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The work by T. K. Ghosh and K. Machida �Phys. Rev. A 73, 013613 �2006� and cond-mat/0510160� on the
sound velocity in a cylindrically confined Fermi superfluid obeying a power-law equation of state is shown to
make use of an improper projection of the sound wave equation. This inaccuracy fully accounts for the
difference between their results and those previously reported by Capuzzi et al. �Phys. Rev. A 73, 021603�R�
�2006� and cond-mat/0509323�. In this Comment, we show that both approaches lead exactly to the same result
when the correct weight function is used in the projection. Plots of the correct behavior of the phonon and
monopole-mode spectra in the BCS and unitary limits and in the BEC regime are also shown.
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In their recent study on sound propagation in an elongated
Fermi superfluid in the BEC-BCS crossover, Ghosh and
Machida �1� have reported a calculation of the sound veloc-
ity u1 for the case of a power-law equation of state �EOS� as
previously analyzed for bosons by Zaremba �2� and for fer-
mions by Capuzzi et al. �3�. Their result is found to be in-
correct due to the use of an improper projection of the sound
wave equation.

The eigenvalue equation for small-amplitude density
modes �nq�r��eiqz is obtained by linearization of the hydro-
dynamic equations around equilibrium and reads

M�2�nq = q2�n0���/�n�n=n0
�nq�

− �� · �n0������/�n�n=n0
�nq�� , �1�

where n0 is the equilibrium density profile, � the frequency
of the perturbation, and q its wave vector along z. Equation
�1� reduces to Eq. �8� in Ref. �1� for a power-law EOS
��n�=Cn�.

To obtain the dispersion relation ��q� for any value of q,
one must resort to the numerical solution of the eigenvalue
equation �1�. A possible method to solve such an equation
consists of expanding the eigenmodes �nq in a complete set
of basis functions �see, e.g., Zaremba �2�� as

�n�r�� = �
�

b��n��r�� , �2�

where �= �nr ,m� labels the basis functions, with nr the radial
number and m the number for the azimuthal angular momen-
tum. By inserting this expression into Eq. �1� and projecting
the result onto an element of the basis, a matrix representa-
tion of the eigenvalue equation is found, which is suitable for
a numerical solution. This procedure allows some freedom in
the choice of the basis and of the projection, as long as these

satisfy the boundary conditions. However, in order to obtain
a standard eigenvalue equation of the form

�v = A · v �3�

one must choose a projection in which the basis is orthogo-
nal �4�. For the basis functions adopted in Ref. �1�, cf. Eqs.
�10� and �11�, the projection must be performed with a
weight function w�r�� �1− r̃2�−�0 �5�, where r̃=r� /R and
�0=1/�−1, R being the radius of the density profile. The
orthogonality condition thus reads

� w�r̃��n�
*�r̃��n���r̃�d2r̃ � ����. �4�

Therefore, for Eq. �13� in Ref. �1� to be correct, the integrals
defining the matrix M��� must include the weight function
w�r� and thus read

M��� = A2� d2r̃�1 − r̃2��0r̃2+�m�+�m��ei�m−m��	


Pnr�
��0,�m����2r̃2 − 1�Pnr

��0,�m���2r̃2 − 1� , �5�

where Pnr

��0,m� are Jacobi polynomials. Equation �5� is what
should have been used in Ref. �1�, instead of Eq. �14�, where
the weight function w�r� is missing and the constant A takes
a different value since �n��r�� has not been normalized with
w�r�. A Fermi superfluid with �=1 corresponds to a Bose-
Einstein condensate �BEC� of molecules and has been previ-
ously analyzed by Zaremba �2� for bosonic atoms. In this
case w�r�=1, and Eq. �5� reduces to Eq. �14� in �1�.

To further analyze how the correct orthogonality condi-
tion affects the results, we have numerically solved the ei-
genvalue equation for sound propagation in a superfluid
Fermi gas in the BCS and unitary limits, and in the BEC
regime with y=1/kFa=0.25. Our results for the two lowest
frequency modes as functions of q are shown in Figs. 1 and
2. The lowest mode, shown in Fig. 1, is soundlike and has a
phononic dispersion relation at long wavelengths. We ob-
serve that the slope of the dispersion relation, i.e., the sound
velocity, is lower than that found in Ref. �1� and bends down
as q increases. The first excited state, displayed in Fig. 2,
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corresponds to a monopolar compressional mode that for q
=0 is purely radial. Furthermore, its frequency is known ana-
lytically at q=0 �6� as �0=�10/3�� in the BCS and unitary
limits and as �0=2�� in the BEC limit �y→ +��. Figure 2
in the present work is to be compared with Fig. 3 in Ref. �1�,
where the monopolar mode is not correctly depicted. We also
note that the effective mass associated with this mode is also
different from that found by Ghosh and Machida.

To obtain an analytical expression for the sound velocity
u1	�d��q� /dq�q=0, one can use Eq. �13� in Ref. �1� for the
lowest-frequency mode and expand it to first order in q2.
This demonstrates that the off-diagonal terms in M��� do not
enter the calculation of the sound velocity, as pointed out by
Zaremba �2� for bosons. From the definition �5�, one obtains
M00=� / ��+1� and thus

u1 =� �

2� + 2
vF, �6�

with vF=�2�̄ /M and �̄ the chemical potential, in agreement
with our result previously obtained in �3�. This is the sound
velocity that also Ghosh and Machida should have obtained
if they had taken into account the weight function w�r�. Their

improper projection of the eigenvalue equation leads them to
the pathological expression u1=��2−��� /4vF, which pre-
dicts no sound propagation for ��2. The same problem af-
fects the calculation of the effective mass mb for the mono-
pole mode �cf. Eq. �27� in Ref. �1��, which once corrected is

mb =
M��

2�

�2 + 2��3/2�1 + 3��
��1 + � + 2�2�

. �7�

An alternative and more direct procedure to evaluate the
sound velocity is the one that we have outlined in �3�. The
spatial dependence is eliminated from Eq. �1� above by inte-
grating in the �x ,y� plane. This yields the dispersion relation

��q� = q
 1

M
� n0���/�n�n=n0

�nqd2r��� �nqd2r��1/2

�8�

for a perturbation with �nqd2r��0. Hence, the calculation
of the sound velocity requires only the expression of �nq
calculated at q=0. By using �nq=0= ���� /�n�n=n0

�−1, we ob-
tain

u1 = 
 1

M
� n0d2r��� ����/�n�n=n0

�−1d2r��1/2

. �9�

This expression provides the exact velocity of sound propa-
gation in cylindrically confined hydrodynamic gases with
EOS ��n�, and for ��n��n� leads to Eq. �6�.
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FIG. 2. The same as in Fig. 1 for the monopole mode.FIG. 1. Dispersion relation ��q� �in units of ��� for the lowest-
frequency �sound� mode as a function of qR with R the radius of the
fermion density profile in the BCS limit. The dash-dotted, dashed,
and solid lines correspond to fermions in the BCS and unitary lim-
its, and in the BEC regime with y=0.25, respectively.
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