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Dual interacting cosmologies and late accelerated expansion
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In this paper we show that by considering a universe dominated by two interacting components a
superaccelerated expansion can be obtained from a decelerated one by applying a dual transformation that
leaves the Einstein’s field equations invariant.
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I. INTRODUCTION

Currently, the view that the Universe has entered a stage
of accelerated expansion is widely shared by cosmologists
[1] to the point that the debate has shifted to discussing
when the acceleration did actually commence and if it is
just a transient phenomenon or it will last forever and,
above all, which is the agent behind it. Whatever the latter,
usually called dark energy, it must possess a negative
pressure high enough to violate the strong energy condition
(SEC). A number of dark energy candidates obeying the
dominant energy condition (DEC) have been proposed,
ranging from an incredibly tiny cosmological constant to
a variety of exotic fields (scalar, tachyon, k-essence, and so
on) with suitably selected potentials—see Ref. [2] for
reviews. However, observations seem to marginally favor
some or other energy field—dubbed ‘‘phantom energy’’—
that violates the DEC [3] over dark energy fields that
satisfy it. Likewise, lately, it has been shown the existence
of dual symmetry transformations that leaves invariant the
Einstein field equations for spatially flat, homogeneous,
and isotropic universes [4]. These transformations prove
themselves extremely useful since they allow to obtain
phantom dominated expansions from contracting scenarios
[5–8]. Other features of phantom cosmologies have been
investigated in [9].

The aim of this paper is twofold: (i) To extend the
technique of dual symmetry transformations that preserve
the form of Einstein’s equations to the case that the expan-
sion of the Universe is dominated by two fluids (dark
matter and dark energy) that interact with each other. The
dark energy fluid may be of phantom type or not. (ii) To
apply this technique to three cases in which the dark energy
is a different phantom fluid.

In Section II we sketch the dual symmetry transforma-
tion when both fluids are noninteracting and then extend
the transformation first to the case that they interact and
both of them satisfy the DEC, and then to the case that one
of them does not satisfy the DEC. Likewise, we study the
Address: chimento@df.uba.ar
Address: diego.pavon@uab.es

06=73(6)=063511(5)$23.00 063511
evolution of the ratio between both energy densities. It
turns out that when the interaction term is proportional to
the total energy density the aforesaid ratio tends asymptoti-
cally to a constant. In Section III we apply the method of
Section II, successively, to the cases that the phantom
component is a scalar field with negative kinetic energy,
a k-essence field, and a tachyon field. Finally, in Section IV
we summarize our conclusions and present some
comments.
II. DUAL SYMMETRY FOR INTERACTING
FLUIDS SCENARIOS

Let us consider a homogeneous, isotropic, and spatially
flat universe filled by two fluids of energy densities and
pressures �i and pi (with i � 1, 2), respectively. The
Friedmann equation and the energy conservation equation
read

3H2 � �1 � �2;

_�1 � _�2 � 3H��1 � �2 � p1 � p2� � 0;
(1)

where we have set c � 8�G � 1.
It can be readily seen that in this rather general scenario

there is a dual symmetry relating this cosmology to another
one (with two fluids of energy densities and pressures ��i,
and �pi), generated by

��1 � ��1 � �1� ���2; ��2 � �1� ���1 � ��2;

�H � �H; (2)

where the parameters of the transformation,

� �
��2 � �1

��2 � ��1
and � � �

�2 � ��1

��2 � ��1
;

solely depend on the barotropic indexes of the fluids. As
usual, these indexes are given by �i � 1� �pi=�i� and
parallel expressions for the ��i of the other cosmology.
We define the overall barotropic index � � ��1�1 �
�2�2�=��1 � �2� for the unbarred cosmology. An entirely
-1 © 2006 The American Physical Society
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parallel expression exists for �� in the other cosmology.
Obviously the duality transformation connects these two
indexes by ��! ��. This means that �1 � �2 � p1 �
p2 ! ���1 � �2 � p1 � p2�. Put another way, if the
DEC is fulfilled in one cosmology, then it is violated in
the other. The transformation law (2) implies �a � 1=a.
Accordingly, if one cosmology (say, the unbarred one)
describes a phase of contraction, the barred one describes
a phase of expansion, i.e., both cosmologies are dual of
each other [4].

In the remainder of this section we generalize this tech-
nique to the case that the fluids do not conserve separately
but interact with each other and then investigate the con-
sequences. We begin by writing

3H2 � �1 � �2; _�1 � 3H�1�1 � �3H�;

_�2 � 3H�2�2 � 3H�;
(3)

where the quantity � characterizes the interaction.
Automatically the above dual symmetry gets restricted to
the following transformation �i ! �i, H ! �H, �i !
��i, and �!��, with the overall barotropic index
transforming as �! ��. Therefore, there is a duality
between two cosmologies, driven by two interacting fluids
through the set of Eqs. (3), that have the sign of the
individual barotropic indexes reversed. This opens the
possibility of considering phantom dark energy with a
negative barotropic index, which characterizes a ghost or
phantom cosmology, as a source of Einstein’s equations.

Defining the energy density ratio r � �1=�2 and using
Eqs. (3), we obtain the evolution equation

_r � �3�Hr; � � �1 � �2 �
�1 � �2

�1�2
�: (4)

Since, except for the sign, dual cosmologies share the same
interaction term � the transformation �! ��, holds. In
addition, Eq. (4) and the ratio r � �1=�2 are invariant
under the dual transformation thereby r is a well-defined
quantity. In particular if _r vanishes in one cosmology, it
also vanishes in the dual one, meaning that the stationary
solutions r � rs of Eq. (4) are shared by both cosmologies.

Let us now assume that both fluids satisfy the DEC, �i �
pi > 0 (i.e., none of them is of phantom type) but one of
them (say, fluid 2) violates the SEC, �2 � 3p2 < 0 (i.e., it
is a dark energy fluid), while the other does not, and
specialize the interaction term to � � �c2��1 � �2�
with c2 a small dimensionless constant. This particular
choice of � has proved interesting because it provides
analytical solutions and leads to a fixed ratio matter/dark
energy at late times whatever the initial conditions (see,
e.g., [10,11]). Farther ahead in this section we shall see that
this is also true when the dark energy is of phantom type.

The stationary solutions of Eq. (4) are obtained by
solving rs��rs� � 0. When �1 and �2 are constants these
solutions are given by the roots of the quadratic equation
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r�s � �1� 2b� 2
������������������
b�b� 1�

p
; b �

�1 � �2

4c2 > 1:

(5)

These satisfy the inequalities r�s � 1 � r�s and for this
model the general solution of Eq. (4) read

r�x� �
r�s � xr�s

1� x
; (6)

where x � �a=a0�
�� with � � 12c2

������������������
b�b� 1�

p
. It is readily

seen that r�x� is a monotonic decreasing function in the
range r�s < r < r�s . Finally, near this attractor solution,
r 	 r�s , the last two Eqs. (3) can be approximated by

�01
�1

’
�1 � c

2�1� 1=r�s �

c2�r�s � r�s ��r� r�s �
; (7)

�02
�2

’
�2 � c2�1� r�s �

c2�r�s � r
�
s ��r� r

�
s �
; (8)

where the prime denotes derivative with respect to r. For
nearly constant barotropic indexes, �1 and �2, last equa-
tions integrate to

�1 / a�3
�1�c2�1�1=r�s ��; �2 / a�3
�2�c2�1�r�s ��; (9)

while from the Friedmann equation (3) the time depen-
dence of the scale factor

a / ��t�2=3
�2�c2�1�r�s �� (10)

is readily obtained.
From the condition ��r�s � � 0 it follows that the expo-

nents in the energy densities (9), which can be considered
as effective barotropic indexes, coincide. This shows that
the interaction modifies the apparent physical properties of
the fluids.

We now apply this model to the case that the fluid 2
violates the DEC—i.e., it is a phantom fluid with �2 < 0.
From the two last expressions (9) and (10) and duality four
distinct possibilities emerge (see Fig. 1):
(i) �
-2
2 � c
2�1� r�s �> 0,

for t � 0, the Universe expands from an initial
singularity at t � 0 with a vanishing scale factor,
(A),
for t � 0, the Universe contracts from the far past
and ends in a big crunch at t � 0, (B).
(ii) �
2 � c
2�1� r�s �< 0 (the dual of (i), namely, �2 !

��2 and c2 ! �c2),
for t � 0 the Universe contracts from an initial
singularity at t � 0 with an infinite scale factor, (C),
for t � 0, the Universe expands from the past and
ends in a big rip at t � 0, (D).
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FIG. 1. The four branches of Eq. (10). The duality transforma-
tion maps curve A into C (and vice versa). Likewise, it maps
curve B into D (and vice versa). Thus, curves A and C are dual of
each other, the same is true for the pair B, D—see the text. The
vertical axis corresponds to the scale factor a.
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We have assumed, without loss of generality, that r is
near the attractor r�s ; this facilitates the qualitative descrip-
tion and more readily illustrates the dual symmetry.

We wish to emphasize that one may get a superaccel-
erated expanding phase (i.e., H > 0 together with _H > 0)
when j�2j> c2�1� r�s � and also when j�2j< c2�1� r�s �.
In the latter case the superaccelerated expanding phase is
obtained by a dual transformation that reverses the signs of
�1, �2, and c2. This interchanges the roles of both fluids
and replaces the term � by ��.
III. PHANTOM DARK ENERGY

In this section we apply the above method to three
specific cases in which one component is matter (i.e., it
satisfies the SEC) and the other component is a phantom
fluid (as such, it does violate the SEC and DEC). For the
latter we will consider in turn a scalar field, a k-essence
field, and a tachyon field.

A. Scalar field cosmology

Let be an accelerated universe whose source of dark
energy is a scalar field ’ of phantom type. This type of
field may arise in string theory, see [12] and references
therein. We write its pressure and energy density admitting
both signs for kinetic energy term, see e.g. Refs. [13,14],

�’ � s1
2 _’2 � V�’�; p’ � s1

2 _’2 � V�’�; (11)

where s is a constant that may bear either sign. It follows
that
063511
�’ � s
_’2

�’
: (12)

From the above equation we see that the barotropic index
becomes negative in two separate cases, viz. when s < 0
with a real scalar field and when s > 0 with an imaginary
scalar field. The dynamic equations of both interacting
components are

_�m � 3H�m�m � �3H�; _�’ � 3H�’�’ � 3H�;

(13)

where �m indicates the matter energy density. Since �m
and �’ may be seen as functions of r � �m=�’, with the
help of (4), the second of Eqs. (13) can be written as � �
�r��0’ � �’�’ and in accordance with Eqs. (4) and (11)
we obtain a differential equation for the potential

�

�’
� �’ � �r

�
�0’

2� �’
�
V 0�’�
V�’�

�
: (14)

The latter is very useful because when all the quantities
that enter it, except V�’� and V0�’�, are known functions
of the ratio r the potential V�r� can be obtained by inte-
gration. Combining it with r�a�, derived from (4), we can
resort to the Friedmann’s equation, 3H2 � �’�1� r�, to
obtain the scale factor as a function of time. Also, in virtue
of the relation � � �c2��m � �’�, the conservation
equation (13) for ’ can be written as

�’� 3H _’
�

1�
c2�1� r�
�’

�
�

1

s
dV
d’
� 0: (15)

Near the attractor dominated regime, r 	 r�s , and for
constant barotropic indexes, �m and �’, the scale factor
has the power law solution a / t2=3�’ , given by (10), with
�’ � �’ � c2�1� r�s �. In this approximation, the simul-
taneous solution of Friedmann’s equation and (15) leads to
a potential that can be cast as a series expansion in the
exponential potential (see Ref. [10]). Approximating V�’�
by this term we have

V�’� 	
2�2� �’�

3�2
’�1� r

�
s �
e�sA’; (16)

’ 	
2

sA
lnt; A � j�’j

���������������������
3�1� r�s �
s�’

s
: (17)

When s is negative, the parameter A is real, so both the
phantom scalar field and potential become real quantities.
By contrast, when s is positive, the parameter A is imagi-
nary whence the phantom scalar field becomes imaginary
but the dominant term of the potential remains real. In
general, applying the dual transformation

�V � s _�2 � V; _��2
� �

s
�s

_�2; (18)
-3
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to the solution (16) and (17) we get the transformed po-
tential and scalar field for any s, �s values. This transforma-
tion together with the change of the interaction term
�! �� reverses the sign of �’ and the new configura-
tion is given by the barred quantities.

B. k-essence cosmology

Here we consider the case in which the dark energy is
provided by a k-essence field, �, characterized by the
Lagrangian L � �U���F�x�. The potential U��� is a
positive-definite function of the k-essence field � and F
depends on the variable x � gik�i�k with �i � @�=@xi.
This field arises, for instance, in open bosonic string field
theory [15]. Identifying the energy-momentum tensor of
the k field with that of a perfect fluid, its energy density and
pressure are given by

�� � U�F� 2xFx�; p� � �UF; (19)

where the subscript x means d=dx.
Assuming that this perfect fluid obeys the barotropic

equation of state it follows that �� � �2xFx=�F�
2xFx�, and �� � UF=�1� ���. The k-essence field rep-
resents phantom dark energy when �� is negative. This
requires a decreasing, positive-definite kinetic function.
The Friedmann and the conservation equation for the
k-essence field can be written as

3H2 �
UF�1� r�

1� ��
; r �

�m
��

; (20)


Fx � 2xFxx� ��� 3HFx _�
�

1�
c2�1� r�
��

�

�
V 0

2V

F� 2xFx� � 0: (21)

Again, near the attractor dominated regime and for
constant �m and ��, the scale factor has the power law
solution a / t2=3�� given by Eq. (10), with �� �
�� � c

2�1� r�s �. In this case the simultaneous solution
of Eqs. (20) and (21) leads to a potential that can be
expressed as a series expansion in inverse square potential.
Approximating the potential by its leading term we write

U��� 	
2��

3�2
��1� r

��Fx���
2
0��

2 ; (22)

where �� 	 2�2
0Fx���

2
0�=
F���

2
0� � 2�2

0Fx���
2
0��

along with the k-essence field, � 	 �0t. When �� > 0
we apply a dual transformation to reverse its sign.

C. Tachyon field cosmology

The energy density and pressure of the phantom tachyon
field � generated by the kinetic function F�x� �
�1� sx�1=2 � �1� s _�2�1=2 are [6]
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�� � U�1� s _�2��1=2; p� � �U
������������������
1� s _�2

q
; (23)

respectively, and its barotropic index is given by �� �
s _�2. A negative barotropic index is obtained in two sepa-
rate cases, viz. when s < 0 with a real tachyon field and
when s > 0 with an imaginary tachyon field.

Assuming an interaction between the tachyon field and
matter governed by Eqs. (13), with the subscript’ replaced
by�, and proceeding along parallel lines to those sketched
above one finds that the ratio r � �m=�� evolves from r�s
to r�s and a / t2=3�� , where �� � �� � c

2�1� r�s �. In this
case duality, which requires that �� ! ��, �� ! ���,
and �! ��, leads to the following transformations for
the tachyon field and its potential

_� 2 ! �
s
�s

_�2; U0 ! �
s
������������������
1� s _�2

0

q
�s
������������������
1� s _�2

0

q U0: (24)

As above, when �� > 0 we can apply a dual transforma-
tion to reverse its sign.

IV. CONCLUDING REMARKS

We have considered a homogeneous, isotropic and spa-
tially flat universe dominated by two fluids (pressureless
matter and dark energy) that do not conserve separately but
interact with each other. We have shown that in this sce-
nario there is a dual symmetry transformation, given by
�i ! �i, H ! �H, �i ! ��i, and �! ��, that pre-
serves the form of Einstein’s equations irrespective of
whether the dark energy is phantom or not. As a conse-
quence, superaccelerated expansions can be obtained from
decelerated ones and vice versa without affecting the field
equations also in the case that matter and dark energy
interact.

We observe, by passing, that if the interaction term is
given by � � �c2��1 � �2�, then the cosmic coincidence
problem (i.e., ‘‘why are the vacuum and dust energy den-
sities of precisely the same order today?’’ [16]) is some-
what alleviated in the sense that there is an attractor such
that the energy densities of matter and dark energy tend
asymptotically to a fixed ratio, r�s , regardless if the dark
energy component is phantom or not. Obviously, this does
not solve the coincidence problem in full. Its full solution
would require to show, in addition, that the attractor was
reached only recently—or that we are very close to it.
Otherwise our approach would conflict with the tight con-
straints imposed by the cosmic background radiation and
the standard scenario of large scale structure formation. On
the other hand, the precise value of r�s cannot be derived at
present. For the time being, it must be understood as an
input parameter. This is also the case of a handful of
cosmic quantities such as the present value of the cosmic
background radiation temperature, or the ratio between the
number of baryons and photons.
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