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Abstract

We investigateV-point string scattering amplitudes AdSy space. Based on recent observations on the
solutions of KZ and BPZ-type differential equations, we discuss how to describe the string thaolgin
as a marginal deformation of a (flat) linear dilaton background. This representation resembles the called
“discrete light-cone Liouville” realization as well as the FZZ dual description in terms of the sine-Liouville
field theory. Consequently, the connection and differences between those and this realization are discussed.
The free field representation presented here permits to understand the relation between correlators in both
Liouville and WZNW theories in a very simple way. Within this framework, we discuss the spectrum and
interactions of strings in Lorentziahd .
0 2006 Published by Elsevier B.V.

1. Introduction

In this paper we study a representation of Mgooint correlation functions describing string
scattering amplitudes in Euclide&uSs. The tree-level amplitudes of strings in this space were
extensively studied in the literature and received renewed attention since the formulation of the
AdS/CFT correspondence. The first exact computation of three and two-point functions was
done in Refs[1,2] and was subsequently extended and studied in rigorous detail in[Be5§.
by Teschner. The interaction processes of winding string states were studied6atteafter
Maldacena and Ooguri proposed the inclusion of those states in the spectrum of thg&heory
Besides, several formalisms yielding consistent results were shown to be useful tools for studying
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the correlators in this non-compact CPBF14] however, the most fruitful method for analyzing

the functional properties of these observables was, so far, the employing of the analogies exist-
ing between this CFT and its relative: the Liouville field theory. Though our understanding of
correlation functions in Euclidean and LorentziddSs was substantially increasing in the last
years, several features remain still as open questions: The factorization properties of the generic
four-point function and the closeness of the operator product expansion of unitary states are,
perhaps, the most important puzzles from the viewpoint of the applications to string theory. The
motivation of this work is that of studying some aspects ofhpoint functions in this CFT for
genericN. The general expression for the caée- 3 is not known, but a new insight about its
functional form appeared recently due to the discovery of a very direct relation between these
and analogous correlators in Liouville field the¢iyp—18] Although the general expression of

the N-point function is not known even for the Liouville field theory, such a connection between
correlators in both theories still represents a great opportunity for exploring some aspects of their
analytic properties. We will show here how the existence of such a connection leads to find a
way of representing the worldsheet theoryAafS strings in terms of a tachyonic linear dilaton
background. This is an important observation due to the fact that, precisely, the representation of
the SL(2, R)x/ U (1) WZNW in terms of a tachyonic background (that is believed to be dual of

it) turned out to be a useful method for describing the physics of strings in the black hole back-
ground; see for instand&0,11,21,29] Among those results obtained in the last years by means

of the employing of such connection between curved and linear-dilaton tachyonic backgrounds,
the one we find most important is the construction of a matrix model for the 2D black hole geom-
etry [19,20] which clearly shows the relevance that the study of this kind of duality has within
the context of string theory. Here, we are interested in establishing a precise connection between
string theory inAdS and a similar tachyonic linear dilaton background; and we describe it in
the next section. To be precise, the paper is organized as follows: in S2atierdiscuss how

the Ribault formula, connecting correlators in both WZNW and Liouville CFTs, leads to a free
field realization of the worldsheet theory éwS. Then, it turns out that this realization is a
Liouville-like model on the worldsheet and can be thought of as a dual description as well. We
consequently analyze the relation with other approaches and the CFT formulation carefully. In
Section3 we comment on the spectrum and interactions of strings in Lorenfai&and make

some remarks on the integral representation of the free field formulation we propose. In partic-
ular, we study the factorization limit of four-point functions in both WZNW and sine-Liouville
model and focus our attention on the scattering processes that violate the winding number con-
servation inAdS. We show that intermediate states with both winding nunaberO andw = 1

arise in the internal channels of four-point amplitudes. We also discuss how the upper bound
for the violation of total winding conservation iN-point correlators naturally appears in this
context.

2. Thelinear dilaton background
2.1. The Ribault=Teschner formula

Recently, a new formula connecting correlators in bBt®, C),/SU(2) WZNW and Liou-
ville conformal theories was discovered by Teschner and Rilps6ilt who studied an improved
version of a previous result due to Stoyanov§ky]. In Ref.[17], Ribault extended the result
of [16] by achieving to write down a formula connecting tNepoint correlation functions in
EuclideanAdS string theory and certain subset &f-point functions in Liouville field theory,
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where the relation betweeN and M turns out to be determined by the winding number of
the string states involved in the correlatorssﬂfm ;7 (2) represents the vertex operators in the

WZNW model creating string states belonging to the flowed representaucmszpj X sI(Z)k
affine algebra, and/, (z) represents the vertex operators of the quantum Liouville theory with

cosmological termue¥2¢@  then the Ribault formula reads

N
< 1_[ (pj,-,m,-,rﬁ,- (Zi)>
i=1

SL2)

M
=Nk(j1,.-~,jN;m1,...,mN)l_[/dzwrFk(Zl,-..,ZN;wl,-n,wM)

N M
x <]‘[Va,<z1)1"[v_%(wr>> : (1)
=1 r=1 ’ L

where the normalization factor is given by
2713_2Nb N ck'(m; — ji)
Ne(j1, ..., JN; M1, ..., M :—Tr b2 2
k(10 i ma N) M2 ’ E_F(1+Jt_m) )
while thez-dependent function is

Fk (Zl’ AR ) ZN; wl’ AR ) wM)
N — .
H1<r<l |Zr _ Zl|k 2(my+my+w,wik | 2+wym+wymy)

= M kTN M _
Hl<r<l |w’" - U)[| kHt:l Hr:l |w" - Zf|k me

H11V< e Zl)mrerl*ﬁlr*lﬁﬁwl(mr*nﬁr)err(MI*"_lz)
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— - 3)
Hfl.w<r<l(wr — )M
The parameteb of the Liouville theory is related to the Kac—Moody levethrough
b 2=k-2, 4)

while the quantum numbers of the states of both conformal models are also related each other in
a simple way; namely

a;=bji+b+b"%/2, i={1,2,...,N}. (5)

The factorey in (2) is ak-dependent {-independent) normalization; s€€/]. Furthermore, the
following constraints also hold

N N k

D omi=) i=5(N—M=2), (6)
i=1 i=1

Za)izM—i-Z—N, (7)

s=—b" lZa,—}-b M o 1407 2 (8)



212 G. Giribet / Nuclear Physics B 737 (2006) 209-235

In (8), the integer number refers to the amount of screening operat@$z) = Me‘@"ﬂ@ to

be included in Liouville correlators in order to get a non vanishing result. The whole amount
of vertex operators involved in the r.h.s. @), as mentioned, is given in terms of the winding
numbers of theA\dSs strings; namely

N

Y wi=M+2-N. (9)

i=1
This allows for the possibility of describing scattering amplitudes that, in principle, violate the
winding number conservation.

Notice that, according t¢4), the central charge of the Liouville theory in the r.h.s(Dfis

given byc = 1+ 602 with Q = b+ b1, while the central charge of the leveM/ZNW model
isc=3+6b2=3+ &. Then, if one is interested in interpreting the relat{@has stating
the equivalence between a pair of conformal models (and we do have such intention), both cen-
tral charges should be made to coincide (presumably by considering an additional internal CFT
supplementing the Liouville action) and, besides, the overall fatar1, ..., zy; w1, ..., wy)
should be suitable to be interpreted as arising from the Wick contractions in the OPE of such
internal theory in the r.h.s. Indeed, the aim of this note is that of demonstrating that Ribault for-
mula (1) can be actually thought of as a realization of the worldsheet conformal thedgyf
strings in terms of free fields. To be more precise: in the next section we explicitly construct a
free field representation of tte(2); WZNW model in terms of a product of CFTs with the form

Liouville x U (1) x time, (10)

where the factotimerefers to a time-like free boson while tli&(1) corresponds to a field with
non-trivial background charge (see below for details). Within this framework, the Ribault formula
is better understood and, since it is rigorously deduced from the correspondence between KZ and
BPZ differential equationfl 5], enables us to prove the equivalence between the worldsheet CFT
of AdS strings and a (tachyonic) linear dilaton background. The realization we propose here
turns out to be reminiscent of the quoted FZZ conjectured duality and, besides, is closely related
to the discrete light-cone Liouville approaf2?] as we will demonstrate in Sectic We will
also show the connection with the Wakimoto free field representation in detail and discuss the
computation of WZNW correlation functions within this framework. Such correlators actually
correspond to the scattering amplitudes of winding strings irAth® space.

In order to avoid redundant introductions, we will employ the standard notation for describing
both WZNW and Liouville conformal models and refer to the bibliography for details of the
nomenclature and conventions.

2.2. The conformal field theory

Here, we attempt to construct a CFT theory with the property of realizing the right-hand side
of the relation(1). This CFT will take the forn{10), with the Liouville CFT as a particular factor.
The first step for constructing such realization is supplementing the Liouville action with a pair
of additional bosonic field& °(z) and X 1(z) with time-like and space-like signature respectively.
These fields have correlators

(p(za)e(zp)) = (X (za) X (2)) = —(X°(20) XO(20)) = —210G| 24 — 2p].



G. Giribet / Nuclear Physics B 737 (2006) 209-235 213

Moreover, we will demand that fiel&1(z) couples to the worldsheet curvature generating a
linear dilaton term in thé/ (1) direction. In terms of the Liouville field and its new partners the
“free part” of the action reads

S = % / d%z (—09dp + ORp + pne¥?? + 9x% X% — 9x19X 1 + iagRXY), (11)
where the first three terms correspond to the Liouville action, @itk » + b=, and the last
term represents a second “background charge” wite= —v/k. On the other hand, a marginal
deformation has to be also included in order to fully represent the r.h(%).dfhis is due to the
presence of th&/ additional integrated vertex operator§2ib (w) which, in our description, turn
out to correspond to “screening operators”. Besides, the arising of powars 6fz) in (3) has to
be realized as well. Indeed, if we consider a deformation of a¢libhgiven by the introduction
of the marginal term

/dZZ Paux(2),
i L 4qx? _ k=2 CJkyl
Pau2) = V_1 () x V22" YO oo oV B3O o (12)
b
then both the factoFy (z1, ..., zy; w1, ..., wy) and theM insertions of operators

/dzw V_z_lb(w), Ve(w) = V20w o h.c,

naturally arise in(1). It is easy to verify thatb () is a (1, 1)-operator with respect to the
CFT described by actiofiL1) and stands in the correlators (i.e., a bunch of them) to screen the

background chargep (and to help operatonzsﬁ‘/’@ in the task of screening the char@g. The
factor% in (1) is also consistent with the Coulomb gas-like realization of the correlators due to
the multiplicity of permutation of thé/ screening to be inserted. Furthermore, the conservation
laws

1
Zai—2—bM+bs=Q, (13)

N k N k

> (it o) = 3o (s + 5or ) =0 (14)
N

> wi=M+2-N, (15)
i=1

that are necessary for the correlators to be non-vanishing, agree with those conditions coming
from the integration over the zero-mode of fiejls), X%(z) andX*(z). In terms of the quantum
numbersj; andk Eq. (13) reads

N k—2
DoJiAN4s =145 (N —M=2)=0. (16)
i=1
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From (15) we conclude that, in order to conserve the total winding numbéw® space, we
have to consider the particular ca#e= N — 2 and, consequently,

N

Y ji+N+s=1 (17)

i=1
This leads to the configuration studied[ir6]. Operatord,yx(z) arises in the action of the CFT
as being coupled by a constantc,, according to the KPZ scaling manifested in EL). Thus,
¢ controls the scale where the Liouville potentjea(fﬁb‘/’@ competes with the screening term

e—\/gw(z)H\/gX(z).

By using the coordinates(z), X°(z) andX1(z), the vertex operators representing the winding
string states iMdS would be given by the following expression (¢48))

w — CkI (”l ]) _ i\/g(m k)Xl(z) i\/z(m Iiw)Xo(z)
(2% -(z, = TV R xeVk 2 k 2 Xh.C., 18
j,m,m(Z Z) F(j ] _) /+kk7/§ (Z Z) ( )
where h.c. stands for the anti-holon OrphiC contribution. The normaliz%ﬁ#ﬁ—' ;]’)h) is reqt lired

to generate the:-dependent overall factaVy (j1, ..., jy;m1, ..., my). Besides, notice that op-
eratorg(18) have conformal dimension

hea@—a i (Y Hm KY Z 2 k)
et0-ot(nE) i g) - F (o)

JG+D k 5
_ — e — 1
P mw — 40 (29)
which precisely coincides with the mass-shell conditions for string stattd$ se€[8]. Then,
the full theory turns out to be realized by the action

k-1 '\/ZRxl
= _l 5
p NZ R Y
N N e +Me\/k%z<ﬂ> (20)
Ck

and corresponds to the following stress tensor

1 _ _ _
S=— [ d% <ax°ax° — XXt — 8¢dg +

1 1 k 1
T(z) = E(axo(z))2 e e i\@ale(z) - E(a<p(z))2

2
———3%(2). 21
t G0 Y@ (21)
Hence, including the contributions of both fiel&#8(z) andX1(z), the central charge now results
6
c=c¢+ch,X1:1+6Q2+2—6k=3+m, (22)

and this exactly coincide/s_\with trle\central charge of $€2, R);, WZNW model. Since the
theory actually presentssd(2), x sl(2), symmetry, we can represent that algebra by means of
the fields introduces above; namely

k [k —2 —i/2(X%)—(k—1)x1 2=2)
J+(Z)= (l\/;axl(z)+ > 8(p(Z))€ l\/;(x (@)= (k=1)X*(2))+v/2(k Z)W(Z)’
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7 (z)_(\f(k 30X (z)+,/ 2 2k - 1)8go(z))

f (XO(2)— (k—1) X1 (2)) — /20 = 0@

J3) = i\/g 3X°(2) (23)

and their anti-holomorphic analogues. These currents realize the appropriate OPE; namely

Pt w) ==+ JEw) +---, (24)
(z—w)

P Bw=——" 4 (25)
(z—w)

T — K2 3

T@ITW = s = ey ) (26)

where the dots-“ -” represent regular terms in the short distance expansion. This means that the
Fourier modeg//, defined as

1
=5 pdiz =nya(z) (27)

with a = {3, +, —}, satisfy thesl(2); affine Kac—Moody algebra, namely

[‘In > Jngr] = 2J113+m +nk5n,—m7
[‘]113’ ‘]:t] :l:‘])iim’

EHE —ngsn,_m.
Then, our free field realization is now complete, and it enables to understand the Ribault for-
mula(1) in a natural way; namely: as a simple realizatioAd&s string theory in terms of a linear
dilaton background with tachyon-type interactions representgd liy-exponential field$12).
Moreover, due to the closed relation between the non-ligearodel in bothAdS and in 2D

black hole, this realization turns out to be reminiscent of the FZZ duality. In the next section
we discuss this feature as well as the relation with other approaches based on linear dilaton de-
scription. It is worth mentioning that other interesting relations between two-dimensional CFTs
and the theory With;I/@)k symmetry can be found in the literature. One of these, which in our
opinion deserves particular attention, is the one presented ifZ3f.where it is shown how

to add appropriate ghost fields to an arbitrary CFT and we use them to constrs@)@@ur—

rents. It would be interesting to understand whether there exists a relation between our free field
realization and such kind of embedding.

2.3. Free field representation

Here, as mentioned, we address the problem of establishing a connection between the free
field realization presented above and those formalisms that, following analogous lines, were
employed in the literature to represent string theonAdss. For instance, a natural question
arises as to whether is a clear connection between the realization we presented here and the
guoted Wakimoto free field representation of 8i€), current algebra. But, before analyzing
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such a relation, we find convenient to comment on a second approach, called the discrete light-
cone Liouville theory.

In Ref.[22], Hikida, Hosomichi and Sugawara “demonstrate(d) that string theonA(s
background) can be reformulated as a string theory defined on a linear dilaton background”. Our
aim here is to show that the “approach of free field realizatiorf28f is related to ours in a very
simple way which, basically, corresponds to perforrty @) transformation on the fields and
replace the marginal deformation in the action. Namely, let us define new coordinates by means
of the rotation

p(2) =1 —ke@) +ivkk—2)X), (28)
Yi2) = ivk(k —2¢(2) — (1- k) X1(2) (29)

and simply rename

Yoz = X%3). (30)

This rotates the background charge as

Qo . \/E P S
ﬁw(z) i 2X (z) = mp(z)- (31)

Hence, the dilaton field only depends on the new coordipdte and the theory becomes
strongly coupled in the large(z) region. In these coordinates, the curref®3) take the usual
form that appears in the standard bosonization of parafermions; namely

JF () = (—i\/ga Yl £,/ k;zzap (Z)>e?i\/g(Y°(z)+Yl(z)), (32)

J3() = i\/g 3Y%(2). (33)

Then we find that the Sugawara stress tensor takes the form

8%0(2) — %(8Y1<z>)2 2 (ev0@)2 (34)

1
T(2)=—(0p())° - 5

1
2 2k —2)

which precisely corresponds to the free field realization discussed inZ22fIn that paper, the
interaction term to be added to the CE3R)in order to fully describe the non-linearmodel on
AdS was given by the€1, 1)-operator

_ - .
aYLl(z)aY,%(z)g‘\/;m,z) .

instead ofd,,x(z) in (12). It is important mentioning that the action containing the interaction
term(35)and its duality to thevV = 2 Liouville (and sine-Liouville eventually) was also observed
in Ref.[24] and further clarified in Ref25], where its connection to tH&(2, R);/ U (1) WZNW
model is discussed. This was also studief2®] as a particular screening charge of the model.
Furthermore, the new coordinaté28)—(29)are also useful to discuss another realization,
based on the FZZ duality. In fact, in terms of the fields), Y1(z) andY°(z), the sine-Liouville
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theory is obtained by replacing the graviton-like marginal deformg®&hby the operator
e—J%?p&)G;/guf@»JQQ»4_g¢@aﬁ&»4%@»)
k=2
=2¢7V 7 "D coq\/k/2(YE(2) - YA(2))), (36)

whereYLl(z) andY ,%(Z) refer to the left and right modes of the field respectively (68)). It is
worth emphasizing thg85) and (36yepresent two different marginal deformations of the same
linear dilaton backgrounds which, besides, preservest®, x sl(2), symmetry, as it can be
verified from the OPE with curren{&3).

At this point, we are able to show the explicit connection with the Wakimoto free field repre-
sentation as well. It follows from a (de)bosonization procedure. In fact, the Wakimoto free fields
appear once we define

=@ y@=e VIO, @7

k—2
$(2)=p()+i,/ T(Y%) + 7). (38)

This leads to find the standard representation for the stress-tensor, namely

1
T(z) = —E(aqs(z))z - 3% (2) — B(2)y (2) (39)

1
V2(k =2)
which, of course, corresponds to the Sugawara construction by empl@8hdregarding the
interaction term (written in this language) the author$2®] showed tha{35) agrees with the
usual form

BB V22O

for the screening operator of the non-lineamodel onAdS [1,6], up to a total derivative of the

_ [z
zero-dimension operater V72"

It is also worth pointing out that the relation between both marginal deformaf8%)sand
(36) is similar to the one existing between the “standard” and the “conjugate” representations of
theSL(2, R);/U (1) x U (1) WZNW model discussed in Refi§,27,28] While (36)is associated
to the representatior@;jm,,;,(z) employed in[2], the “screening” of the fornf35) corresponds

to the conjugate representatio@?mﬁ(z) which are associated to the discrete states of the 2D
black hol€g[27].

3. String theory on AdSg x N
3.1. The spectrum of the free theory

The string theory on EuclideafdS is described by th&L(2, C);/SU(2) WZNW model,
while the Lorentzian version is constructed in terms of its analytic extension tSlit¥ R),
WZNW, which is certainly less understood in what respects to the formal aspects. Within the
context of string theory, the Kac—Moody levelof the WZNW theory turns out to correspond
to the quotient between the typical string length sdaland the “AdS radius?l ~ (—A)~1/?,
namelyk ~ lz/lsz. Consequentlyk controls the coupling of the theory leading, in the lakge
limit, to both classical and flat limit.
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The Hilbert space of this theory is then given in terms of certain representati8h&oH R ), x
SL(2, R);. Then, the string states are described by veqmﬁn’ﬁl) which are defined by acting
with the vertex operator®® - (z) on theSL(2, R),-invariant vacuumO); namely

j.m,m

ZIE)nOCDfth(Z”O) = }cb;jm,n_l)'

In order to define the string theory precisely, it is necessary to identify which is the subset of
representations that have to be taken into account. Such a subset has to satisfy several require-
ments: In the case of the free theory these requirements are associated to the normalizability
and unitarity of the string states. At the level of the interacting theory, additional properties are
requested, as the closeness of the fusion rules, the factorization propentigsoirft functions,
etc.

Even in the case of the free string theory, the fact of considering non-compact curved back-
grounds is not trivial at all. The main obstacle in constructing the space of states is the fact that,
unlike what happens in flat space, in curved space the Virasoro constraints are not enough to de-
couple the negative-norm string states. Then, in the early attempts for constructing a consistent
string theory inAdS;, additional ad hoc constraints were imposed on the vectors &lit# R)
representations. Usually, the vectorssaf2, R) representations are labeled by a pair of indites
andm, and such additional constraints, demanded as sufficient conditions for unitarity, implied
an upper bound for the indeiof certain representations (namely, the discrete ones and conse-
quently for the mass spectrum). The modern approaches to the “negative norm states problem”
include such a kind of constraint as well, although it does not implies a bound on the mass spec-
trum as the old versions do; spg39-42]for details. The mentioned upper bound for the ingex
of discrete representations, often called “unitarity bound”, reads

1—2k <j< —%. (40)
In the case of EuclideaAdSs, the spectrum of string theory is given by the continuous series
of SL(2, C), parameterized by the valugs= —% +iA with A € R and by realn. Besides, the case
of string theory in Lorentzial\dS; is richer and its spectrum is composed by states belonging
to both continuoug;"* and discretéDj.”’jE series. The continuous seri€s” have states with
j=—3+irwitha e Randm —a € Z, witha €[0,1) € R (as inSL(2, C), obviously). On the
other hand, the states of discrete representami‘hg satisfyj = £m —n with n € Zx9. So, the
next step is explaining the index In order to fuﬁy parameterize the spectrumAdS we have
to introduce the “flowed” operatori,‘; (a € {3, —, +}), which are defined through the spectral
flow automorphism

- k

JB B=U3 4 580, (41)

Jrit - jni = Jrftzl:a) (42)
acting of the originasl(2); generatord,. Then, stategp?’ ) belonging to the discrete repre-
sentation@f"" are those obeying

JE| %, 5) = (£ —m)| @211 5) (43)

0 j.m,m J Jj.mxlm/
jg|¢fm,rh) = m|(p;‘jm,ﬁt> (44)
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and being annihilated by the positive modes, namely

J“|¢ 0, n>0 (45)

and analogously for the anti-holomorphic modes. Notice that statesmvith+; represent
highest (respectively lowest) weight states. On the other hand, primary states of the continu-
ous representationd”“ turn out to be annihilated by all the positive modes, ag), though
for any zero-mode/. The excited states in the spectrum are defined by acting with the negative
modesJ¢, (n € Z-0) on the Kac—Moody prlmar|e|@“’ ;) these negative modes play the role
of creatlon operators (i.e., creating the string ex0|tat|on) The “flowed states” (hamely those be-
ing primary vectors with respect to thﬁ’ defined with|w| > 1) are not primary with respect to
thesl(2), algebra generated by, and this is clearly because @f2). However, highest weight
states in the serieB™* are identified with lowest weight statesﬁ[ k2 which means that
spectral flow withjw| = 1 is closed among certain subset of Kac—Moody primaries.

The states belonging to discrete representations have a discrete energy spectrum and represel
the guantum version of those string states that are confined in the ceAtl&apace; these are
called “short strings” and are closely related to the states that are confined close to the tip in the
2D Euclidean black hole geometry. On the other hand, the states of the continuous representations
describe massive “long strings” that can escape to the infinity because of the coupling with the
NS—NS field. For the long strings, the quantum numbean be actually thought of as a winding
number asymptotically.

The vertex operators of the theory S x N are then given in terms of th8L(2, R);
representations and take the form

DY g (@) = P71 (2) x Vg (2), (46)

whereV, (z) represents the vertex operator on the “internal” CFT defined/ofThe Virasoro
constraintLg = 1 then implies that the conformal dimension of the fields satisfies
i(j+1 k
hijmg) = —kaj —mo — sz +hn(@) =1, (47)

whereh s (q) is the conformal dimension of, (z). This agrees with the functional form we
obtained in Sectior2. Regarding the value df, this is given byk = 2(26 — cpr) /(23 — cpr),
wherecy is the central charge ok

Besides those we commented above, there are more unitary representations which, in prin-
ciple, could be also included in the definition of the Hilbert space: For instance, we have the
complementary serie§) with —1 < j < —3, -3 — j <|o — 3| andm — « € Z. It is usually
assumed that these representations are not explicitly (but implicitly) present in the space of states
since the continuous and discrete series form a complete basis of the square integrable functions
onAdS (and thus all additional states would be already taken into account as certain linear com-
binations of states |rD “ andC; ). However, this argument is valid in the largeregime,
where the semi- cIaSS|caI arguments based on the differential functions on the space make sense
For instance, in order to conclude that the complementary series are to be excluded it would be
necessary to show that, in addition, such states do not decouple when taking the liarge
in the operator product expansion: If those state do not decouple then it would be necessary to
exclude them in the definition of the Hilbert space. Conversely, if their do decouple in the semi-
classical limit, then the argumentation in terms of the composition of the Hilbert space in the
large k limit is not enough for excluding them ab initio and they could be actually necessary.
However, there exists more evidence in favour of the idea that the whole spectrum of the theory

]mm>
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is constructed just by the continuous and discrete series; this is suggested by the modular invari-
ance of the one-loop partition function in thermfedS (studied in Ref[36]) and the fact that
only long strings and short strings do appear in the spectrum.

Besides, other states, having momentgim —((n + 1)(k — 2) 4+ 1)/2 with n € Z>9, also
appear in the theory. These are certainly non-perturbative states since, for heavy states, they
have masses of the ordgrand, hence, of the order of the string tension. Sih@antrols the
semi-classical limit, these states would decouple from the perturbative spectrunt \gbes to
infinity. These states are associate to worldsheet instantons and the semi-classical interpretation
of them relates their presence with the emergence of non-local effects in the dual CFT on the
boundary (according to the AAS/CFT correspondence).

3.2. Discrete light-cone Liouville theory

Now, we discuss the indices m andw of SL(2, R); representation in the context of the free
field description.
In our realization we were considering operators of the form

_ 1,y_; /2 k 0
P (z)cxe’/ Z(j+5% )w(z)—&-l[(m 5)X7(2) l\/;(m+2w)X (Z)’ (48)

Jj.m,m

which can be actually thought of as operators on the proﬁ%%’% x time, where the time-like

U (1) is parameterized by the bosonic fiéfd(z). The part of the vertex describing the theory on
the coset has conformal dimension

jG+D  m?
iy =———"+—. 49
(jom) —2 T % (49)
Then, we notice that this formula remains invariant under the involution
J— —jk=1) —mk—2)—k/2, (50)
m— jk+mk—1)+k/2 (51)

In order to extend this symmetry to the whole theory (i.e., to the theory on the prﬁ%%gfi X
U (1)) we have to consider a transformation on the spectral flow parametemwell; namely

Performing transformatio(50)—(52)on (48), we get
Vimiw(@) = oV it me=2)0 @i Fm =) X2 @) =i Fon+ 500 X000 (53)

and, expressed in terms of fieldsz), Y°(z) andY1(z), these operators become

1 0
Vze@-ifnro-iffmtbor®e (54)

which are precisely those that were considered in the discrete light-cone Liouville approach to
string theory inAdS; discussed ifi22] (up to time-reversion’(z) — —¥%(z)). In Ref.[22] the
authors proposed that the winding number of string&dSs can be seen as a quantized momen-
tum in the direction¥* — Y% /+/2 which, according to the discrete light-cone prescription, turns
out to be compactified with periodi2/2/ k; namely

jmmw_e

4
YO2) — Y(z) = Y%@) - Yiz) + % nez. (55)
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Within this framework, the indexw corresponds to the topological winding along the compact
light-like direction, and in terms of the Liouville field(z) this direction reads

X%z) — x1(z) - k(i\/ %Zgo(z) - Xl(z)>. (56)

Now, the question is: what do the quantum numbgendm mean in terms of this free field
representation? To understand this, let us comment oSt R); representations again: as
already mentioned, the principal continuous seﬁ%ﬁ’ correspond tg = —% +ilwithieR
and, througl{50), this results in the new valugs= — 3 + i —m(k — 2) with € R, which only
seem to belong to the continuous series i 0. Besides(51) implies that, after performing the
changg51), m turns out to be a non-real number. Then, the relation betérand (53kannot
be thought of as a simple identification between states of different continuous representations but
it does correspond to different free field realizations (at least in what respects to the continuous
seriesC; ). On the other hand, regarding the discrete representations, it is worth mentioning
that the quantity; + m remains invariant under the involutiqp0)—(51) though it is not the
case for the differencg — m. Unlike the states of continuous representations, transformation
(50)-(52)is closed among certain subset of states of discrete representations. This is because
such transformation maps states of the discrete series Wjth-22) € Z among themselves.
In particular, the case: + j = 0 corresponds to the well-known identification between discrete
seriesD*“=0 andD¥;%> %! since in that casg0)—(52)reduce toj — —k/2 — j, m — k/2 —
m=k/2— j, o — —1— w. The relation between quantum numbers manifeste®Gby and
(51) permits to visualize the relation between the vertex considered in our construction and those
of Ref.[22] and consequently relate the free field realizaii@d) with the one of the discrete
light-cone approach. The relation between both is a kind of “twisting” and is closely related to
the representations studied[RV]. Other difference regards the interaction: unlike the free field
representation based on acti@®), the one of22] comes from a field redefinition (through a
bosonization and 8Q(1, 2) transformation after of it) of the non-linearmodel onAdS. Thus,
the action employed in the discrete light-cone realizatioAdfi strings involves the interaction
term (35). This makes an important difference when trying to compute correlation functions.
In [22] it was discussed how the interaction tef®®) plays an important role for the emergence
of short string states in the spectrum. Within such framework, such states are an effect due to the
interaction term.

In the following subsections we study what happens when the interactions are taken into
account.

3.3. The spectrum of the interacting theory

When interactions are considered, additional restrictions to those imposed for unitarity on the
free spectrum may appear. This is because, besides the requirement of normalizability and uni-
tarity, it is necessary to guarantee that the fusion rules result closed among the unitary spectrum.
Otherwise, it could be possible to produce negative norm states by scattering processes involving
unitarity incoming states. This problem was address§d, 86—38] After integrating thev-point
correlators over the worldsheet insertiapN € {1, 2, ..., N}), the pole structure of scattering
amplitudes and the factorization properties of them could also result in additional constraints on
the external (incoming and outgoing) states, and in some examples such constraints can be ever
more restrictive than those required for unitarity. For instance, in the case of string théa$in
the N-point scattering amplitudes are known to be well defined only if the external momenta of
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the states involved in the process satisfy

N
Y ja>3-N-—k. (57)

This restriction is stronger than the unitarity boud®) imposed on each state. In R§f], the
condition (57) was analyzed from the viewpoint of the AAS/CFT correspondence and it was
concluded that only those correlators satisfying such constraint would have a clear interpretation
in terms of a local CFT on the boundary.

We explicitly compute the interactions in the next subsection, where we pay particular atten-
tion to the integral representation of correlation functions and its factorization properties.

3.4. Four-point function
Now, we move to the study of the factorization with the attention focused on the role played

by the winding states. Let us begin by considering the integral representation of the four-point
function; namely

4
< l_[ ]a ma mga (Za)>
a=1
7r y,b li[ Fmq — H/dzwl H/dzvr|w1—w2|
el L'(ja+mq + 1

4 4
4 .. ko, . 2 .
x [T 12a — 25l ~2martm) =g Uaivt kit ) T 1—[ l2g — vy| "2 F2Ua+D
a<b a=1r=1
4 2 s 2 K .
x [T [Ttz = wi®™ 5 TT [ Ttor = wil? [ Tor — vl (58)
a=1i=1 r=1i=1 r<t

Actually, this is the Coulomb gas-like representation of the Teschner—Ribault where, for simplic-
ity, we considered the case, = m, (a = 1, 2, 3, 4), while the general case with —m € Z

and generiaV is discussed in the following subsection for the case of sine-Liouville theory in
more detail. Besides, we will consider the case wheig large enough (though finite) to al-

low configurations of the form-2j, € N within the unitarity bound40). This case allows for

the correlators to be “resonant” in the sense that can be realized by using an integer numbers
of screening charges since we assume here the particular%@ég1 Ja € Z-0. In (58), the
inserting pointsw; refer to those where the screenings of the kingx(w) are inserted, while

the pointsv, are the locations of the screeningg(v).

Now, let us consider the coincidence limit of a pair of external states (let ugssay z1
renamingzy = 0 andzy = €). This enables to study the limit where the four-point amplitude
factorizes into a pair of three-point sub-amplitudes, and the mass-shell conditions of the inter-
mediate states that are interchanged between both subprocesses arise as poles developed in the
coincidence limit — 0. In order to analyze this factorization limit, we should also sum over the
different ways of taking the limit and, in principle, takeperators of the fornv; (v) and p op-
erators of the forn®,,x(w) going toz; = 0 as well (with all the possibleéandp; 0 < 5§ < s and
0 < p < 2 since those are the total amount of screening operators that are available). To parame-
terize the limit, it is convenient to rename the inserting points.as v, /z> for those withr < §
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andw; = w; /z2 for those withi < p. By explicitly taking the limitz, — z1 = 0 and collecting

the powers ofz,| we find that the four-point correlat@b8) factorizes into two pieces: a three-

point correlator in the left-hand side containipgscreeningsb,yx(w) ands screenings/, (v),

and a second three-point function in the right-hand side which is composed ysZreenings
Paux(w) ands — § screenings of the kindf, (v). The intermediate states, which are interchanged

in the channels of the four-point string scattering process, satisfy the mass-shell conditions that
can be read of as pole conditions of the propagator; these pole conditions are extracted from the
divergences after integrating ovﬁd2z2. Hence, as mentioned, such mass-shell conditions can
be simply read from the exact value of the expongnof |z2|%"7; and this power turns out to be

np=(p—(m1+m2)+p(jr+j2)+8p2+(p—-Ds+p

+ szz (jljz + g(jl +i1+D+50G1+j2+2) — %5(5 - 1))- (59)
The casep = 1 corresponds to the factorization (&8) in terms of a pair of three-point sub-
amplitudes conserving (each of them and the total one) the winding number. This is because
the N-point Liouville amplitudes withV — 2 additional operator®,,x(w) represent WZNW
amplitudes conservin@f}’=1 wg. On the other hand, the cage= 0 corresponds to the case
where the conserving winding correlat&8) splits into the sum of a pair of violating winding
correlators. This is because the three-point function in the left-hand side has no screening of the
kind @4,x(v) (a deficit) while the three-point function of the right-hand side has two of them (an
excess).

In the casep = 1, the factorz|?"» standing in the limit> = ¢ — 0 develops poles located
atny = —n with n € Z>¢. This conditions can be written in the following convenient way

JG+D
k—2

wheres ={0, 1, 2, ..., s}. This precisely agrees with the mass-shell condition of an intermediate
state belonging to th8L(2, R); representation with quantum numbers

hj= +n=1 j=j1i+j2+5+1=0, (60)

m=m1+my, w=0.

Analogously, the poles arising in the cage= 0 are located atg = —n and this can also be
written in a similar way; namely

i(j+1 k .. L~
_—l;j—z)_m_ZJrn:l, j=j1+j2+5+5=0, (61)

wherem andw are now given by

bl

hyj=

N

m:ml—i—mz—é, w=1

Again, Eq.(61) represents the mass-shell condition for the intermediate state belonging to the
“flowed” SL(2, R); representations. The cage= 2 is similar and shows that the amplitugis)
factorizes in such a way that the poles arising in the limit where two states of the four coincide can
be naturally interpreted as mass-shell conditions of states of “floB&®, R); representations
with w =0 andw = 1.

The factorization of four-point function was also studied in Réfby using the usuat-basis
(by Fourier transforming im). There, it was shown that the internal channels of the amplitudes
contain contributions of both = 0 andw = 1 winding states for certain processes and this is
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consistent with our result here (see Section ffpffor details). Moreover, it was claimed [id]
that only the four-point functions satisfying the constraint
k+1 k+1

o k1 L k1 62
At 2> 5 Jja+ja> > (62)

present a well behaved factorization limit enabling to interpret the pole structure as corresponding
to physical state contributions in the intermediate channels. In fact, those correlation functions
which do not satisfy(62) receive contributions from poles located at

Jtjit+je+k=—-n, neZgo, (63)

and these are not suitable for natural interpretation. A deeper understanding of the additional
conditions for the factorization iIAdS; is a non-trivial aspect and requires further study indeed.

Now, we will compare the features of the free field representation discussed above with their
analogues for the case of sine-Liouville field theory.

3.5. Relation with sine-Liouville field theory

Now, let us return to the tachyonic-type interaction tgB8) (see Refs[30-35]for related
works on the exact tachyonic backgrounds). One of the most interesting aspect of the relation
betweerAdS string theory and the CFT on linear dilaton backgro(@)is the fact that it looks
very much like the FZZ duality, which associates the 2D black hole (i.e St R);/ U (1)
WZNW model) to the sine-Liouville field theory. Indeed, the realizat{@t) turns out to be
reminiscent of such duality due to the presence of the exponential (tachyonicYtggitz),
being

[k=2 - kyl
Paux(z) = e TP(Z)—H\/;Y @ x h.c. (64)

Operatordgx(z) is actually “a half” of the sine-Liouville interaction term (sé&6) and (65)
below and notice that it has the appropriate exponent). On the other hand, ins@ag(@j,
we could indistinctly include ir(20) a slightly different interaction term; namely: its complex
conjugate®} ,(z). Since the action is quadratic in the figld(z) then there is no reason for fa-
voring a particular sign fot=Y1(z). The conjugate interactiof,(z) would be “the other half”
of the sine-Liouville interaction and differs fromgyx(z) only in the chirality of thel/ (1) charge

i\/gaxl(z). Moreover, such a term would actually be required in order to allow for the viola-

tion of the winding number conservation of the coset theory in a positive an@ﬁp} w; > 0.
Considering both terms together in the action leads to propose the correspondence between the
WZNW model and the sine-Liouvillex{time) CFT througH1) since we could write

Daux(2) + P y(z) = 2e*\/g 7@ codVk/2(YE() + YE®)), (65)

where, againYLl(z) and Y,%(Z) refer to the left and right modes of the field respectively (cf.
(36)). Besides, notice that if botth},(z) and @aux(z) are included in the correlators, then the

“cosmological term’eY2¢(@ is not required anymore and can be excluded without restricting
the generic correlators (i.e., if an analytic extension in the amount of screening chargess
considered; which is usual in the Coulomb gas-type realizatiof2,6f). This is because, in that
case, the conservations laws coming from the integration over the zero-modes of the fields would
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be the following ones

N k-2

Zji—i-N—l—i—T(M_—}—M_):O (s =0), (66)
i=1

N k o k

Z(mi + éa)i) = Z(H_’t, + Ew,-) =0, (67)
i=1 i=1

N

D wi=(M_—My)+2-N, (68)

i=1

whereM and M_ refer to the amount of screening operators of the kingk(z) and @} ,,(z)
to be included when realizing the correlators following the Coulomb gas-like prescription; (cf.
[44] after replacing the notation gs— —1 — j;).

As it is well known, a similar relation between WZNW and sine-Liouville conformal mod-
els was originally conjectured by Fateev, Zamolodchikov and Zamolodchikov in their quoted
unpublished paper, and this is the reason because it is known as the FZZ dualig3]sies
interesting discussions on related subjects). In the context we discussed here, a relation betweer
the non-linears-model onAdS and a sine-Liouville action seems to arise by a constructive
procedure which simply follows from the identifg), rigorously proven ir{16,17] It is worth
emphasizing that, although it seems to be natural from the viewpoint of the symmetry under
» — —w, the inclusion of the tern®} . (z) (i.e., the “other half” of sine-Liouville) in the action
(20) has to be assumed in order to eventually state such connection with the sine-Liouville field
theory. However, the fact that botbyx(z) and®;,,(z) contain the appropriate exponents turns
out to be a suggestive fact. Hence, within this framework, the sine-Liouville field theory can be
seen to arise as a relatively natural free field realization of the associated WZNW theory. In the
following paragraphs we will analyze the correlation functions in sine-Liouville theory in order
to emphasize the similarities existing without free field realizatt8).

Let us begin by considering sine-Liouville model coupled to matter. The action of this CFT is

1 R _ Jks2 -

s=g; [ (07 - S v V' cog R72(vE - V) + v )
(69)

Here, the matter sector is represented by the bosths), whereu € {0,1,2,...,d}. In

Ref. [44] Fukuda and Hosomichi proposed a free field realization of the correlation functions

in this theory by means of the insertion of two different screening opefatord by evalu-

ating a Dotsenko—Fateev type integral representation (we describe this representation in detail

below). The three-point correlators representing processes violating winding number were ex-

plicitly computed by the authors; this was achieved by the insertion of a different number of

both screening charges. Similar integral representations have been discussed in the free field

realization of string theory on EuclideakdS and in the case of two-dimensional black hole

background. However, several differences can be noticed if a detailed comparison of these mod-

els is performed; the role played by the screening charges and the conjugated representations of

the identity operator are examples of these distinctions.

1 The screening operators realize the interaction term of sine-Liouville actiof36pe
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The vertex operators creating primary states from the vacuum of the theory can be written in
terms of the bosonic fields(z) andY*(z) as follows

B (2) = 2@+ BV Q=AY g ¥ o (70)
withi € {0,2,3,4,...,d}. As before, the correlators of the fields are thosé/¢t) bosons in
two-dimensions; hamely

(p(za)p(zp)) = —210G1za — zpl, (V" (za)Y"(2)) = —20""10G |24 — 2| (71)

with n#V = diag{—1,+1,+1,...,+1} and u,v € {0,1,2,...,d}. The conformal dimension

of (70) takes the form

jG+Y  m*  qq
k—2 + k + 2

satisfying the Virasoro constraint; ,, ) = fz(j,,;,,q) =1 as requirement for the string theory.

The quantum numbers parameterizing the spectrum fall within a lattice in the following form

hijmg) =— (72)

p=m+meZ, (73)
w=""cz (74)
and the central charge of the model is given by
6
=d+2+——:. 75
c=d+2+,— (75)

Restrictionc = 26 impliesk = 2(27 — d) /(24— d) and is required to define the string theory as
well.

Now, let us move to the correlation functions and the factorization procedure. As a first step
in our analysis, it is convenient to start by reviewing the integral construction of&8fwhere
a Coulomb gas-type realization was proposed. Actually, the treatment of the sine-Liouville in-
teraction term as a perturbation is as usual in the Feigin—Fuchs realization. The introduction of
the interaction effects can be viewed as the insertion of screening charges into the correlation
functions. In this case, the screening operators are given by

s Sk yloy_vylizy_ k=2
Pi(2) =Pk 4t 2k 0(2) e ) (76)
Then, the interaction term can be written ag¢36);, namely
1
= [0+ o-) (77)
A
Roughly speaking (z) and®_(z) play the role of®@aux(z) and respectivelyp, . (z) in (65).

Accordingly, the Coulomb-gas like prescription, applied to the case of sine-Liouville theory,
implies that the generi®/-point function turns out to be proportional to

N St S— N St S_
~T1 / a2 [ ] / d?u, T f d?v < [T ®imasina. G [ [ @+ ]] Cb—(vz)> (78)
a=1 r=1 =1 a=1 r=1 =1

2 Notice that we are indistinctly using the notatiénto refer to both WZNW and sine-Liouville primaries.
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which is the standard representation for the perturbative analysis of conformal models, where
the expectation value is defined with respect to the free theory (i.e., without the sine-Liouville
interaction term since this is already taken into account due to the presence of the scréenings
Then, by expanding the correlator, we find that this goes like

y 2 N 7M+Zq"qb' Zmamy (= =\ Zigmy
[T/ % [] 1za— 2l %2 7200 (zy — z)) & (2, — Zp) ™
a=1 a<b

St S— N S+
<[] [ 2] [ a2 ] ( [T 120 — ur 2070 2, — )P
r=1 =1 a=1\r=1

S_
X l_[ |Za - U1|2(Ja_ma)(zu - Bl)pa>

=1

s+—1,54 s——1s5_ S— St
x( [T twr—wi ] |vt—vs|21"[1"[|v1—ur|2—2k>. (79)

r<t I<t [=1r=1

The charge symmetry conditions, yielding from the integration over the zero-modes of the fields,
take in this case the form

N
k—2

Zja+1= > (54 +s5-), (80)

a=1

N k

D ma= sy —s0), (81)
2

a=1

Voo ok

Zmaz_(sf_s+)v (82)
2

a=1

N

a=1

It is instructive comparing80) with (16) (after performing the Weyl reflectiopn — —1 — j).
This shows the parallelism between our realization of WZNW correlators and those quantities in
sine-Liouville model.

Now, we are ready to see how the physical state conditions for the intermediate string states
arise from the pole structure of th€-point functions in the factorization limit (in a similar
way as we did it in the previous subsection for the WZNW correlators). In order to realize the
factorization, we take again the coincidence limit for the inserting points of a pair of vertex
operators, e.gz1 — z2. As we did it before, we take the limit 6f screening operators going
to z1 (being 0< § < ), i.e., by splitting the set of screening operators in two different sectors
of integration: those whose inserting points are taken as going &md those whose inserting
points remain fixed in the worldsheet. Then, in order to take this limit conveniently, let us define
the following change of variables

E=271—172, (84)

exp=z1— Uy, r<Sq, (85)
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evi=z1—v, [<5_. (86)

By replacing this in expressiqi79), we obtain that the (integrated)-point correlators turns out
to be proportional to

N-1,N

4;
]_[/dzza [T 120 — 2l 8+ Emames2iian 7, — 7, FGhain—moms)
a<b

S+ S
X Z Z |8|S+(S++1)+S_(S_+1)+(272k)s+s_C(s+’§+)C(S_’§_)

54=05_=0

§+ S+
xn/dzx,n/dzyl I1 /dzu, 1‘[ /d2v1|W(e 2o ttrs )|

r=1 r=s;+1

n S+ S—
xH( [ lza—w P90 G =iy ] |za—v,|2<fﬂ—ma><za—az)l’a>

a=1 \r=5;+1 1=5_+1

T 5_-15_ 5. 5s

2 2 2—2k

< [T e=x® T e=wPITI T — 1

r<t I<t I=1r=1

S4,54—1 s,,s,—l s

2 2 2k

< T1 wewk TT weul T T wewi (®7)

t>r=51+1 t>l=§,+l I=5_+1r=54+1

where we defined the function

W (&3 2ar ur, v)|°

N S‘~+
=TT T 1ze = 21+ e Pt 2, — 21+ 55,) P
a=1r=1
E_ :S:+ S+
x [[lza =21+ ey ™G —zi+ e [ [ [] lea—exr —wl?
=1 r=11=5,41
S— S— S— S+
2 2—2k
[T IT lea—ewi—wl® ] [Tler—vi—ex|
[=1¢t=5_+1 l:§++l r=1
3"7 S+
2—2k
[T T] lea—ev—ul (88)
I=1 r=5,+1

and where the sums ov&r and the multiplicity factoiC (s, §+) = % stand by

considering all the different ways of selectifig amongs.. screening operator@..(z) to be
taken as going ta; in the factorization limit. As it can be seen directly from the definition of
the variablesc andy in (84)—(86) the factorization limit is realized by taking the limit— O.

In order to explicitly identify the sequence of poles that appears in this limit it will be useful to
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expand the above expression in terms of powees ahmely

2 = - - - - 2 -7
\W (e za. ., 00)|“ = W(es 2an ttr )W E Zan il ) = Y [ Wit Zas sty 0p)| - €78,
n,neN2

(89)
where
0L W (€5 2, ur, v1)I2_;_g)
Fa+DHIrm+1)

Then, we can collect the whole dependencdst) and therefore write down the following
expression for the power expansion in the neighborhoadod and write

2 i 7
/dzg Z ‘Wn,r_z(zay Ur, Ul)’ gMiama)y g Ga.~ma) ¥,

n,neN2

}er,ﬁ(zas U, p) |2 = (90)

where we have denoted
e e L
N(jama) = S+ +5-)(J1+ j2) + §(S+ +5 )06+ +5-+1)
Jij2 | mim2
=42
k-2 + k
Hence, the pole condition i, ) + 7 =1, —m, +7 = —1 and can be written as follows

—k§p5—2 + (m1+m2) G4 — 52) + qiqa.

it 2= G -DG+INGi+ 2= G- DG +5) +D)
k—2
(41 + 9y +q2) | (m1+mz+ 56 —52))
+ +
2 k
gnd analogously foim,, 5+) < (m,,53). Besides, if the physical constraint;, ., .4.) =
h(ja.ima.q0) = 1 is assumed to hold, the condition above can be written as a Virasoro constraint as
well

—-1=0,

JjG+Y  m®* g
h(j,m,q) = _ﬁ + 7 + Zl =1 (91)
and analogously fok; z.4), Where the quantum numbefsp = m + s andw = (m —m)/k are

given by

-2 5 -
J=aitje = =5 Gy o), (92)
p=pi+p2 ¢ =g+, (93)
w=w1+w2+54 —5_ (94)
with 0 < 51 < s+. Consequently, the following identifications hold

X, k=2 o

Datitl= "y 45 =5 =5, (95)
a=3

N N
Y patr=0. > gi+q =0 (96)
a=3 a=3
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N
Zwa+w=s,—§,+§+—s+ (97)
a=3

withi €{0,2,3,4,...,d}.

Hence, in this way, we have obtained the quantum numbers of the intermediate channels in the
tree-level scattering processes in sine-Liouville string theory. Again, it was achieved by writing
the pole condition arising in the factorization limit as a Virasoro constraint for these physical
states.

An interesting comment on the functional form of the correlators in the coincidence limit is re-
lated to the factors involved in the different terms of the power expansieniihe characteristic
property of the realization described here is the explicit form in which the different contributions
of internal states can be recognized. Notice that in the kmit O, the following factors arise in
the expressiofB7)

S+
1_[ ((Zl _ ul)j1+j2+m1+m2+§+—§, —ks_ (Zl _ lzl)jl-ﬁ—jz—r;ll—r;lz-‘r@r—f, —kff)
T=§++l
S_—
x l_[ ((Zl — Ut)j1+jz—m1—m2+§+—§f—k§+ (Z1 — l—)t)j1+j2+ﬂtl+"_12+5'+—5——k§+)
r=5_+1
and, in an analogous way,

N L
+ S . L
l—[ 71 — Za|—4—2—]"(,j(17 ]2)+21a(s++57)+24ai(q’1+lfz) (z1 — Za)%ma('n1+m2)+ma(s+—s_)
a=3

X (31 — 7o) Ealintiig) =i (G =5-).

In fact, these are precisely the contributions required to express the origipalnt functions

in terms of the product of two different correlators on the sphere, since these factors allow to
recover ther = 2 = 0 contribution, which is simply interpreted as the product of two correlators
involving only tachyonic (non-excited) states. Moreover, once the higher derivative terms arising
in the power expansiof®0) are taken into account, then the derivatidescting on the factors

in (88) generate contributions which reproduce the contractions arising in the operator product
expansions of the form;, (0(z1)p(z4)) =~ (za —21) 71, €.9.,

N Ss4 ) N s4 St N
0c [T [Jea =22+ exnlele =[] [ 1Ga = 200%™ > "0 Y "G + ) zp — z0)
2

a=2r=1 a=1r=1 =1 b=

where, after evaluating = 0, each step of the sum over the inderust be put in correspon-
dence with each term arising in the operator product expansion between an ofe(atpand

an exponential field’\/gp(z“) (and consequently, this is analogous for the contributions of the
Y*# fields). Then, we recover the higher order contributions interpreted as different terms in the
sum over excited intermediate states.

Let us make a brief remarks about the symmetry under the interch@mgé, s+) <
(m, m, s+). This invariance of the whole expression reflects the fact that the dissipation of the
winding number in the two-dimensional theory is characterized directly by the relative amount
ands_ corresponding to both screening operat@rs(z) and @ _(z) respectively; this is due to
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the chiral nature of the interaction terf#6). This is because of the symmetry existing under
w <> —.

3.6. On winding number conservation

Before concluding, a word on the prescription for computing correlators in sine-Liouville.
Actually, let us consider in detail the structure of the correlation functions representing processes
that violate the winding number conservation in this CFT. This computation, originally presented
in Ref.[44], is similar to previous analysis done for the case of the WZNW model, although some
substantial differences do exist between calculations in both CFTs. Perhaps, the main difference
to be emphasized regards the role played by the screening operators: while in sine-Liouville
theory the violation of the winding number is produced by the presence of the sine-Liouville in-
teraction term itself (which is manifestly represented in the free field realization by the insertion
of a different amounts of both screening operatgreinds_), the violation of the winding num-
ber in theSL(2, R);, WZNW model is more confusing and involves the inclusion of conjugate
representations of the identity operator (which is often called the “spectral flow operator”, see
[6,7,27). An interesting (curious) feature of the non-conservation of the winding in these CFTs
is the existence of a bound for such violation. In particular, in R8fMaldacena and Ooguri
explained how to understand the upper bound for the violation of the total winding number in
SL(2, R)y WZNW correlators as being related to thl€2), symmetry of the theory (see Appen-

dix D of Ref.[7]). Then, the question arises as to whether could be possible to conclude that,
in analogous way, the upper bound for the violation of winding humber in sine-Liouville theory
turns out to be related to such symmetry as well. If this is indeed the case (and it seems to be
due to the conjectured FZZ duality), then it should be feasible to verify that such a strange fea-
ture (i.e., the fact that the non-vanishing correlators satigﬁgv:lwﬂ < N —2) turns out to be
related to the fact that the FZZ sine-Liouville model satisfies a very particular relation between
the radiusk of the compact directiofii1(z) and the background charge of the figl¢t); namely

R= ’5 0, = \/% Presumably, there would be no reason for the upper bound of the viola-

tion of winding number to exist in the “generic” sine-Liouville field theory besides the FZZ dual
radiusR = \/g .

In order to verify this idea, let us make some remarks on Fukuda—Hosomichi representation
of sine-Liouville correlators: in a very careful analysis of the integral representation, the authors
of [44] were able to show that it is feasible to translate the intedls [ d%u, [ d?v; over the
whole complex plane into the product of contour integrals. Then, the integral represe(it&)ion
turns out to be described by standard techniques developed in the context of rational confor-
mal field theory. Such techniques were used and extendpt]rin order to define a precise
prescription to evaluate the correlators by giving the formula for the contour integrals in the par-
ticular case of sine-Liouville field theory. The first step in the calculation was to decompose the
u, complex variables (respectively) into two independent real parameters (i.e., the real and
imaginary part ofs,) which take values in the whole real line. Secondly, a Wick rotation for the
imaginary part of(u,) was performed in order to introduce a shifting parametarhich was
subsequently used to elude the polesgnThen, the contours are taken in such a way that the
poles atv, — z, are avoided by considering the alternative order with respect to this inserting
points. A detailed description for the prescription can be found in the Se8tafrthe paper,
where the authors refer to the quoted works by Dotsenko and Hétee47] In the computation
for sine-Liouville, Fukuda and Hosomichi proved that, in the case of three-point function, the
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winding can be violated up tpza 1 a)a| N — 2 =1 and, presumably, this is the same for
genericN. The key point in obtaining such a constraint is noticing that the integrand that arises
in the Coulomb gas-like prescription in sine-Liouville model contains contributions of the form
(see the last line i(87))

/dzv,dzv,w, —vt|2--~ (98)

for 0 < < s— and the same for the pointg with 0 <!/ < s4, and where the dots- *.”
stand for “other dependences” on the inserting pomtand u;; these points are those where
the screenings of the kindl_ (1) and®_ (v) are respectively inserted. As explained4d], and
raised at the level of “lemma”, “the integral vanishes for certain alignments of contours” due to
the fact that the exponent pf. — v, | in (98)is 2. Conversely, in the case where such exponentis
generic enough (let us say Xollowing the notation of44]), the “integral has a phase ambiguity
due to the multi-valuedness ¢f, — v;|% in the integrand”. Then, it is concluded that those
integrals containing two contours of andv; just next to each other, then the integral vanishes.
And this precisely happens for all the contributions of those correlators satigfying s_| =
|Z;V=1 wq| > N — 2. This led Fukuda and Hosomichi to prove that, for the three-point function,
there are only three terms that contribute: one \@Eﬁzl w, =1, asecond WitkESzl w, =-1
and the conserving onggzl we =0.

Here, we can make two comments regarding this point: first, notice that an identical feature
appears in our free field representation of WZNW correla68j and, in general, for thev-
point function as well; namely: due to the presencaff N — 2 additional screening operators
Paux(w) We get contributions likg98) in the integral representation (with; instead ofv,) due
to the OPE

Paux(wi) Paux(w ) ~ [w; — w;|?---. (99)

This is exactly what happens in sine-Liouville theory and consequently explains the upper bound
for the violation of winding number in our free field realization(@j as well.

The second comment we find interesting is that we can actually give an answer about “how to
relate thesT(-i)k symmetry of sine-Liouville at the dual FZZ radids~ +/k/2 and the existence
of the upper bound for the violation of the winding”. The relation precisely comes from the fact
that the exponent-2 in (98) does correspond to the particular value of the radliesding to the
very particular OPE

D1 (V)DL (V) ~ Uy — 0 |PER = |, — ]2, (100)

which mimics (99) because ofo, 7z = 1. The fact of demanding..(z) as being(1, 1)-
operators is not enough for affirming that the exponentli®0) is to be 2 g = 2; instead,
this only holds for the “dual radiusk = /k/2 if the theory is requested to have the appropriate
central charg€75).

This actually shows that the selection rwIE _1wq| < N — 2 does correspond to a very
particular point of the space of parameters of sine- LIOUVI||e field theory; i.e., the particular point
where it turns out to be dual to ttf&(2, R), /U (1) WZNW model. We point out again that the
same happens in our realizatis8).

3 The author thanks J.M. Maldacena for a conversation about this point.
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4. Conclusions

The Ribault formulg1), as well as the particular cagé = N — 2 studied in Refs[15,16],
turns out to be a useful tool to study correlation functions in the non-compact WZNW model
[18]. This is because such formula states a very concise relation between these observables anc
those of the Liouville field theory, which is certainly a better understood CFT. Here, we have
gone further by arguing that, besides a mathematical coincidence between correlators of a pair
of CFTs, Ribault formula is actually suggesting the equivalence between the worldsheet theory
of AdS winding strings and a tachyonic linear dilaton background that contains Liouville theory
as a particular factor; s€&0). Moreover, sinceX) was rigorously proven independently of such
a realization, this actually does demonstrate that string thedkgd$ can be represented in such
a way. The description of worldsheet dynamics of strings in curved space in terms of flat linear
dilaton backgrounds establishes an interesting relation between curved and flat exact solutions
of non-critical string theory. The discrete light-cone Liouville descriptiodd& string theory,
as well as the quoted FZZ duality between the 2D black hole and the sine-Liouville model,
are examples of such kind of description. According to what we discussed here, what Ribault
formula is actually stating is an equivalence between the non-lineaodel onAdS and the
CFT on the (tachyonic) linear dilaton background describeby. And this equivalence holds
at the level of thev-point correlation functions. The fact that this equivalence is reminiscent of
the FZZ duality and makes contact with the discrete light-cone approach turns out to be one of
the main observations of this note. We also showed the connection with the Wakimoto free field
representation <J§T(§)k algebra.

By analyzing the prescription for computing correlation functions and the factorization limit
of these observables, we showed that Mgoint function factorizes in two pieces, each one
preserving the total winding number upXa_ 2 — 2 units (withN1 + N2 = N + 2). By comparing
with the Coulomb gas-like realization for the case of sine-Liouville field theory, we argued that
such upper bound turns out to be related toSTQE)k symmetry of the theory and this fact is
clearly manifested in the integral representation of the correlators. The intermediate states in
the four-point functions can be obtained by studying the pole structure in the factorization, and
both states with winding number =0 andw = +1 arise in the intermediate channels. This is
consistent with previous results.

Then, in this note we proposed a new representation of string theory in LoreAgfaspace
and this explicitly realize the Stoyanovsky—Ribault—Teschner forifiyla terms of free fields.
Besides, this prepares the basis for the next step: the study of the matrix model formulation within
a similar context.

Note

In Ref.[17] it is asserted that Prof. V. Fateev has also considered a free field realization of the
formula (1) in an unpublished paper. The author of this note would be interested in confirming
the agreement between that realization and the one presented here. In any case, the realizatiol
analyzed here presents more evidence in favour of the conjecture madé aout the validity
of the correspondence between WZNW and Liouville correlators for the maximally winding
violating case (see Section 3.2.2[b¥]).
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Note added

After the first version of this paper appeared in arXives, the author received a copy of the
unpublished worK48] from Prof. V. Fateev. There, a free field representation of the theory is
presented and several results agree with those of Seztimme. This manifestly confirms the
agreement between both analysis. The author would like to thank Vladimir Fateev for kindly
sharing his note.
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