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Isoscaling: Geometry, correlations and symmetry energy
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This work uses a simple model to understand the properties of isoscaling. Using a generalized percolation
model, it is first shown that isoscaling is a general property of fragmenting systems. In particular, it is found that
the usual isoscaling property can be seen as a limit case of bond percolation in lattices in D dimensions, with
N colors, with independent probabilities for each color, and for any regular topology. The effect of introducing
correlations is also studied.
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I. INTRODUCTION

The isoscaling property has been found in the analysis of
multifragmentation experiments in nuclear physics. Nuclei are
“two component systems”, i.e., they are composed of protons
and neutrons. Nuclei can be characterized by their mass A
and their proton content Z. The neutron content is then given
by N = A − Z. If one performs two sets of nucleus-nucleus
collisions at a given energy E, in which the first set involves
partners characterized by A1(Zt ) and the second by A2(Zt )
with, say, A2 > A1 (notice that being Zt the same in both
cases N2 > N1), it is found that the following relation holds:

R21(N,Z) = Y2(N,Z)

Y1(N,Z)
∝ exp(αN + βZ) (1)

with Yi(N,Z) representing the number of fragments charac-
terized by (N,Z) that are produced in the nucleus collisions
involving partners characterized by Ai(Zt ); α and β are fitting
parameters.

In the past, this power law expression for R21 has been
linked, under diverse approximations, to primary yields
produced by disassembling infinite equilibrated systems in
microcanonical and grand canonical ensembles [1,2], as well
in canonical ensembles [3], and it has also been observed in the
framework of the grand-canonical limit of the statistical mul-
tifragmentation model [4], in the expanding-emitting source
model [1], and in the antisymmetrized molecular dynamics
model [6]. Furthermore, under these approximations, the
isoscaling parameters α and β have been found to be related to
the symmetry term of the nuclear binding energy [4,5], to the
level of isospin equilibration [7], and to the values of transport
coefficients [8].

More recently, however, it has been determined through
the use of molecular dynamics [9] that isoscaling can exist in
purely classical systems, and that it can be created in systems
out of equilibrium. It was also found, among other things,
that R21 can maintain the power-law behavior even when it
contains yield contributions generated at different times and
corresponding to diverse thermodynamic conditions.

This communication presents results of the isoscaling
analysis performed in the framework of simple geometrical
models. It studies the ratio of the number of fragments
produced by breaking bonds of two sets of lattices in
D dimensions, of sizes A1 and A2 in which the nodes are

assigned a given color out of N colors (this is usually referred
as polychromatic percolation [10]). The determination of the
colors of the nodes can be performed in an independent way
or in a correlated way. It is found that when the bond breaking
probabilities are the same for both lattices a generalized
version of Eq. (1) is obtained. It is shown that the presence
of correlations affects the numerical values of the exponents
in Eq. (1). In order to get analytical expressions a development
in terms of bond lattice animals is performed.

In Sec. I, it is shown that the functional relationship R21 can
be obtained in a simple generalized percolation problem, as
the limit for two dimensions and two colors of the problem of
calculating the ratio of yields of fragments of D dimensional,
N colors and any regular topology for the corresponding
lattices.

In Sec. II the effects of introducing correlations in the
assignment of colors to the nodes in the percolation problem
is explored. For this purpose, the study focuses on a simple
square lattice in two dimensions and two colors (hereafter we
replace the two colors notation for “protons” and “neutrons” to
recall the nuclear origin of this problem). This is accomplished
by performing a bond percolation problem on this lattice for
which the distribution of protons and neutrons is generated
using a lattice gas approach. The lattice gas is defined via
different values of the interaction terms for the different isospin
pairs present in the system, i.e., Vnn the interaction between
two nearest neighboring neutrons, Vpp for two protons and Vnp

for a neutron proton pairs. For this purpose Metropolis Monte
Carlo simulations are performed at different temperatures. It
is shown that the strength of the correlation between neutrons
and protons is a function of the temperature and the strength of
the interaction between “protons” and “neutrons”. It is shown
that the isoscaling property is preserved and that the effect of
the correlations shows in the value of the exponents α and β.

II. GEOMETRY

A. G-isoscaling

In this section we will derive exactly the relation R21 for
the fragmentation of two two-dimensional lattices with nodes
occupied with “protons” and “neutrons”. This case, proposed
in Ref. [9], is a limiting case of the more general problem of
bond percolation of two D-dimensions regular lattices of any
topology with nodes labeled by N colors.
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Considering a square D-dimensional lattice with nodes
occupied by “particles” of N colors. The total number of nodes
is A and A = N + Z + R + . . . with N,Z,R, . . . denoting
the number of nodes of given colors. Each color is assigned
with a given probability pZ, pN, pR, etc., with 1 = pZ+
pN+ pR + · · · . At first these probabilities are taken to be
independent and homogeneous.

Fragments are produced when we perform a bond breaking
process characterized by a bond breaking probability b. A
fragment is defined as a subset of nodes such that for any
member of this set there is at least another member of the set
such that both are linked by an active bond. Moreover, there
are no active bonds linking any member of the set with other
nodes in the lattice. In this way fragments can be characterized
by the number of nodes that compose the fragment. The total
number of fragments of size s will be denoted as Ns. For an
infinite lattice the number of fragments of size s will diverge.
In this limit it is convenient to consider the quantity ns which
is the number of clusters of size s per site, which can be written

ns = lim
L→∞

Ns

Ld
. (2)

With L the linear dimension of the lattice under consideration
measured in “bonds.”

Disregarding the coloring of the nodes, ns can be written as

ns =
∑
a,t

gsat(1 − b)abt (3)

with t the number of bonds that are to be broken in order to
isolate the s nodes composing a fragment, a the number of
bonds that are to be kept in order that the resulting fragment of
size s is connected and gsat is the number of geometrical ways
in which such a fragment can be built in the lattice.

When the nodes are colored, the previous expression adopts
the form

ns =
[∑

a,t

gsat(1−b)abt

]
 ∑

{Z,N,R,...}
Z+N+R+...=s

αZ,N,R...(pZ)Z(pN)N (pR)R. . .




(4)

with αZ,N,R... = (s!/N !Z!R! . . .) being the degeneracy of the
configurations when all possible colors combinations are
considered.

Considering now those fragments characterized by a given
number of nodes of color Z, N, R . . .

ns(Z,N,R, . . .) =
[∑

a,t

gsat(1−b)abt

][
αZ,N,R...(pZ)Z(pN )N. . .

]
.

(5)

The general expression of the isoscaling coefficient R21 adopts
the form

ns2 (Z,N,R, . . .)

ns1 (Z,N,R, . . .)

=

[∑
a,t

gsat(1 − b)abt

] [(
pZ2

)Z(
pN2

)N(
pR2

)R
. . .

]
[∑

a,t

gsat(1 − b
′)ab′t

] [(
pZ1

)Z(
pN1

)N(
pR1

)R
. . .

] . (6)

In this general expression the bond breaking probabilities are
different for the two lattices considered.

If the bond breaking probability (this will be referred as the
equilibrium solution) is fixed to be the same for each of the
two lattices, i.e., b = b′, it is obtained

ns2 (Z,N,R, . . .)

ns1 (Z,N,R, . . .)
=

(
pZ2

)Z(
pN2

)N(
pR2

)R
. . .(

pZ1

)Z(
pN1

)N(
pR1

)R
. . .

(7)

which can be rewritten as

R21(N,Z,R, . . .) =
[
pZ2

pZ1

]Z [
pN2

pN1

]N [
pR2

pR1

]R

. . . (8)

which can further be written as

R21(N,Z,R, . . .) = exp(Zβ + αN + δR + . . .) (9)

with

β = ln
pZ2

pZ1

; α = ln
pN2

pN1

; δ = ln
pR2

pR1

; · · · .

For the finite case, the number of fragments of size s in the
system of size ld can be approximated as Ans to yield

R21(N,Z,R, . . .) = A2

A1

ns2 (N,Z,R . . .)

ns1 (N,Z,R . . .)
(10)

which upon multiplying and dividing by Zt , with Zt the
number of nodes with color Z, gives

R21(N,Z,R, . . .) = pZ1

pZ2

ns2 (N,Z,R . . .)

ns1 (N,Z,R . . .)
. (11)

From which the value of the constant of proportionality
between R21 and the quotient of the yields can be readily
obtained

R21(N,Z,R, . . .) = C exp(Zβ + αN + δR + . . .) (12)

with

C = pZ1

pZ2

.

This relation (here denoted as gisoscaling to indicate that it
is a generalization of the standard isoscaling property) reduces
to the usual isoscaling expression when we consider two
colors.

R21(N,Z) = C exp(βZ + αN ). (13)

It is convenient to recall at this point the main assumptions
used so far in order to get the usual isoscaling law:

(i) the probabilities of color assignation to the nodes are
independent,

(ii) the bond breaking probabilities are the same for the two
lattices under consideration.

B. Correlations

The previous section presented a derivation of the isoscaling
relation with the simple assumption that the isospin character
of each node is assigned in an homogeneous independent
way. Here, the consequences of introducing correlations in
the model are explored.
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For this purpose we perform the bond percolation problem
on lattices for which the isospin character of each node is
obtained in the frame of the lattice gas model. In other
words, we perform the bond breaking fragmentation on the
one hand, and then (the order of the operations in irrelevant)
we assign its isospin character from the outcome of a Monte
Carlo calculation at temperature T on an equivalent lattice gas
model. It should be emphasized at this point that the role of
temperature T in this calculation is only to control the degree of
correlation in the isospin character assignment. We then adopt
the following scheme: protons and neutrons interact according
to the following prescription for nearest neighbors (the values
are standard for the nuclear case):

Vnp = −5.33, Vnn = Vpp = −a.

Vnn, Vpp and Vnp are measured in MeV.
The size of the two lattices needed to perform the ratios is

fixed as 1→ 16 × 16 with 128 protons, this giving a relative
occupation of 50% and 2 → 20 × 20, and then the relative
population of protons is 32%.

The isoscaling for a = 0 and different temperatures is now
calculated; Fig. 1 shows a typical isoscaling result.

Figure 2 shows the mean value of the number of nearest
neighboring protons of a proton 〈pp〉nn. It can be seen that as
the temperature is increased, the value of 〈pp〉nn approaches 2
for the (16 × 16)128 lattice, i.e., converges to the uncorrelated
limit. On the other hand as the temperature is reduced it
approaches the value 0 which corresponds to the minimum
energy at T = 0.

This can be correlated with the value of the exponents α

and β as displayed in Fig. 3.
It is worth noticing at this point that this calculation at

different temperatures is equivalent to calculating the lattice
gas problem at fixed temperature but changing the value of,
for example, a.

Figure 4 compares the isoscaling behavior for a = 0 (open
symbols) and a = −4 (full symbols) (see figure caption for
details). In this case the temperature of the underlying lattice
gas has been fixed to T = 10. It is immediate that when
a grows, which means that the difference in binding energy
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FIG. 1. (Color online) Typical result of the calculation of the
quotients in R21.
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FIG. 2. (Color online) Mean number of nearest neighboring
protons to a proton. Black circles for a 16X16 lattice and 128 protons.
Red square for a 20X20 lattice with the same number of protons.
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FIG. 3. (Color online) α (black circles) and absolute value of β

(red squares) coeficients as a function of temperature, dashed lines
correspond to the values of the coefficients for the homogeneous
percolation problem or to the infinite temperture limit.
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FIG. 4. (Color online) Isoscaling deppendence on a. Open sym-
bols stand for a = 0, full symbols represent a = −4.
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FIG. 5. (Color online) Binding energies for different values of
a for Z = 50 and 40 < N < 60. Blue circles stand for results with
a = 0, red squares for a = −3 and brown diamonds for a = −4.

between pairs neutron-proton, proton-proton, etc., is lowered,
the isoscaling coefficients decrease, as happens when the
temperature is raised.

As the previous results can be associated to the “symmetry
effect,” the variation of the ground state energy will be studied
with fixed number of “protons” and varying the number of
“neutrons.”

In order to calculate the ground state energy for given values
of (N,Z) a calculation in the spirit of simulated annealing was
done. In such a calculation a Markov chain in the space of
configurations is performed. The Markov chain is composed
of steps consisting in the exchange of the “state” of two
randomly chosen cells of a lattice with M � (N + Z) cells.
The “state” of a cell can be occupied by a proton, occupied by
a neutron or empty. Using the same transition probabilities as
in standard Metropolis Monte Carlo calculations, this Markov
chain develops with an effective temperature parameter that
is lowered in an exponential way (τ ′ = ατ , with α <∼ 1). The

calculation is stopped when a lower limit in τ is reached, or
when no better solution is obtained in a given number of steps.

Figure 5 shows that the binding energy curve gets flatter
when the value of a is increased thus indicating a smaller
“symmetry effect.”

III. CONCLUSIONS

In this work the generalized isoscaling property of frag-
menting systems has been explored. It has been shown that
the property initially detected for nuclear collisions is in fact a
particular case of a general property of fragmenting systems.
Likewise, it has been shown that it can be analytically obtained
from the calculation of the ratios of yields of “fragments”
produced in d-dimensional lattices of different sizes and
nodes labeled with arbitrary colors when a bond percolation
mechanism is applied. Two conditions are to be satisfied for
this to be true: (a) the bond braking probabilities are to be the
same in both lattices, and (b) the probabilities of assignation
of the labels (colors) are independent.

It has also been explored what happens when condition
(b) is not fulfilled. When the occupation probabilities are not
uncorrelated, but homogenous, it is observed that the property
is preserved, but the values of the parameters α and β are a
function of the correlations appearing in the system. These
correlations are a function of the temperatures of the system
as well as of the interaction energy in the corresponding lattice
gas used to generate the labeling. In the second case it is clear
that the values of the parameters in the isoscaling relation are
related to the “symmetry” energy term.
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