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This work is devoted to the study of the relation between intermittence and scale in

We find the conditions that a function in which both effects are present must satisfy

analyze the relation with characteristic scales. We present an efficient method tha

characteristic scales in different systems. Finally we develop a model that predicts the

of intermittence and characteristic scales in the behavior of a financial index near a c

we apply the model to the analysis of several financial indices.
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The presence of log-periodic structures in data analysis suggests that th
has characteristic scales. During the last years the study of this phenomena
relation with the concept of scale invariance had grown, due to the great am
physical systems presenting log-periodic structures: fluid turbulence [1,2], d
Ising model [3], earthquakes [4], materials rupture [5], black holes
gravitational collapses [7] among others. In a mathematical context, w
constructions as the Cantor Fractal [3,8], with a discrete scale changes in
This phenomenon produces a non-real term in the fractal dimension.

The presence of logarithmic periods in physical systems was noted by No
1966 [9], with the discovery of intermittence effect in turbulent fluids. The
between both effects has been deeply studied, but it has not been formalize

At the same time a new discipline: Econophysics, has been developed [1
discipline studies the application of mathematical tools that are usually ap
physical models, to the study of financial models. Simultaneously, there ha
growing literature in financial economics analyzing the behavior of maj
indices [10–14].

The Statistical Mechanics theory, like phase transitions and critical phe
have been applied by many authors to the study of the speculative bubbles p
a financial crash (see for example Refs. [15,16]). In these works the main ass
is the existence of log-periodic oscillation in the data. The scale invarianc
behavior of financial indices near a crash has been studied in Refs. [17,18].

We first study the relation between intermittence and scale invariance. We
conditions that a function has to satisfy when both effects are present,
analyze the relation with characteristic scales. We present a new method tha
characteristic scales in different systems using the previous results. Fin
develop a model that predicts the existence of intermittence and characterist
in the behavior of a financial index near a crash, and we apply the mode
analysis of the behavior of several financial indices: The NASDAQ index
crash in April 2000, the S&P500 index near the October1987 crash, and th
Kong HSI index as well as the Brazil BOVESPA index, the Mexico MMX in
the Turkey XU100 index near the October 1997 Asian crash.
2. Scale invariance

ge ‘‘lx’’

(1)

ing way:

(2)
A function A, that depends on a variable ‘‘x’’, is invariant for the scale chan

when

AðxÞ ¼ mAðlxÞ ,

where m is a constant independent of x.
For a better understanding of condition (1), we can present it in the follow

mA0ðxÞ ¼ AðxÞ



with A0ðx=lÞ ¼ AðxÞ. Then, for two values x1, x2 the following equality must hold:

(3)
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Aðx1Þ

Aðx2Þ
¼

A0ðx1Þ

A0ðx2Þ

or equivalently,

Aðx1Þ � Aðx2Þ

Aðx1Þ
¼

A0ðx1Þ � A0ðx2Þ

A0ðx1Þ

for all x1, x2.
At this point we recall that the scale invariance can be defined as the scal

x ! lx verifying that the percentage variation of the observable AðxÞ

invariant.
It can be easily proved that the function AðxÞ ¼ x2 remains invariant for a

change x ! lx where l is any real number. This is an example of continuo

invariance.
In order to find the functions that are invariant for scale changes, we sh

with Eq. (1).
The general solution to this equation is

AðxÞ ¼ Cxa ,

where a is a complex number defined by:

a ¼ �logl mþ
i2pn

ln l
; n 2 Z .

From (5) and (6) we conclude that any observable which remains invarian
scale change x ! lx can be expressed as

AðxÞ ¼ x�loglm
Xn¼þ1

n¼�1

anei2pnln x
ln l .

Now we recall the difference between discrete and continuous invariance.
When the observable given by (7) presents continuous scale invariance, for

number l there exists m such that condition (1) is fulfilled. We can deduce tha
case �logl m does not depend on l, and an ¼ a0don.

When the observable AðxÞ verifies Eq. (1) only for numerable values of t
presents a discrete scale invariance.

Two crucial remarks have to be done: the continuous scale invariance imp
the exponent in Eq. (1) has to be a real number. On the other hand, if an ob
remains invariant for a scale change x ! l0x from (7) we can conclude tha
holds for any l ¼ ln

0; n 2 Z.
3. Intermittence and discrete scale invariance

discrete
ariance:
In the previous section we studied the general structure of functions with
scale invariance. In this section we shall analyze a particular type of scale inv



the one arising in the existence of intermittences or ‘‘stationary intervals’’, constant

(8)

(9)

IðxÞ þ 1
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in the logarithm of the independent variable.
The functions that can be obtained from this analysis are:

f F
ðxÞ ¼ beaF ðloga xÞ ,

f C
ðxÞ ¼ beaCðloga xÞ ,

where b and a are real numbers, ‘‘a’’ is positive and F ðxÞ ¼ IðxÞ and CðxÞ ¼

are the Floor and Ceiling functions, respectively.
Hence, the value obtained when applying the Floor function to a variable

the nearest entire number to x from the left, and the value obtained by the
function will be the nearest entire number to x from the right.

These two functions are discrete scale invariants, and more specifica
satisfy Eq. (1) only when

l ¼ an; n 2 Z .

This can be proved as follows:
From (1), we have

f F
ðlx1Þ

f F
ðlx2Þ

¼
f F

ðx1Þ

f F
ðx2Þ

; 8x1; x2 ,

which is

eaF ðloga lx1Þ

eaF ðloga lx2Þ
¼

eaF ðloga x1Þ

eaF ðloga x2Þ
; i:e:; eaðF ðloga lx1Þ�F ðloga lx2ÞÞ ¼ eaðF ðloga x1Þ�F ðloga x

Thus we need

F ðloga lx1Þ � F ðloga lx2Þ ¼ F ðloga x1Þ � F ðloga x2Þ ,

i.e.,

Iðloga x1 þ loga lÞ � Iðloga x2 þ logalÞ ¼ Iðloga x1Þ � Iðloga x2Þ .

Then we must have

loga l ¼ n; n 2 Z .

Therefore we can conclude that these functions have characteristic scales.
The answer to this question will help to identify the systems in which this b

will take place.
Now we want to know the conditions for a function to have discre

invariance, after we know that the system has intermittences. The condition
following:

(i) The intermittence intervals must be constant in logarithmic scale, i.e., t
have to be discrete:

dðln xÞ ¼ K ,

where K is a positive number.



Let a ¼ eK , then we have

(12)

Iðt2Þ .
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dðloga xÞ ¼ 1

and

Iðloga x1 þ loga lÞ � Iðloga x2 þ loga lÞ ¼ Iðt1 þ nÞ � Iðt2 þ nÞ ¼ Iðt1Þ �

Then, the interval of time of the intermittence is such that the logarithm
variable x, in a basis a, has advanced one unit (in that period of time).

Hence, we can conclude that due to the longitude of the intermittences the
a basis in which the logarithm of the variable is equal to one.

(ii) The stationary intervals are consecutive, when one finishes, begins
one.

(iii) The function such that its variable is discretized with the rule dðloga xÞ

power law, and the beginning and the end of a stationary interval have both
point of the function. We will call this function the basis function, which
illustrated as follows.
4. A new data analysis method

order to
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find the

wer law
be used

ded is to
se to the
nly data
Now we will apply the tools given by the theory previously developed in
analyze data presenting characteristics similar to those mentioned above. Th
the data basis function will be a power law.

First, we will find this law; the second step will be to reduce the free param
only one: the logarithmic basis. Finally, we will use (8) or (9) in order to
value of ‘‘a’’ minimizing the distance with the data.

Hence, we obtain the system characteristic scales. The estimation of the po
is crucial in this method because it will be the basis of the function that will
for fitting the data. We remark that one of the mistakes that have to be avoi
estimate the power law with all the data range. Trying to fit the data very clo
crash will be largely fitting the noise. The estimation must be done using o
points as the ones in Fig. 1.
Fig. 1. Basic scheme showing the relation between a power law (in solid line) and a function like the one

defined in (10) (dash line). The black points are the intersection points of both functions.



5. Financial indices prices near a crash
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The evolution of a financial index represents the changes of a portfolio [19
is a simple model that takes account of the evolution of an asset price in the
[20], this model considers two contributions to the percentage variation in
price: one deterministic, and one stochastic:

dS

S
¼ mdT þ sdX ,

where S is the asset price, m a constant (called drift), dT the interval of
another constant (called volatility) and dX a random variable. It is assumed
has normal probability distribution.

We focus our attention in the deterministic contribution:

dS

dT
¼ mS .

SP500 - Bubble: 1977 - 1987
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Fig. 2. The temporal dependence of the S&P500 index near the October 1987 crash. The variables are the

distance to the crash price and the distance to the crash time, respectively. The solid line represents the best

fit with Eq. (9), for: a ¼ 1:6, a ¼ 0:095, and b ¼ 77:56.



As a financial index can be considered an asset, its (deterministic) financial behavior
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will be given by (16). Our hypothesis is that near a crash Eq. (16) is modifi

dS

dT
¼ m

ðSc � SÞ

ðTc � TÞ
,

where Tc and Sc are, respectively, the time and the price for which the cra
place. The heuristic analysis is as follows: near a crash there is a factor that p
a considerable increase in the index price, by the other hand, when the pric
near to the crash price, it has to exist another factor smoothing those va
otherwise the crash would take place before the real date. Changing the var
(17) we obtain that

dP

dt
¼ m

P

t
,
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Fig. 3. The temporal dependence of the NASDAQ index near the April 2000 crash. The variables are the

distance to the crash price and the distance to the crash time, respectively. The solid line represents the best

fit with Eq. (9), for: a ¼ 1:69, a ¼ 0:1034, and b ¼ 1731.



where the variables are not anymore absolute data of the system: t and P are the
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distance to the critical time and critical price, respectively.
The second assumption will be that the temporal steps are discrete; there

index evolution is not continuous and is given by

dt ¼ Kt .

Then the frequency in the index price changes is proportional to the distanc
date in which the crash takes place. Eq. (19) implies that

dðln tÞ ¼ K .

From Eqs. (18) and (20) we arrive to functions like (8) or (9). In this case
work with function (9), due to the fact that the intermittences must take into
that the time approaches to the critical time from the right, because of the ch
variables (18).
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Fig. 4. The temporal dependence of the Turkey XU100 index near the October 1997 crash. The variables

are the distance to the crash price and the distance to the crash time, respectively. The solid line represents

the best fit with Eq. (9), for: a ¼ 1:5, a ¼ 0:0847, and b ¼ 1447.
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1987, and the Asian crash of 1997

NASDAQ is an electronic financial index. It has been traded in the mark
1971 and it is the American Index with greatest increases rate. It includ
companies that the ones that are traded in the New York Stock Exchange

takes account of more of the 50% of the trading operations that take plac
US. In the last 10 years the number of companies that quote in NASDA
increased a lot. Principally the technological companies are the ones which
NASDAQ: Microsoft, Intel, MCI, Cisco System, Oracle, Sun Microsyste
also important companies as: SAFECO Insurance and Northwest Airlines.

Between February and May 2000 the NASDAQ price fell down in a 37
most abrupt fall was in April, but the index decrease began some months be
recall that in our analysis the date in which the crash takes place is the one
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Fig. 5. The temporal dependence of the Mexico MMX index near the October 1997 crash. The variables

are the distance to the crash price and the distance to the crash time, respectively. The solid line represents

the best fit with Eq. (9), for: a ¼ 1:493, a ¼ 0:0837, and b ¼ 1368.



the slope in the index price begins, and not the one in which the fall is maximum.
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Hence, the critical time is in February 2000.
We have also analyzed the S&P500 index near the October1987 crash,

Hong Kong HSI index as well as the Brazil BOVESPA index, the Mexico
index, and the Turkey XU100 index near the October 1997 Asian crash. W
that the Asian crisis of October 1997 was originated between July and Augu
the governments of Thailand, Malaysia, Vietnam and Philippines devalua
currencies. This devaluation resulted in global concerns in all major mark
would later be reflected in drops of the indices worldwide (Figs. 2–7).

7. Results
call that
he value
In this section, we present the results of the fits realized with Eq. (9). We re
our main interest is to identify characteristic scales in the data, i.e., to find t
of ‘‘a’’ minimizing the distance with the data using Eq. (9).

BOVESPA - Bubble: 1995-1997
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Fig. 6. The temporal dependence of the BOVESPA index near the October 1997 crash. The variables are

the distance to the crash price and the distance to the crash time, respectively. The solid line represents the

best fit with Eq. (9), for: a ¼ 1:528, a ¼ 0:0846, and b ¼ 4876.
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Fig. 7. The temporal dependence of the Hong Kong HSI near the October 1997 crash. The variables are

the distance to the crash price and the distance to the crash time, respectively. The solid line represents the

best fit with Eq. (9), for: a ¼ 1:53, a ¼ 0:0887, and b ¼ 4336.
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The effects of certain local crisis on various and distant markets have larg
cited. The collapse of the crashes of 1987 (S&P500) dragged the collapse of
worldwide, as did 2000 (NASDAQ). However not every crisis has sufficient
as to drag the fall of leading indices in other countries.

In Ref. [16] it has been shown that the crashes of Asian indices had conse
on emergent markets: the Asian crisis had sufficient strength as to drag th
leading Latin American indices as well as the fall of the Turkey XU100 ind

Clearly all these indices crashed in similar dates due to a dragging co
effect, which most likely started with the instability of the HSI index. So on
expect to obtain similar parameters for all these indices.

The parameters a and a obtained for the Hong Kong HSI index, th
BOVESPA index, the Mexico MMX index, and the Turkey XU100 index
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Table 1

A comparison table of the coefficients a and a for developing markets

XU100 MMX BVSP HSI

a 1.50 1.493 1.528 1.53

a 0.0847 0.0837 0.0846 0.0887

M. Ferraro et al. / Physica A 359 (2006) 576–588 587
events in different markets and different economic realities which strengt
hypothesis of imitation and long range correlations among traders.

The good results obtained when fitting Eq. (9) validate the index pric
presented in Sections 4 and 5, and therefore, the existence of characteristic
this type of systems.

An important consequence that results from Eq. (9) is that the scale invari
changes t ! lt, with l ¼ an and n 2 Z, implies (because of (4)) that the pe
change in P in scale ‘‘t’’ and in scale ‘‘lt’’, is the same after an interval of tim
after an interval of time ‘‘lt’’.

The method developed in this work is of easy implementation and
efficiency. It is also a general method that can be applied to other similar s
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