ x

xs

p(y) dy

)

+
1

2
F−(xs, xR) exp

(
−1

h̄

∫ x

xs

p(y) dy

)]
. (19)

Substituting the two previous expressions into the right-hand side of equation (16) we see that
we have to compute the two following integrals:

J± =
∫ ∞

xs

dx[Uaux(x) − U(x)] exp

(
−1

h̄

∫ x

xs

[paux(y) ± p(y)] dy

)
. (20)

The integral, J−, is dominated by the region near the lower limit, where paux(x) is close to
p(x) and we can write

paux(x) − p(x) ∼ p2
aux(x) − p2(x)

2
√

2MU(xs)
=

√
M

2U(xs)
[Uaux(x) − U(x) + E − E0],

from where we obtain

J− = h̄

√
2U(xs)

M
− (E − E0)

∫ ∞

xs

dx exp

(
−1

h̄

∫ x

xs

[paux(y) − p(y)] dy

)
, (21)

where the remaining integral is made negligible by an appropriate choice of Uaux. For the
other integral, J+, we see that the corresponding exponential factor in equation (20) decays
faster than the exponential factor of J−, so that the region which effectively contributes to
the integral is narrower. Since the pre-exponential factor vanishes at the lower limit, we find
J+ ∼ 0. Finally, putting all these pieces together into the right-hand side of equation (16) we
get, to leading order,

(E − E0)

[
CE + 2KEψ0(xs)τ

√
2U(xs)

M
F+(xs, xR)

]
= 0,

whose solution, assumed smooth, is

CE = −2KEψ0(xs)τ

√
2U(xs)

M
F+(xs, xR). (22)

We note that CE is independent of the choice of Uaux beyond xs , as it should.
Thus, we have found the false vacuum wavefunction in terms of the energy eigenfunctions

of the original problem. The false ground state is a superposition of energy eigenstates which
are fine tuned in such a way as to produce destructive interference outside the potential well.
Note that CE , because of the factor KE in equation (22), peaks near the energy of the false
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ground state, and has a strong dependence on the energy near this ground state energy. A good
approximation for CE is given by

C2
E = ε

π

1

(E − E+)(E − E−)
. (23)

2.4. Tunnelling from the false vacuum

Let us now compute the tunnelling rate assuming that the particle is described initially by the
false ground state ψ0. At time t, we have

ψ(x, t) =
∫

dE e−iEt/h̄CEψE(x). (24)

The persistence amplitude is

ρ(t) =
∫

dx ψ∗
0 (x)ψ(x, t) =

∫
dE e−iEt/h̄C2

E. (25)

With the value of C2
E given by equation (23) ρ(0) = 1. To perform the integration we can

close the contour of integration in the complex E plane adding an arc at infinity, whereby we
pick up the pole E− in C2

E , therefore ρ(t) goes like

ρ(t) ∼ exp

[−t

4τ
exp

(
−2

h̄
S0(xout, xR)

)]
, (26)

(no prefactor) provided t is not too large. The tunnelling rate for this closed system,
�closed, may be defined from the persistence probability ρ2(t) ∼ exp(−�closedt), so that
�closed = (1/2τ) exp(−2S0/h̄), which agrees with the result of the bounce solution. Note
that if we take the classical lowest energy E = 0, then xR = xL = 0, xout = xexit, and
SB = 2S(xexit, 0), but S0 here is the action corresponding to a particle with false vacuum
energy E0, which differs from zero, and consequently differs from SB/2. This difference is
accounted for by the prefactor aq in the instanton result. An equivalent way of deriving this
result is to estimate the integral by a stationary phase approximation.

3. Wigner function and energy representation

An alternative description of a quantum system is given by the Wigner function in phase space,
which is defined by an integral transform of the density matrix [50, 51]. The Wigner function
for a system described by a wavefunction ψ(x) is

W(x, p) =
∫

dy

2πh̄
eipy/h̄ψ

(
x − y

2

)
ψ∗

(
x +

y

2

)
, (27)

where the sign convention is chosen so that a momentum eigenstate ψp0(x) ∼ eip0x/h̄/
√

2πh̄

becomes Wp0(x, p) = (1/2πh̄)δ(p − p0). Moreover, it satisfies∫
dpW(x, p) = |ψ(x)|2,

∫
dx W(x, p) =

∣∣∣∣
∫

dx
e−ipx/h̄

√
2πh̄

ψ(x)

∣∣∣∣
2

, (28)

and it is normalized so that
∫ ∫

dx dpW(x, p) = 1. Thus the Wigner function is similar in
some ways to a distribution function in phase space, and it is real but, unlike a true distribution
function, it is not positive defined; this is a feature connected to the quantum nature of the
system it describes.



Real-time approach to tunnelling in open quantum systems 9511

The Schrödinger equation for the wavefunction ψ ,

−h̄2

2M

∂2

∂x2
ψ + U(x)ψ = ih̄

∂

∂t
ψ, (29)

translates into a dynamical equation for the Wigner function, which is easily derived. In fact,
by taking the time derivative of (27), using the Schrödinger equation (29), and integrating by
parts we have

∂

∂t
W(x, p) = − i

h̄

∫
dy

2πh̄
eipy/h̄

{(−ih̄p

M

)
∂

∂x

[
ψ

(
x − y

2

)
ψ∗

(
x +

y

2

)]
+ ψ

(
x − y

2

) [
U

(
x − y

2

)
− U

(
x +

y

2

)]
ψ∗

(
x +

y

2

)}
.

For the cubic potential (2) we have U(x − y/2) − U(x + y/2) = −M�2
0xy + (λ/2)x2y +

(λ/24)y3 and, noting that y eipy/h̄ = −ih̄∂p eipy/h̄ and y3 eipy/h̄ = ih̄3∂3
p eipy/h̄, we get the

equation for the Wigner function

∂

∂t
W(x, p) =

[
U ′(x)

∂

∂p
− p

M

∂

∂x
+

λ

24
h̄2 ∂3

∂p3

]
W(x, p), (30)

which may be interpreted as a quantum transport equation. The first two terms on the right-
hand side are just the classical Liouville terms for a distribution function, and the term with the
three momentum derivatives is responsible for the quantum tunnelling behaviour of the Wigner
function in our problem. A theorem by Pawula [52] states that a transport equation should
have up to second-order derivatives at most, or else an infinite Kramers–Moyal expansion,
for non-negative solutions W(x, p, t) to exist. The above equation for the Wigner function
circumvents the implications of the theorem since it need not be everywhere positive. Even
if we have an everywhere-positive Gaussian Wigner function at the initial time, the evolution
generated by an equation such as equation (30) will not keep it everywhere positive. Thus, here
we see the essential role played by the non-positivity of the Wigner function in a genuinely
quantum aspect such as tunnelling.

3.1. The energy representation

Given that a wavefunction ψ can be represented in terms of the energy eigenfunctions ψE ,
defined by equation (3), as

ψ(x) =
∫

dE CEψE(x), (31)

we can introduce a corresponding representation for W(x, p) in terms of a base of functions
WE1E2(x, p) in phase space defined by

WE1E2(x, p) =
∫

dy

2πh̄
eipy/h̄ψE1

(
x − y

2

)
ψ∗

E2

(
x +

y

2

)
. (32)

Then W(x, p) can be written as

W(x, p) =
∫

dE1 dE2CE1E2WE1E2(x, p), (33)

where, in this case, we have CE1E2 = CE1C
∗
E2

. On the other hand, from the definition of
WE1E2(x, p) we can write∫

dx dp

h̄
W ∗

E1E2
(x, p)WE′

1E
′
2
(x, p) =

∫
dx dy

2πh̄2

×
{
ψE1

(
x − y

2

)
ψE2

(
x +

y

2

)
ψE′

1

(
x − y

2

)
ψE′

2

(
x +

y

2

)}
,
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where the p integration has been performed. Now if we call z = x − y/2, z′ = x + y/2, then
dx dy = dz dz′, and∫

dx dp

h̄
W ∗

E1E2
(x, p)WE′

1E
′
2
(x, p) = 1

2πh̄2 δ(E1 − E′
1)δ(E2 − E′

2), (34)

which gives the orthogonality properties of the functions WE1E2 . This suggests that any Wigner
function may be written in this basis as

W(x, p, t) =
∫

dE1 dE2CE1E2(t)WE1E2(x, p). (35)

We call this the energy representation of the Wigner function. In this representation, the
master equation or the quantum transport equation (30) is very simple

∂

∂t
CE1E2(t) = −i

h̄
(E1 − E2)CE1E2(t), (36)

as one can easily verify. One can give an alternative derivation of the tunnelling rate from
this equation, by taking the initial condition for the Wigner function which corresponds to the
false vacuum.

3.2. Tunnelling in the energy representation: closed system

Let us compute here the tunnelling rate from the false vacuum for our closed quantum system.
We assume that our particle at t = 0 is trapped into the well of the potential (2) in the false
ground state with the energy E0, i.e. the ground state of the auxiliary potential Uaux introduced
in section 2.3. We know from that section that the wavefunction ψ0 of this state can be
expressed in terms of the eigenfunctions ψE by equation (13) with the coefficients CE given
by equations (22) and (23). In terms of the reduced Wigner function, which we may call
W0(x, p), this state is easily described in the energy representation (35) by the coefficients
CE1E2(0) = CE1(0)C∗

E2
(0), where CE(0) is given by equation (23). Because the dynamics of

the quantum transport equation is trivial in the energy representation (36) the time dependence
of the coefficients CE1E2(t) is simply

CE1E2(t) = e− i
h̄
(E1−E2)tCE1E2(0). (37)

Thus, according to equation (35), the Wigner function at any time is

W(x, p, t) =
∫

dE1 dE2 e− i
h̄
(E1−E2)tCE1(0)CE2(0)WE1E2(x, p). (38)

From this we can compute, in particular, the probability of finding the particle at the false
vacuum at any time. In terms of the false vacuum Wigner function and the Wigner function
of the tunnelling system we may define this probability as

ρ2(t) = 2πh̄

∫
dx dpW0(x, p)W(x, p, t). (39)

This equation can be used in a closed as well as in an open system. For the closed system of
section 2 where the state is described by the wavefunction ψ of equation (24) and the false
vacuum is described by the wavefunction ψ0 of equation (13), the square of the persistence
amplitude (25) is given, in fact, by equation (39) when the definition of the Wigner function,
i.e. equation (27), is used. For the open system the quantum state is not described by a pure
state and, in general, the Wigner function W(x, p, t) can be written as W = ∑

i piWi where
pi is the probability of finding the system in the state φi and Wi is the Wigner function for
the state φi . The definition (39) leads in this case to ρ2(t) = ∑

i pi |〈ψ0|φi〉|2, which is indeed
the probability of finding the system in the state ψ0.
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When the energy representation (35) is used equation (39) becomes

ρ2(t) =
∫

dE1 dE2 e− i
h̄
(E1−E2)tC2

E1
(0)C2

E2
(0). (40)

To compute ρ2(t) we shall use the stationary phase approximation. The idea is that the
integration paths for E1 and E2 may be deformed simultaneously in such a way that the
integrand comes to be dominated by Gaussian peaks. For late times it is enough to seek
the stationary points of i

h̄
(E1 − E2). In principle, we could include C2

E1
and C2

E2
as fast

varying components of the integrand, but these functions are really fast varying in the vicinity
of E− and E+. Thus, the stationary phase condition leads to ρ2 ∼ exp(−2tε/h̄) in agreement
with the persistence amplitude of equation (26). The tunnelling rate is �closed = 2ε/h̄.

It is often convenient to give the tunnelling rates in terms of an equivalent thermal activation
problem under a potential barrier of hight εs with a certain effective escape temperature Tesc.
This escape temperature is defined [2] from a given tunnelling rate, �, by the equation

� ≡ 1

2τ
e−εs/kBTesc . (41)

For the closed system, either the WKB approximation or the instanton method yields the
same Tesc with a barrier penetrability �, defined by �closed = (1/2τ) exp(−�) (which gives
� = (2/h̄)S0 in the WKB approximation); see equation (D.7) in appendix D.

In the following sections, we will use the energy representation of the Wigner function to
compute the tunnelling rate in a more complex problem involving coupling to an environment.
The dynamics of the transport equation in the energy representation is simpler than in the
phase space representation and the initial condition is given in terms of the coefficients (22)
which we have already computed. The task would be more difficult starting from the transport
equation in phase space, such as equation (30), since the third derivative term makes the
solution of the equation very complicated. One has to resort to methods such as those based
on matrix continued fractions in order to compute decay rates from master equations for open
quantum systems with third-order derivative terms [52–55].

4. The open quantum system

Now we assume that our system of interest is coupled to an environment. As emphasized
by Caldeira and Leggett [6] any quantum macroscopic system can be modelled by an open
quantum system by adjusting the coupling of the system and environment variables and
by choosing appropriate potentials. One of the main effects of the environment is to induce
decoherence into the system which is a basic ingredient into the quantum to classical transition
[6, 38–42].

The standard way in which the environment is introduced is to assume that the system
is weakly coupled to a continuum set of harmonic oscillators, with a certain frequency
distribution. These oscillators represent degrees of freedom to which some suitable variables
of the quantum system are coupled. One usually further assumes that the environment is in
thermal equilibrium and that the whole system environment is described by the direct product
of the density matrices of the system and the environment at the initial time, so that there are no
initial system-environment correlations. The macroscopic quantum system is then described
by the reduced density matrix, or equivalently, by the reduced Wigner function of the open
quantum system. This latter function is defined from the system-environment Wigner function
after integration of the environment variables.

In order to have a working model in a form as simple as possible, but that captures the
main effect of the environment, we will assume that the reduced Wigner function, which we
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still call W(x, p), satisfies the following dynamical equation,

∂

∂t
W(x, p) =

[
U ′(x)

∂

∂p
− p

M

∂

∂x
+

λ

24
h̄2 ∂3

∂p3
+

∂

∂p

(
γp + γMσ 2 ∂

∂p
+ h̄�

∂

∂x

)]
W(x, p),

(42)

where γ , which has units of inverse time, is the dissipation coefficient, and σ 2 and � are,
respectively, the normal and anomalous diffusion coefficients. The last three terms of this
equation represent the effect of the environment: the first describes the dissipation produced
into the system and the other two are the diffusion or noise terms. An interesting limit, the
so-called weak dissipation limit, is obtained when γ → 0, so that there is no dissipation, but
the coefficient γ σ 2 is kept fixed. We will generally refer to equation (42) as the quantum
Kramers equation, or alternatively, as the quantum transport equation. This equation reduces
to a classical Fokker–Planck transport equation when h̄ = 0: it becomes Kramers’ equation
[17, 24] for a statistical system coupled to a thermal bath and has the right stationary solutions.

This equation can be derived [36, 56–60] assuming the so-called ohmic distribution for
the frequencies of the harmonic oscillators. In the high temperature limit, γ is constant,
σ 2 = kBT , and � ∝ (kBT )−1, where kB is Boltzmann’s constant and T the bath temperature.
Thus at high temperature one can generally ignore the anomalous diffusion term. In the low
temperature limit, however, the master equation for the reduced Wigner function involves
time-dependent dissipation and diffusion coefficients. Typically, the dissipation coefficient
γ (t) starts with a zero value and after a short transient time, after which the system and the
environment become correlated, it reaches a constant value; the normal diffusion coefficient
σ 2(t) starts also with a zero value, it reaches a maximum, and after the short transient time it
undergoes a mild oscillatory behaviour until at time scales t � �−1 reaches a constant positive
asymptotic value. The anomalous diffusion coefficient has a similar qualitative behaviour but
its asymptotic large time value is negative and depends on the cut-off frequency. To be specific
[35–37, 45], at large time scales the normal diffusion coefficient becomes σ 2 ∼ 1

2h̄�0, and
the anomalous diffusion becomes � ∼ −2γ ln(�cut/�0), where �cut is a suitable cut-off
frequency for the ohmic environment. Thus, the vacuum fluctuation of the environment is felt
primarily through the anomalous diffusion coefficient that can have a large magnitude. Note
that in a macroscopic device such as a single Josephson junction biased by a fixed external
current [2, 6, 8, 46] one assumes an ohmic environment just to model the junction resistivity.

Equation (42) is often used to describe the effect of decoherence produced by the diffusion
coefficient to study the emergence of classical behaviour in quantum systems; this is a topic
of recent interest; see [42] for a review. Of particular relevance to our problem is the study
of decoherence in quenched phase transitions [61], and the effect of decoherence in quantum
tunnelling in quantum chaotic systems [43, 44], or in a double-well potential [45].

The reduced Wigner function W(x, p) describes the quantum state of the open quantum
system, and given a dynamical variable A(x, p) associated with the system its expectation
value in that quantum state is defined by

〈A(x, p)〉 =
∫

dx dpA(x, p)W(x, p). (43)

Then one can easily prove from equation (42) that defining

N =
∫

dx dpW(x, p), 〈E〉 =
∫

dx dp

(
p2

2M
+ U(x)

)
W(x, p), (44)

we have Ṅ = 0 and 〈Ė〉 = −γ (〈p2/M〉 − Nσ 2). Note that the value of σ 2 ∼ 1
2h̄�0 for the

zero temperature case is reasonable since for the virial theorem the average kinetic energy is
half the energy, 〈p2/M〉 = Nσ 2, and the averaged energy is conserved 〈Ė〉 = 0.
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Further insight into the effect of the different terms of equation (42) can be obtained
from the so-called linear entropy S = 1 − Tr ρ2

r , where ρ2
r is the reduced density matrix of

the system. This entropy is also a measure of decoherence [62] since for a pure state ρ2
r = ρr

and S = 0, whereas for a mixed state Tr ρ2
r < 1 and S > 0. In position representation

ρr = ρr(x, y) and Tr ρ2
r = ∫

dx dyρr(x, y)ρr(y, x). In terms of the Wigner function,
see equation (27), ρr(x, y) = ∫

dp exp[−ip(x − y)/h̄]W [(x + y)/2, p]. If we now call
X = (x + y)/2 and u = x − y, then dx dy = dX du and we can write

Tr ρ2
r = 2πh̄

∫
dX dpW 2(X, p). (45)

We may now compute dS/dt using equation (42). The first three terms are total derivatives
and do not contribute to dS/dt . The dissipation term contributes as

dSdis

dt
= −2πh̄γ

∫
dX dpW 2(X, p), (46)

which is negative and may be understood as reduction of entropy by heat transfer to the
environment. The normal diffusion term contributes as

dSn.dif

dt
= 4πh̄γMσ 2

∫
dX dp

(
∂W

∂p

)2

, (47)

which is positive and always increases the linear entropy. The anomalous diffusion term, on
the other hand, contributes as

dSa.dif

dt
= 4πh̄2�

∫
dX dp

∂W

∂p

∂W

∂X
, (48)

which has no defined sign. We may infer from here that normal diffusion will always induce
decoherence.

4.1. Energy representation of the reduced Wigner function

Let us now use the base of functions in phase space WE1E2(x, p), introduced in equation (32),
to represent the reduced Wigner function W(x, p, t) as in equation (35). The previous N and
〈E〉 have very simple expressions in this representation:

N =
∫

dECEE(t), 〈E〉 =
∫

dE ECEE(t). (49)

To check the last equation we note that
∫

dx dp[(p2/2M) + U(x)]WE1E2(x, p) = E1δ(E1 −
E2), which can be easily proved by explicit substitution of the definition of WE1E2 , and trading
powers of p by derivatives with respect to y into expressions (32), and partial integrations.

The quantum transport equation (42) in the energy representation becomes

∂

∂t
CE1E2(t) = −i

h̄
(E1 − E2)CE1E2(t) +

∫
dE′

1 dE′
2QE1E2,E

′
1E

′
2
CE′

1E
′
2
(t), (50)

where, after one integration by parts,

QE1E2,E
′
1E

′
2
= −2πh̄2

∫
dx dp

h̄

(
∂

∂p
W ∗

E1E2
(x, p)

)

×
(

γp + γMσ 2 ∂

∂p
+ h̄�

∂

∂x

)
WE′

1E
′
2
(x, p), (51)

which has the contributions from the dissipative, normal diffusion, and anomalous diffusion
parts, respectively, as

QE1E2,E
′
1E

′
2
= Q

(D)

E1E2,E
′
1E

′
2

+ Q
(N)

E1E2,E
′
1E

′
2

+ Q
(A)

E1E2,E
′
1E

′
2
. (52)
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From equation (32) it is easy to see that these coefficients can all be written in terms of the
following matrix elements:

XE1E2 =
∫

dx xψE1(x)ψE2(x), (53)

PE1E2 = h̄

i

∫
dx ψE1(x)

∂

∂x
ψE2(x), (54)

(XP )E1E2 = h̄

i

∫
dx xψE1(x)

∂

∂x
ψE2(x), (55)

X2
E1E2

=
∫

dx x2ψE1(x)ψE2(x). (56)

Explicitly, we have that

Q
(D)

E1E2,E
′
1E

′
2
= −iγ

2h̄

[
(XP )E1E

′
1
δ(E2 − E′

2) − PE1E
′
1
XE2E

′
2

−XE1E
′
1
PE2E

′
2

+ (XP )E2E
′
2
δ(E1 − E′

1)
]
, (57)

Q
(N)

E1E2,E
′
1E

′
2
= γMσ 2

h̄2

[
2XE1E

′
1
XE2E

′
2
− X2

E1E
′
1
δ(E2 − E′

2) − X2
E2E

′
2
δ(E1 − E′

1)
]
, (58)

Q
(A)

E1E2,E
′
1E

′
2
= �

h̄

[
(XP )E1E

′
1
δ(E2 − E′

2) − PE1E
′
1
XE2E

′
2

+ XE1E
′
1
PE2E

′
2
− (XP )E2E

′
2
δ(E1 − E′

1)
]
. (59)

Thus, in terms of the Wigner function elements CE1E2 the dynamics of the quantum transport
equation (50) is simple. Note that the coefficients Q(D) and Q(N) preserve parity, while
Q(A) and a coefficient Q(Q) (which corresponds to the pure quantum first term in the
equation) change parity; in the sense that the symmetric and antisymmetric parts of CE1E2 are
independently preserved or interchanged when contracted to these terms.

Equation (50) resembles a similar equation when a Floquet basis of states is used [63–66],
which is very useful when the Hamiltonian of the system is periodic in time. The Floquet basis
is discrete in such a case and a numerical evaluation of the corresponding matrix elements
(53)–(56) can be performed; see, for instance, [43, 44] for a recent application. It is remarkable
that in our case approximated analytic expressions for these matrix elements can be found.

4.2. Some properties of the matrix elements

The matrix elements (53)–(56) have a clear physical interpretation and several relations can
be derived among them. Note that XE1E2 is the matrix element of the position operator X in
the energy representation. Since XψE(x) = xψE(x), we must have

∫
dE1XEE1ψE1(x) =

xψE(x).
On the other hand, PE1E2 is the matrix element for the momentum operator. The canonical

commutation relation [P,X] = −ih̄ implies [H,X] = (−ih̄/M)P , and taking matrix elements
on both sides we have

(E1 − E2)XE1E2 = − ih̄

M
PE1E2 . (60)

Also, X2
E1E2

is the matrix element of X2, therefore

X2
E1E2

=
∫

dE XE1EXEE2 . (61)
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On the other hand, (XP )E1E2 is the matrix element of XP , consequently [(XP )E2E1 ]∗ =
−(XP )E2E1 corresponds to PX, and (XP )E1E2 + (XP )E2E1 = [X,P ]E1E2 = ih̄δ(E1 − E2).
Also (XP )E1E2 − (XP )E2E1 = (iM/h̄)(E1 − E2)X

2
E1E2

, where the commutator [H,X2] has
been used in the last step, therefore

(XP )E1E2 = iM

2h̄
(E1 − E2)X

2
E1E2

+
ih̄

2
δ(E1 − E2). (62)

We also have that (XP )E1E2 = ∫
dE XE1EPEE2 . One may check, for consistency, that these

relations imply Ṅ = 0. In appendix B a test of the quantum transport equation in the
energy representation (and of the above matrix element properties) is given by checking that
a stationary solution with a thermal spectrum is, indeed, a solution in the high temperature
limit.

4.3. Computing the matrix elements

The matrix elements contain singular parts coming from the integrals over the unbound region
beyond xs . These singular parts are easy to compute, since far enough the wavefunctions
assume the simple form (6). When performing the calculation of the singular parts of the
matrix elements we will use that when x̄ → ∞, we have the identities

sin(px̄/h̄)

πp
→ δ(p),

cos(px̄/h̄)

p
→ 0, (63)

which can be easily checked by taking the Fourier transforms of these functions with respect
to p.

The computation of the singular parts of the matrix elements (53)–(56) may be reduced
to the evaluation of three basic integrals. These integrals are

AA,S(p1, p2) =
∫

dx sin[(p1 ∓ p2)x/h̄ + δ1 ∓ δ2], (64)

and

B(p1, p2) =
∫

dx sin(p1x/h̄ + δ1) sin(p2x/h̄ + δ2), (65)

where, for simplicity, we have written pi ≡ p∞(Ei) and δi ≡ δ(Ei) (i = 1, 2). The matrix
element XE1E2 is

XE1E2 ∼ 2M

h̄π
√

p1p2

∫
dx x sin(p1x/h̄ + δ1) sin(p2x/h̄ + δ2)

= M

π
√

p1p2

[
− ∂A

∂p1
− ∂Ã

∂p2
−

(
∂δ1

∂p1
+

∂δ2

∂p2

)
B

]
, (66)

where A ≡ (AS − AA)/2 and Ã ≡ (AS + AA)/2. The matrix element X2
E1E2

is

X2
E1E2

∼ 2M

h̄π
√

p1p2

∫
dx x2 sin(p1x/h̄ + δ1) sin(p2x/h̄ + δ2)

= 2M

π
√

p1p2

[
− ∂C

∂p1
−

(
∂δ1

∂p1

)
D̃

]
, (67)

where it is easy to show that C = (∂B/∂p1) − (∂δ1/∂p1)A, and that D̃ = −(∂A/∂p1) −
(∂δ1/∂p1)B. The matrix element PE1E2 is

PE1E2 ∼ −iM

h̄π
√

p1p2
(p1 + p2)Ã, (68)

which, according to the relations among matrix elements derived in the previous subsection,
is related to XE1E2 by equation (60). The remaining matrix element (XP )E1E2 , on the other
hand, can be computed from the element X2

E1E2
according to equation (62)
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4.3.1. The integrals A(p1, p2) and B(p1, p2). Thus, we are finally left with the computation
of the integrals (64) and (65). The integral B(p1, p2) of equation (65) is dominated by its
upper limit x̄

B(p1, p2) ∼ 1

2

∫ x̄

dx cos[(p1 − p2)x/h̄ + δ1 − δ2]

∼ 1

2(p1 − p2)
sin[(p1 − p2)x̄/h̄ + δ1 − δ2]

→ πh̄

2
δ(p1 − p2). (69)

The integrals AA,S(p1, p2) are more subtle. The integral AS is clearly regular on the diagonal.
Since we are interested mostly on the singular behaviour of the matrix elements, we can
approximate AS ∼ 0. On the other hand AA is exactly zero on the diagonal. Close to the
diagonal, the integral is dominated by the region where the argument of the trigonometric
function is small, and thereby the integrand is non-oscillatory. Estimating the upper limit of
this region as x̄ ∼ h̄(p1 − p2)

−1, we get

AA ∼ h̄−1(p1 − p2)x̄
2 + (δ1 − δ2)x̄ = h̄PV

(
1

p1 − p2

)
+ · · · , (70)

where the dots stand for regular terms. Actually, this argument would allow us to introduce an
undetermined coefficient in front of the principal value PV , but in the next section we show
that h̄ is the correct coefficient, as follows from the canonical commutation relations.

Thus, we are now in the position to give the explicit expressions for the singular parts
of the matrix elements and write, finally, the quantum transport equation in its explicit form.
This is done in detail in the next section.

5. The quantum transport equation

In this section, we explicitly compute the quantum transport equation (42) satisfied by the
reduced Wigner function in the energy representation.

5.1. Matrix elements

First, we need to compute the matrix elements described in section 4.3. We begin with the
matrix element XE1E2 which according to (66) and (69)–(70) can be written as

XE1E2 = Mh̄√
p1p2

[
1

π

∂

∂p1
PV

(
1

p1 − p2

)
− ∂δ1

∂p1
δ(p1 − p2) + · · ·

]
. (71)

We go next to the matrix element PE1E2 , which from (68) and (70) can be written as

PE1E2 = −iM√
p1p2

1

2π
(p1 + p2)PV

1

p1 − p2
. (72)

These two operators X and P are connected through equation (60). It is easy to check that the
two previous results satisfy this relation. Just note that from equation (A.17) we can write
E1 − E2 = (

p2
1 − p2

2

)/
2M which together with equation (71) for XE1E2 lead to −ih̄/M times

the right-hand side of equation (72), that is,

(E1 − E2)XE1E2 = − ih̄

M
PE1E2 .
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Another check of the previous results is the consistency with the canonical commutation
relations ∫

dE
(
PE1EXEE2 − XE1EPEE2

) = −ih̄δ(E1 − E2). (73)

This check requires a little more work. First, it is convenient to change to momentum variables
and write δ(E1 − E2) = (M/

√
p1p2)δ(p1 − p2). Then one needs to compute the integral

I ≡ h̄

∫ ∞

−∞
dp PV

(
1

p1 − p

)
PV

(
1

p − p2

)
= −h̄π2δ(p1 − p2). (74)

The evaluation of this integral is easily performed using the following representation of the
principal value,

PV

(
1

p

)
=

∫
dξ

2πh̄
eipξ/h̄(−iπ sign[ξ ]),

which is easily proved by taking the Fourier transform of PV (1/p). With the result of
equation (74) it is straightforward to check that the commutation relation (73) is an identity
within our approximation. This consistency check is important because it can be used to fix to
h̄ the coefficient in front of the principal value of AA in the argument leading to equation (70).

We can now move to the matrix elements for X2. Having an expression for XE1E2 in
equation (71) it is best to compute X2

E1E2
directly from the relation (61) which leads to

X2
E1E2

= Mh̄2

√
p1p2

[
∂2

∂p1∂p2
δ(p1 − p2) +

1

π

(
∂δ1

∂p1
+

∂δ2

∂p2

)
∂

∂p2
PV

(
1

p1 − p2

)

+

(
∂δ1

∂p1

)2

δ(p1 − p2) + · · ·
]

, (75)

where we have used the result (74) and performed the E integration or, more precisely, the p
integration.

The matrix element (XP )E1E2 = ∫
dE XE1EPEE2 can be analogously obtained from

expressions (71) and (72). The result is

(XP )E1E2 = iMh̄

2
√

p1p2

[
2p2

∂

∂p1
δ(p1 − p2) +

1

π

∂δ1

∂p1
(p1 + p2)PV

(
1

p1 − p2

)
+ · · ·

]
. (76)

A further consistency check of these expressions comes from the property (62), which is
satisfied within our approximation.

5.2. The quantum transport equation and time scales

Finally, we can write the quantum transport equation (50) in a more explicit form. The
coefficient Q is given by (52), with the values of the dissipation and diffusion parts given by
(57)–(59), which can be directly computed using the matrix elements obtained in the previous
subsection. It is convenient to introduce new Wigner function coefficients,

CE1E2(t) = M√
p1p2

Cp1p2(t), (77)

and the result is the rather cumbersome expression (C.1) given in appendix C. As explained
there, we can get a local approximation of the quantum transport equation (C.1),

∂C(P, p, t)

∂t
=

(−iPp

Mh̄
+ γ

∂

∂P
P + γMσ 2 ∂2

∂P 2
+ i�p

∂

∂P

)
C(P, p, t)

− γMσ 2

(
∂(δ1 − δ2)

2∂P
+

∂(δ1 + δ2)

∂p

)2

C(P, p, t), (78)
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where the average and difference momentum variables P and p, defined in equation (C.3),
have been used and where C(P, p, t) = Cp1p2(t). From the quantum transport equation (C.1),
or its local version equation (78), it is easy to discuss the different time scales of the problem.
The first, of course, involves the dissipation term which includes the dissipation coefficient γ ;
it defines a time scale τR ∼ γ −1 which is the relaxation time.

But before we go on with the interpretation of the different terms, it is important to recall
the meaning of the Wigner function coefficients Cp1p2 , or CE1E2 . First, we note that these
coefficients are directly related to the coefficients CE of the energy eigenfunctions which make
the tunnelling state from the false vacuum in the isolated system, i.e. when there is no interaction
with the environment. Thus, the coefficients CE1E2 describe the quantum correlations between
the energy eigenfunctions that make the tunnelling system. These coefficients are initially
separable CE1E2(0) = CE1(0)C∗

E2
(0). In the isolated closed system its time evolution, as given

by equation (36), is simply CE1E2(t) = CE1E2(0) exp[−i(E1 − E2)t/h̄], which means that
these correlations keep their amplitude in its dynamical evolution.

This is very different in the open quantum system as a consequence of the negative local
normal diffusion term in equation (C.1) which depends on the phase shift derivatives, i.e.
the last term of equation (78), or equivalently the term (C.2) when it is written in the p1

and p2 variables. This negative defined term has no effect for the diagonal coefficients, when
E1 = E2, but its effect is very important for the off-diagonal coefficients. In fact, the amplitude
of the off-diagonal coefficients exponentially decays in time. The time scale can be estimated
by taking the derivatives of the phase shifts δi (i = 1, 2) near the false vacuum energy E0,
which is where the energy wavefunctions pile up. Using equation (12) it is easy to see from
expression (C.2) that this time scale is of the order of

τD ∼ τR

(
λB

lD

)2

, (79)

where τR is the relaxation time, λB = h̄/(2σ
√

M) is a characteristic de Broglie wavelength
(in the high temperature case when σ 2 = kBT it corresponds to the thermal de Broglie
wavelength), and lD ∼ α2h̄

√
E0 + U∞/(ε

√
M) is a characteristic length of the problem with

α a dimensionless parameter that measures the scale of the energy differences of the off-
diagonal coefficient, E1 − E2 ∼ αε; so it is of order 1 when the energy differences are of
order ε. Thus, the last term of equation (78) destroys the quantum correlations of the energy
eigenfunctions. The time scale τD may be considered as a decoherence time [38], and thus
the effect on tunnelling of this term may be associated with the effect of decoherence.

Another time scale in the problem is, of course, the tunnelling time which according to
(26) and (9) is given by τtunn ∼ h̄/ε. Its relation to τD is given by τD ∼ τtunn/(α

4D), where
the dimensionless parameter D is

D = γ h̄σ 2 (E0 + U∞)

ε3
. (80)

It seems clear that when τD � τtunn the coefficients CE1E2 become diagonal very fast and
the local approximation to the transport equation (78) is a useful approximation.

6. Tunnelling in the open quantum system

We can now compute the tunnelling rate from the false vacuum for our open quantum system.
Thus, let us assume that our particle at t = 0 is trapped into the well of the potential (2) in
the false ground state with the energy E0, i.e. the ground state of the auxiliary potential Uaux

introduced in section 2.3. We know from that section that the wavefunction ψ0 of this state
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can be expressed in terms of the eigenfunctions ψE by equation (13) with the coefficients CE

given by equation (22).
Under the assumption that the decoherence time is much shorter than the tunnelling time

the quantum transport equation (C.1) may be simplified. After a typical decoherence time
the Wigner function coefficients CE1E2 become diagonal. We will begin our leading-order
approximation assuming that these coefficients are diagonal, which means that decoherence
is almost instantaneous, and then we will correct it in a perturbative way.

6.1. The Kramers limit

We are interested in the regime where the decoherence time is much shorter than the tunnelling
time, or D � 1, i.e. when the decoherence term (C.2) suppresses the non-diagonal Wigner
function coefficients Cp1p2(t) and get a totally decohered Wigner function. In this case
using the average and difference momentum variables P and p, see equations (C.3), we
may approximate these coefficients as Cp1p2(t) ≡ C(P, p, t) ∼ f (P, t)δ(p). The quantum
transport equation (C.1), or its local approximation equation (78), then reduces to

∂f

∂t
= γ

∂

∂P

(
P + Mσ 2 ∂

∂P

)
f, (81)

which is the Kramers [17] thermal activation equation for f (P, t). This is a continuity equation
for a distribution f with a flux � = −γ

(
P + Mσ 2 ∂

∂P

)
f . The computation of the tunnelling

amplitude has thus been reduced to the computation of the escape probability of a particle
confined to a potential U(x) defined in equation (2) subject to a damping force γP and white
noise with amplitude γMσ 2; which corresponds to a temperature T = σ 2/kB . The boundary
conditions of the Kramers problem are the usual ones. We assume that the particle is initially
trapped at the potential well. Let us define P0 = √

2MU∞; we may take U∞ = 0 in this
section since the asymptotic value of the potential outside the barrier has no relevance for the
classical activation problem. We will ask that there is no flux entering into the well so that
�(0) = 0 and ∂f/∂P (0) = 0. Moreover, at the separatrix when Ps = √

2Mεs , where εs is
the potential barrier, f (Ps) = 0. This means that the number of particles above the separatrix
is negligible.

To find the activation rate we seek normal modes f = f (P ) e−rt and assume that r is very
small. If r = 0 we have the stationary solution f0 = exp(−P 2/2Mσ 2) which satisfies the
boundary condition at P = 0 but not at Ps . We seek a second stationary solution, for r = 0,
of the form F0 = f0fs , and then equation (81) reduces to

γMσ 2 ∂

∂P

(
f0

∂

∂P
fs

)
= 0, (82)

which leads to ∂fs/∂P = K/f0, where the value of the constant K is irrelevant, and may be
chosen as K = −1. The resulting solution F0(P ) = f0

∫ Ps

P
dQf −1

0 (Q) satisfies the boundary
condition at Ps but not at P = 0. Thus, we now have two stationary solutions of equation (81),
f0 and F0, and we may use the variation of constants method to find a normal mode solution
for r > 0. Let us write

f = α(P )f0 + β(P )F0, (83)

with the supplementary condition α′f0 + β ′F0 = 0. The function α(P ) and β(P ) are
determined by substitution into equation (81) which leads to the first-order differential
equations α′ = −(r/γMσ 2)

(
αF0 + βF 2

0

/
f0

)
and β ′ = (r/γMσ 2)(αf0 + βF0); the boundary
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conditions are β(0) = α(Ps) = 0. For r very small, we may just approximate α = α(0) and
β = 0 on the right-hand sides of those equations and we get

α(P ) = α(0)

(
1 − r

γMσ 2

∫ P

0
dQF0(Q)

)
, (84)

which leads to the lowest eigenvalue

r = γME0∫ Ps

0 dQF0(Q)
∼ γ√

π

√
εs

σ 2
e−εs/σ

2
. (85)

This is the escape rate of the particle. We may give this rate in terms of the effective escape
temperature defined in equation (41) by equating r to (1/2τ) exp(−εs/kBTesc), that is,

Tesc = σ 2

kB

[
1 − σ 2

εs

ln

(
2γ

�0

√
πεs

σ 2

)]−1

, (86)

where we have used that the dynamical time τ , defined in equation (8), is τ ∼ π/�0.
Thus, we have an escape temperature of the order of Tesc ∼ σ 2/kB � 1

2h̄�0/kB , at zero
temperature.

6.2. Effect of anomalous diffusion

We may now estimate the effect of anomalous diffusion on the tunnelling rate. We have seen
in section 4 that the effect of anomalous diffusion on the linear entropy of the reduced density
matrix of the open quantum system is undefined, unlike the effect of normal diffusion. It
may increase or decrease the entropy, and hence the decoherence, depending on the product
of gradients of the Wigner function on phase space; see equation (48). Let us go back to the
quantum transport equation (50). The term Q(N) is dominated by the decoherence term (C.2);
for this reason we may distinguish a fast and a slow dynamics. The fast dynamics corresponds
to the decay of the non-diagonal Wigner function coefficients. The slow dynamics is the
diffusion of the Wigner function coefficients along the diagonal which will be considered in
the next section and may be described by a Fokker–Planck equation for a classical distribution
function.

To evaluate the effect of Q(A), let us consider Wigner function coefficients CE1E2 of the
form

C = Cdiag + Codd, (87)

where Cdiag is diagonal and Codd is antisymmetric. Here we do not include symmetric off-
diagonal coefficients, such as Ceven, because we assume that decoherence takes them to zero,
even though other terms generate it. According to the parity properties of the Q(D),Q(N) and
Q(A) defined in equations (57)–(59), we may write equation (50) as a set of coupled equations:

∂

∂t
Cdiag = (Q(D) + Q(N))Cdiag + Q(A)Codd,

∂

∂t
Codd = (Q(D) + Q(N))Codd + Q(A)Cdiag.

(88)

Note that the first term of equation (50) does not contribute to this set of equations: Q(Q)

does not contribute to the first equation because it vanishes on the diagonal, nor to the second
equation because it destroys diagonal Wigner functions. Note that the symmetric off-diagonal
coefficients Ceven do not couple to the diagonal coefficients Cdiag through terms that contain a
δ(p), thus these terms are second order with respect to the diagonal coefficients as analysed
in section 6.1. Because the leading process is decoherence, the second equation may be
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approximated by ∂
∂t

Codd = −1
τD

Codd + Q(A)Cdiag where τD is a typical decoherence time scale
estimated in section 5.2; see equation (79). Note that this is analogous to the relaxation time
approximation for the Boltzmann equation. If τD is short enough, Codd simply trails Cdiag and
Codd ∼ τDQ(A)Cdiag and we obtain an autonomous equation for Cdiag,

∂

∂t
Cdiag = [Q(D) + Q(N) + τD(Q(A))2]Cdiag. (89)

To compute (Q(A))2 we go back to equation (59), we permute operators X and P so that
we get an expression in terms of P and P 2 only. The linear terms in P vanish near the diagonal
and then replace P with a typical momentum scale, such as

√
Mσ 2. Finally, we get

(Q(A))2
E1E2,E

′
1E

′
2
∼ 4�2Mσ 2

h̄2

(
X2

E1E
′
1
δE2E

′
2

+ δE1E
′
1
X2

E2E
′
2
− 2XE1E

′
1
XE2E

′
2

)
, (90)

which is the same operator as Q(N). Thus, equation (89) leads to the first of the previous
set of coupled equations when the anomalous term is neglected, but with a modified normal
diffusion coefficient. The effect of anomalous diffusion is then to lower the normal diffusion
coefficient σ 2 to σ 2

eff , where

σ 2
eff =

(
1 − 4τD�2

γ

)
σ 2. (91)

This translates into a lowering of the effective escape temperature of equation (86), namely
Tesc ∼ σ 2

eff

/
kB . Thus the escape temperature is always lower than σ 2/kB but it tends to it

when the decoherence time τD goes to zero. Consequently, the overall effect of anomalous
diffusion is to inhibit tunnelling when strong decoherence is assumed.

7. Conclusions

To conclude, let us briefly summarize our results. Under the assumption of strong decoherence
and using a real-time formalism we have estimated the tunnelling rate for an open quantum
system representing a quantum particle, trapped in a local minimum of a cubic potential,
coupled to an environment. The real-time formalism is based on the master equation for
the reduced Wigner function that describes the open quantum system. Our computational
method involves the introduction of an energy representation of the reduced Wigner function
which is based on the energy eigenfunctions of the isolated system. The master equation in
this representation, equation (50), is an equation for some Wigner function coefficients that
describe the quantum correlations between eigenfunctions of different energies.

In spite of its apparent straightforwardness, the original master equation (42) contains
a term with three derivatives of the Wigner function, which makes it quite hard to handle
either analytically or numerically. From this point of view the reduction of equation (42) to
equation (50), which is then approximated by equation (78), is already a definite step forward.
Also, the basic process of decoherence is hard to discern from equation (42), while it is clearly
depicted in equation (78). A striking feature of the decay process is that in last analysis it is
robust against the details of the potential barrier. For example, the Kramers activation rate is
dominated by a single feature of the barrier (its height), and similarly the quantum tunnelling
rate for the closed system. This simplicity is lost in equation (42) but regained in equation (78).
We see that the details of the potential (such as the height of the barrier) enter the problem
only through the boundary conditions and the phase shifts in the energy eigenfunctions. In
particular, the strength of decoherence is determined by the phase shifts near the false vacuum
energy, where the simple approximation of equation (12) applies.
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In our problem, where the particle is initially trapped in the false vacuum, the master
equation involves a term (C.2) that destroys the quantum correlations of the eigenfunctions
and is, thus, responsible for decoherence. The strength of this term is characterized by
the dimensionless parameter D, defined in equation (80), which is directly proportional to
the energy difference between the false and true vacua. Under the assumption of strong
decoherence the pure quantum channel to tunnelling is partially suppressed, since decoherence
destroys the fine tuning among the energy eigenfunctions that makes tunnelling possible in
the isolated closed system. Tunnelling then follows an activation-like channel due to the zero
point fluctuations of the quantum environment. This is similar to the result recently found in
[45] for a double-well potential, which uses a large-scale numerical simulation to solve the
master equation.

Thus the picture we have is the following. For the isolated closed system, tunnelling
from the ground state goes through the usual quantum channel which the WKB approach
or the instanton approach reproduces, and that we can equally reproduce using the energy
representation of the master equation; see section 3.2. When the system is coupled to an
environment the general effect is felt as dissipation and diffusion, the latter coming as normal
and anomalous diffusion. These terms will produce essentially two effects. On the one hand,
they will produce decoherence to the system which will tend to suppress tunnelling as the
system becomes more classical. On the other hand, diffusion will also introduce noise into the
system which will induce tunnelling by a mechanism similar to thermal activation. In general,
all these mechanism act simultaneously and their effects cannot be disentangled.

When decoherence is very fast quantum tunnelling is strongly suppressed and activation
dominates, to leading order. In section 4 we have seen how the diffusion term, the normal
diffusion and anomalous diffusion affect the linear entropy of the reduced matrix density of
the open quantum system. We see clearly that normal diffusion always tends to increase
the entropy and thus to induce classicalization and decoherence. This is in fact what the
decoherence term (C.2) in the quantum transport equation does. The fact that activation
from normal diffusion becomes the dominant decay mechanism when decoherence is fast
enough validates the analysis of vacuum decay in cosmology and quantum field theory given
in [25, 33, 34]. On the other hand, these references show how the analysis given here
may be improved by a more realistic description of the bath and the system-environment
interaction.

We should emphasize that although the master equation in the energy representation,
equation (50), is much simpler than in the standard phase space representation, equation (42),
it may be difficult to go beyond the present results by analytic means. It may still be
possible to treat perturbatively the symmetric but non-diagonal terms in the Wigner function
coefficients. These terms were neglected in section 6.2 where we considered the effect of
anomalous diffusion assuming coefficients of the form (87). The quantum coefficient Q(Q),
which induces pure quantum tunnelling in the isolated system, will have an imprint in those
terms.
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Appendix A. WKB solution

In this appendix we solve the WKB problem posed in section 2.2. The starting point are
equations (3)–(5) with the cubic potential of equation (2). We have to match the WKB
solutions in the different regions across the potential function.

A.1. Matching from forbidden to allowed regions

Let x0 be a classical turning point U(x0) = E, and let U ′(x0) < 0. Then to the left of x0

we have a forbidden region, and the two corresponding independent WKB solutions of the
Schrödinger equation (3) are

F±(x0, x) = e±S(x0,x)/h̄

√
2p(x)/h̄

, (A.1)

whereas to the right of x0 the two independent solutions are

G±(x, x0) = e±iS(x,x0)/h̄

√
2p(x)/h̄

, (A.2)

and we wish to find the corresponding matching conditions. For x → x−
0 , we can Taylor-

expand the potential around x0 and write p(x) = κ(x0 − x)1/2 and S(x0, x) = 2
3κ(x0 − x)3/2,

where we have introduced κ = √
2M|U ′(x0)|. Similarly for x → x+

0 , we have p(x) =
κ(x − x0)

1/2 and S(x, x0) = 2
3κ(x − x0)

3/2.
If we write x − x0 = eiπ (x0 − x) then iS(x, x0) = S(x0, x) and it would seem that simple

analytical continuation yields G+(x, x0) → e−iπ/4F+(x0, x). However, this is impossible;
recall that if we define the flux J = −i(ψ∗∂xψ − ψ∂xψ

∗) then the Schrödinger equation
implies flux conservation ∂xJ = 0. Now G+(x, x0) has J = 1 and therefore it cannot turn
into F+(x0, x), which is real, and has J = 0. Thus, we try instead

G+(x, x0) → e−iπ/4F+(x0, x) + βF−(x0, x), (A.3)

and imposing flux conservation we obtain β = (1/2) exp(iπ/4). We therefore find the
matching conditions

e∓iπ/4F+(x0, x) + 1
2 e±iπ/4F−(x0, x) → G±(x, x0), (A.4)

from where we finally obtain, using equation (A.2),

F+(x0, x) → 1√
2p(x)/h̄

cos

(
1

h̄
S(x, x0) +

π

4

)
, (A.5)

and

F−(x0, x) → 2√
2p(x)/h̄

sin

(
1

h̄
S(x, x0) +

π

4

)
. (A.6)

A.2. Matching from allowed to forbidden regions

Now consider the case when U ′(x0) > 0. To the left of x0, we have an allowed region and the
solutions are oscillatory G±(x0, x), and to the right of the turning point we have a forbidden
region and the solutions are a linear combination of (A.1). By exactly the same procedure as
in the previous section, after imposing flux conservation across x0 we obtain

G∓(x0, x) → e±iπ/4F+(x, x0) + 1
2 e∓iπ/4F−(x, x0). (A.7)

Note from these equations that the solution that matches a decreasing exponential is
1√

2p(x)/h̄
sin

(
1

h̄
S(x0, x) +

π

4

)
→ 1

2
F−(x, x0). (A.8)
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A.3. WKB solution for 0 < E < εs

We can now put all this together to write the energy eigenfunctions for our cubic potential (2)
for energies in the range 0 < E < εs . There are three classical turning points in this case
xL < xR < xout. To the left of xL we have a forbidden zone extending to −∞, so we have

ψE(x) ∼ KEF−(xL, x), x < xL, (A.9)

where KE is a normalization constant to be determined later. To the right of xL we have from
(A.6)

ψE(x) ∼ 2KE√
2p(x)/h̄

sin

(
1

h̄
S(x, xL) +

π

4

)
, (A.10)

which after using the definition (5) can be rewritten in the region xL < x < xR as

ψE(x) ∼ KE(ei(S(xR,xL)/h̄−π/4)G−(xR, x) + e−i(S(xR,xL)/h̄−π/4)G+(xR, x)). (A.11)

This expression is in the form suitable for extension to the forbidden region, that is, to the
right of xR . Thus, by using (A.7) we have to the right of xR

ψE(x) ∼ 2KE

[
cos

(
1

h̄
S(xR, xL)

)
F+(x, xR) +

1

2
sin

(
1

h̄
S(xR, xL)

)
F−(x, xR)

]
, (A.12)

which can be rewritten again as

ψE(x) ∼ 2KE

[
cos

(
1

h̄
S(xR, xL)

)
eS(xout,xR)/h̄F−(xout, x)

+
1

2
sin

(
1

h̄
S(xR, xL)

)
e−S(xout,xR)/h̄F+(xout, x)

]
, (A.13)

which is in a form suitable for extension to the right of xout:

ψE(x) ∼ 2KE√
2p(x)/h̄

[
2 cos

(
1

h̄
S(xR, xL)

)
eS(xout,xR)/h̄ sin

(
1

h̄
S(x, xout) +

π

4

)

+
1

2
sin

(
1

h̄
S(xR, xL)

)
e−S(xout,xR)/h̄ cos

(
1

h̄
S(x, xout) +

π

4

)]
. (A.14)

Note that if we impose the Bohr–Sommerfeld quantization rule

S(xR, xL) = π

2
(1 + 2n)h̄, (A.15)

only the subdominant, exponential decreasing part survives. This would correspond to the
case when the far right region is forbidden and may be used to define energies for false states
trapped into the potential well; in particular n = 0 will correspond to the false ground state.

A.4. Normalization

All that remains now is the determination of the normalization constant KE which can be done
from the normalization of the wavefunctions. The eigenfunctions are subject to continuous
normalization ∫

dx ψE1(x)ψE2(x) = δ(E1 − E2). (A.16)

Since the functions themselves are regular, the singular behaviour must come from the upper
limit; see, for instance, [47]. For large enough x, we have from equation (5)

p → p∞ =
√

2M(E + U∞). (A.17)
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Let us write from equation (A.1),

S(x, xout) = p∞(x − xout) +
∫ x

xout

dx ′[√2M(E − U(x ′)) −
√

2M(E + U∞)
]
, (A.18)

if this integral converges, and we may take the upper limit of integration to ∞, whereby

S(x, xout) = p∞x + f (E), (A.19)

where f (E) stands for the second term of (A.18). Then, for x � xout, we can write from
(A.14) and (A.19)

ψE(x) ∼
√

2h̄KE√
p∞

[
A(E) sin

(p∞x

h̄

)
+ B(E) cos

(p∞x

h̄

)]
, (A.20)

where A(E) and B(E) are given by

A(E) = 2 cos

(
1

h̄
S(xR, xL)

)
eS(xout,xR)/h̄ cos

(
f (E) +

π

4

)

− 1

2
sin

(
1

h̄
S(xR, xL)

)
e−S(xout,xR)/h̄ sin

(
f (E) +

π

4

)
, (A.21)

B(E) = 2 cos

(
1

h̄
S(xR, xL)

)
eS(xout,xR)/h̄ sin

(
f (E) +

π

4

)

+
1

2
sin

(
1

h̄
S(xR, xL)

)
e−S(xout,xR)/h̄ cos

(
f (E) +

π

4

)
. (A.22)

Substituting equation (A.20) into (A.16), the singular terms in the normalization integral
are ∫

dx ψE1(x)ψE2(x) ∼ h̄2π
K2

E1

p1
[A2(E1) + B2(E1)]

[
dp1

dE1

]−1

δ(E1 − E2),

where the delta function comes from the x integration which brings δ(p1 − p2) and where
we have defined pi ≡ p∞(Ei) (i = 1, 2) and changed from momentum to energy variables
according to pi dpi = MdEi ; see equation (A.17). The normalization condition reduces to 1,
the coefficient of the delta function above

h̄2π
K2

E1

M
[A2(E1) + B2(E1)] = 1. (A.23)

This suggests the introduction of the phase δE as follows:

KEA(E) =
√

M

h̄2π
cos δE, KEB(E) =

√
M

h̄2π
sin δE. (A.24)

Thus, the eigenfunction at x � xout is equation (6), that is,

ψE(x) ∼
√

2M

h̄πp∞
sin

(p∞x

h̄
+ δE

)
.

To work out the constant KE in greater detail, we note that from equations (A.21) and
(A.22) we have

A2 + B2 = 4 cos2

(
1

h̄
S(xR, xL)

)
e2S(xout,xR)/h̄ +

1

4
sin2

(
1

h̄
S(xR, xL)

)
e−2S(xout,xR)/h̄, (A.25)

which is non-vanishing as long as E is real. However, if we allow for complex energies, as is
typical of unstable states, it may be zero, provided

cos2

(
1

h̄
S(xR, xL)

)
= −1

16
sin2

(
1

h̄
S(xR, xL)

)
e−4S(xout,xR)/h̄. (A.26)

The left-hand side is zero whenever the energy satisfies the Bohr–Sommerfeld condition
(A.15).
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Appendix B. Thermal spectrum

In this appendix we check that the quantum transport equation (50) admits a stationary solution
with a thermal spectrum. This can be seen as a test on the restrictions satisfied by the matrix
elements (53)–(56) with σ 2 = kBT .

An unnormalized thermal density matrix in the position representation reads

ρ(x, x ′) =
∫

dE e−βEψE(x)ψE(x ′), (B.1)

where β = (kBT )−1 and its associated Wigner function is

Wβ(x, p) =
∫

dE e−βEWEE(x, p), (B.2)

which in the energy representation in the base WE1E2 of equation (35) corresponds to the
coefficients CE1E2 = e−βE1δ(E1 − E2). Inserting this into the transport equation we get∫

dE e−βEQE1E2,EE = 0, (B.3)

which after using equations (52), (57) and (58) can be written in operator language as

0 = 1

2M

i

h̄
(XP e−βH − e−βH PX − P e−βH X + X e−βH P )

+
1

βh̄2 (X2 e−βH + e−βH X2 − 2X e−βH X).

At the infinite temperature limit, β = 0, this is

0 = 1

M

i

h̄
(XP − PX) − 1

h̄2 (X2H + HX2 − 2XHX). (B.4)

The first term is the commutator which gives −M−1, and the second term can be written as
− 1

h̄2 [X, [X,H ]], which using [H,X] = (h̄/i)(P/M) is easily seen to cancel the first term.

Appendix C. Quantum transport equation

Here we write explicitly the quantum transport equation (50) in the energy representation.
The coefficient Q in equation (50) is given by (52), and the values of the dissipative,
normal diffusion and anomalous diffusion parts of this coefficient are given, respectively, by
equations (57), (58) and (59). These parts can be directly written using the matrix elements
deduced in section 5. When the coefficients Cp1p2 defined in equation (77) are introduced, the
transport equation becomes

∂Cp1p2

∂t
= −i

2Mh̄

(
p2

1 − p2
2

)
Cp1p2 + γMσ 2

(
∂2

∂p2
1

+
∂2

∂p2
2

)
Cp1p2

+
γ

2

(
∂

∂p1
p1 +

∂

∂p2
p2

)
Cp1p2 + i�

(
p1

∂

∂p1
− p2

∂

∂p2

)
Cp1p2

+
γ − i2�

4π2

∂

∂p1

∫
dp′

1 dp′
2(p2 + p′

2)P (p2 − p′
2)P (p1 − p′

1)Cp′
1p

′
2

+
γ + i2�

4π2

∂

∂p2

∫
dp′

1 dp′
2(p1 + p′

1)P (p2 − p′
2)P (p1 − p′

1)Cp′
1p

′
2

+
2γMσ 2

π2

∂2

∂p1∂p2

∫
dp′

1 dp′
2P(p1 − p′

1)P (p2 − p′
2)Cp′

1p
′
2
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− γMσ 2

(
∂δ1

∂p1
− ∂δ2

∂p2

)2

Cp1p2

+
γ

4π

(
∂δ1

∂p1
− ∂δ2

∂p2

) ∫
dp[(p1 + p)P (p1 − p)Cpp2 − (p2 + p)P (p2 − p)Cp1p]

+
i�

2π

(
∂δ1

∂p1
− ∂δ2

∂p2

) ∫
dp[(p1 + p)P (p1 − p)Cpp2 + (p2 + p)P (p2 − p)Cp1p]

+ γMσ 2
∫

dp′
2

π

(
∂δ2

∂p2
+

∂δ2′

∂p′
2

− 2
∂δ1

∂p1

)
∂P (p2 − p′

2)

∂p2
Cp1p

′
2

+ γMσ 2
∫

dp′
1

π

(
∂δ1

∂p1
+

∂δ1′

∂p′
1

− 2
∂δ2

∂p2

)
∂P (p1 − p′

1)

∂p1
Cp′

1p2 , (C.1)

where we have used the shorthand notation P(x) ≡ PV (1/x).
This equation may be considerably simplified by noting the effect of the negative defined

local term which depends on the phase shift derivatives:

−γMσ 2

(
∂δ1

∂p1
− ∂δ2

∂p2

)2

Cp1p2 . (C.2)

This term has no effect on the diagonal Wigner function coefficients, when p1 = p2, but it
exponentially reduces the off-diagonal coefficients Cp1p2 on a time scale of the decoherence
time, τD , as discussed in section 5. This suggests the following local approximation to the
transport equation (C.1) whenever τD � τtunn.

To derive the local approximation it is best to introduce new average and difference
momentum variables,

P = 1
2 (p1 + p2), p = p1 − p2, (C.3)

then, when substituting into equation (C.1), we have two typical terms involving the p′
1 and

p′
2 integrations,∫

dU du(2P + U)P (U − u)P (U + u)C(P + U,p + 2u),∫
dU du(p + u)P (U − u)P (U + u)C(P + U,p + 2u),

where we have used C(P, p) = Cp1p2 , and U = P ′ − P and u = 1
2 (p′ − p). Now we make

the hypothesis that the P dependence is softer than the p dependence, so within these integrals
we can approximate C(P + U,p + 2u) ∼ C(P, p + 2u). Then using equation (74) we can
integrate

∫
dU P(U − u)P (U + u) = π2

2 δ(u) and
∫

dU UP(U − u)P (U + u) = 0. In this
way, all the terms in equation (C.1) which do not depend on the phase shifts δ1 and δ2 become
local and considerably simplified. For the phase shift terms we may note that far from the
resonance all terms are negligible and close to the resonance the local term (C.2) is clearly
dominant so it makes sense to keep only this term. Finally, equation (78) follows as the local
approximation of the quantum transport equation (C.1).

Appendix D. Tunnelling rates for the closed system

In this appendix we review the calculation of the quantum mechanical tunnelling rate for the
closed system, that is, ignoring the interaction with the environment. The quantum tunnelling
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rate as given by the instanton calculation [2, 6, 67] is

�
(inst)
closed = aq

2τ
e−�0 , (D.1)

where τ = π/�0,�0 = SB/h̄ = 18εs/(5ε0) ∼ 12.376, and the prefactor aq =
(120π�0)

1/2 ∼ 68.306; here we use as an example the values εs/kB ∼ 589.74 mK, and
ε0/kB ∼ 171.55 mK, from a tunnelling experiment for a single Josephson junction between
two superconducting electrodes biased by an external current reported in [2]. With these
values, the escape temperature defined in equation (41) is

T (inst)
esc = ε0/kB

3.6 − (ε0/εs) ln aq

∼ 72.345 mK. (D.2)

It is interesting to check that this result agrees with the result we obtain when the dissipation
is zero. We can use our WKB result as obtained in section 2, see equation (26), to write

�
(WKB)
closed = 1

2τ
e−�, (D.3)

where � = (2/h̄)S0(xout, xR), with S0 defined in equations (4)–(5), where the potential U(x)

is given by equation (2).
For a cubic potential, the relationship among the energy E, the frequency � and the action

S(xR, xL) is best given in parametric form,

E = 2εsζ(k), � = �0f (k), S(xR, xL) = εs

�0
F(k), (D.4)

with 0 < k < 1, and

ζ(k) = 1

8

{
2 + 3

(1 + k2)

[Q(k)]1/2
− (1 + k2)3

[Q(k)]3/2

}
, (D.5)

f (k) =
{

2

π
[4Q(k)]1/4K[k2]

}−1

,

F (k) = 27

8

[
4

Q(k)

]5/4

{a(k)E[k2] − (1 − k2)b(k)K[k2]},
(D.6)

where E[k2] and K[k2] are the complete elliptic integrals, and we have introduced the functions
Q(k) = (1/4)(1 + 14k2 +k4), a(k) = (16/15)(2−k2)2 − (1/5)(1−k2)(21−5k2) and b(k) =
(8/15)(2 − k2) − (1 − k2).

The Bohr–Sommerfeld condition (A.15) for the ground state (n = 0) corresponds to
the parameter kGS such that F(kGS) = πε0/εs which implies that kGS ∼ 0.1152. This
corresponds to ζ(kGS) ∼ 0.1423 and f (kGS) ∼ 0.9550, while the harmonic approximation
for the potential yields 0.1454 and 1, respectively.

To compute the barrier penetrability, � = (2/h̄)S0(xout, xR), we observe that S(xout, xR)

at energy E is equal to S(xR, xL) at energy Eref = εs − E. The exchange of E by Eref is
equivalent to the exchange of k by kref , where ζ(kref) = 1/2 − ζ(k). For kGS we obtain
kref ∼ 0.2433 and F(kref) ∼ 2.4073. Therefore

� = εs

ε0
F(kref) ∼ 8.459. (D.7)

This is to be compared against the instanton exponent �0 − ln aq ∼ 8.152. In terms of the
escape temperature, the WKB approximation yields

T (WKB)
esc = ε0/kB

F (kref) − (ε0/εs) ln(�GS/�0)
∼ 70.869 mK, (D.8)
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which is in good agreement with the instanton result; here we have again used the previous
numerical results for εs and ε0. This agreement, of course, should not be surprising since for
a closed system our method reduces to the standard WKB calculation. The purpose of this
exercise is just to check the consistency of our calculation and to illustrate how the instanton
and WKB methods compare. That the difference between exp(�0) and exp(�) is accounted
for by the prefactor aq of equation (D.1) can be seen analytically by a perturbative calculation.
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