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Order (a?) QCD corrections to inclusive jet production in deep inelastic scattering
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We analyze the order a2 corrections to the single inclusive jet cross section in lepton-nucleon deep
inelastic scattering. The full calculation is done analytically, in the small cone approximation, obtaining
finite NLO partonic level cross sections for these processes. A detailed study of the different underlying
partonic reactions is presented focusing in the size of the corrections they get at NLO accuracy, their
relative weight, and the residual scale uncertainty they leave in the full cross section depending on the
kinematical region explored. In agreement with what has already been found in forward production of 7°,
we show that the dominant partonic process in very forward jet production is found to start at order a2,
being effectively a lowest order estimate, with the consequent large factorization scale uncertainty, and the
likelihood of non-negligible corrections at the subsequent order in perturbation theory.
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L. INTRODUCTION

Over the last 30 years, the DGLAP [1] approach to
parton dynamics has demonstrated itself as the most ade-
quate tool for the description of the energy scale depen-
dence of a variety of lepton-nucleon, and nucleon-nucleon
processes over a wide kinematical range. Surprisingly, not
just this approximation, but the lowest order in perturba-
tion theory within this approach (LO) gives fairly accurate
estimates for paradigmatic processes such as inclusive
deep inelastic scattering (DIS), provided an energy or
momentum scale of a few GeV characterizes them. The
following order (NLO) often represents small corrections,
required for precise comparisons, but not for the broad
picture.

In the few last years high precision DIS experiments,
with a wide kinematical coverage, and the ability to mea-
sure less inclusive processes, such as those performed by
the ZEUS and H1 collaborations at HERA, have extended
the tests on the dynamics of partons to the limits of their
kinematical reach, looking for signatures of dynamics
complementary to that described by the DGLAP approach.
Illustrative examples of these tests are the measurements of
final state hadrons [2] and jets [3,4] produced in DIS
processes in the forward region, for which the LO
DGLAP description fail to reproduce the data by an order
of magnitude, and even NLO estimates fall short.

In a recent analysis [5], it has been shown that the
striking failure of the LO description in the case of forward
hadrons by no means implies the breakdown of the
DGLAP dynamics, but just the inadequacy of the LO
picture, which simply does not include the dominant con-
tribution to the measured cross section: the process in
which an initial state gluon is knocked out from the nu-
cleon, and also a gluon fragments into the detected final
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state hadron. Indeed, the NLO approximation, which takes
into account these contributions, reproduce nicely the data
[5-7].

In the case of forward jets, the situation seems to be
more compromised, because not only the LO estimates
fail, but also NLO estimates fall short by a factor of 2 of
the data [4]. In Ref. [3] this feature together with the large
scale dependence of NLO calculations, has been taken as
indicative of the importance of higher order corrections. In
order to improve the understanding of this situation, in the
present paper we compute the order a? corrections to the
single inclusive jet cross section in lepton-nucleon deep
inelastic scattering.

The NLO corrections to single inclusive jet production
in DIS have been calculated within both the phase space
slicing [8,9] and the subtraction formalism [10,11] in order
to deal with the initial and final state singularities. At
variance with these previous computations, we present a
completely analytical calculation in the small cone ap-
proximation [12]. This approximation allows us to trans-
late straightforwardly previous results on hadroproduction
[5] to the case of jets, avoiding a rather cumbersome
calculation and delicate numerical treatments for dealing
with the collinear singularities. In Section I we outline the
technical framework required for the small cone approxi-
mation (SCA) in the case of DIS.

The small cone technique approximates the full result
obtained by NLO Monte Carlo generators, providing fairly
good estimates for the cross sections with differences
typically smaller than the theoretical uncertainties of the
NLO estimate in the relevant kinematical range. We inves-
tigate in Sec. II the range of validity of the small cone
approximation against the full Monte Carlo NLO parton
generators.

The finite cross sections obtained within the small cone
approximation can be implemented in fast and stable co-
des, simple to use. Exploiting the flexibility of them, in
Sec. III we perform a detailed study of the different under-
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lying partonic reactions and their main features: the size of
the corrections they get at NLO accuracy, their relative
weight, and the residual scale uncertainty they leave in the
full cross section depending on the kinematical region
explored.

Our main conclusion is that, as in the case of hadropro-
duction, the dominant partonic process in the most forward
jet region accessed yet is the one with a gluon in the initial
state and also a gluon as the main seed of the jet. This
process starts at order a?, and makes the NLO effectively a
lowest order estimate, with the consequent large factoriza-
tion scale uncertainty, and the likelihood of non-negligible
corrections at the subsequent order in perturbation.

II. SINGLE-JET-INCLUSIVE DIS CROSS SECTION
IN THE SCA

In this section we outline the calculation of the single-
jet-inclusive DIS cross section within the small cone ap-
proximation. This technique has been proposed [12] and
used in computations of unpolarized single inclusive cross
sections [13], and more recently has been extended and
validated for polarized proton-proton collisions [14].

The SCA can be thought as an expansion of the partonic
cross section in terms of the half aperture & of the cone
over which the radiation around a given final state parton is
integrated. This cone defines the jet at partonic level and
the integration over it regularizes all final state collinear
singularities. Keeping the most significant terms in this
expansion, which is given by a log(8) + b + O(5?) and
neglecting O(52) and higher contributions, the expansion
approximates surprisingly well the full results of the cone
algorithm for cone radius up to R = 0.7 in applications for
proton-proton collisions [14].

The main advantage of the approach in the present case
is that it is possible to relate analytical results on one-
particle-inclusive cross sections calculated previously [5],
where all collinear divergences have already been canceled
or factorized into parton densities and fragmentation func-
tions, to the single-jet-inclusive cross section, for which the
SCA gives an analytical expression as a function of the
cone aperture. As in Ref. [5], we restrict the discussion to
the case of nonvanishing transverse momentum. The limit
of vanishing transverse momentum requires a more in-
volved treatment of collinear singularities [15,16].
Schematically, we start with the finite one-particle-
inclusive cross section, we undo the factorization of final
state collinear singularities into fragmentation functions,
which of course is not pertinent in the case of jet cross
sections. Then, we add contributions that are not accounted
for in the one-particle-inclusive fragmentation scheme, i.e.
jets formed by two partons. The result is completely finite
and for phenomenological applications can be convoluted
with parton densities just as in the case of the one-particle-
inclusive cross section. In practice, the approach is equiva-
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lent to having defined effective jet fragmentation functions
that factorize the final state singularities.

A. Kinematics

In order to implement the approach in the case of DIS,
we start defining the total cross section for the partonic
process a + [ — 1Jet + I' + X with n partons in the final
state:

A(n,i)' 2
da-g—>1_]f;t — 62 . i flmgjln|2dps(n)
dxpdQ EXpSy Sn

> d3p jet
X80 — 2B 357 | )

jet
where p defines the jet momentum in terms of the mo-
menta of the n partons, £ is the momentum fraction of the
parent hadron carried by parton a, Sy = (P + [)? is the
squared energy of the collision in the lepton-proton center
of mass, and xp the usual Bjorken variable. The index i =
M, L stands for transverse and longitudinal contributions,
respectively. S, is a symmetry factor that account for

identical partons in the final state.

Since the last two factors between square brackets in
Eq. (1) are Lorentz invariant, we can evaluate the latter in
the hadronic center of mass while the former in partonic
center of mass. These frames are defined by P+ g = 0and
Da. + g = 0, respectively, with P and p, = £P the mo-
menta of the initial state proton and parton, respectively. In
the hadronic center of mass frame, it is convenient to use
the transverse energy, E |, and pseudorapidity n, while in
the partonic frame, we use the same variables as for the
one-particle-inclusive case [5]:

_ u
YT
=(Q2+s)(s+t+u)=s+t+u 2)
s(Q*> + s+ u) s(1—y)’
_ U
Q*+S ;
(Q*+8(S+T+U) S+T+U )
zZ= = ,
S(Q*+S+U) S(1-Y)
with
s=(g+tp) S=(g+P? 4
1= —2q " pju T'=-2q" pju =1 %
u= _2pa " Piet U= =-2pP- Pjet = I/l/f (6)

Replacing the jet phase space in Eq. (1) we find

de™

dOA'(”) li 1 — ljet wE|
Tlazljet = — e , dE dn, (1)
drgd0? € f dxzdQ%dydz w3(1—y) "
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where we have introduced
de™ i

= M, |?dPS®

dxpdQ*dydz ]l anl

X [69 (i — ﬁ)ZEjet][W%(l - y)} ®)

and C, = ¢?/(x%5%S,,). We omit from now on the index i,
since all the results that follow are valid for both transverse
and longitudinal components. Notice that Eq. (8) is valid in
d = 4 dimensions. Convolving the partonic cross section
with appropriate parton densities f,(£), the hadronic cross
section can be written as

1 da—ljet _ 1 1 fz dz fu(é:)
2E| dxgdQ*dE dn Q*+S1—y Jol—2z &
do.(")

a—1ljet
—_— 9
X dxgdQPdydz ®

At variance with the one-particle-inclusive case, the vari-
able y is completely determined by £ and 7,

ﬂe*n (10)

y=Y=Sl/2 ,

while z is not fixed. Equation (9) coincides with Eq. (13) in
[5] when D;({) = &(1 — £).

B. Jet contributions

In addition to the jet analog of the one-particle-inclusive
contribution, where the detected final state jet is originated
from the fragmentation of just one final state parton, while
the other partons play as spectators and are integrated over,
we have to consider additional contributions in the full jet
cross section. The former will be denoted as &,_,;, with
initial state parton a and fragmenting parton i. The latter
include, on the one hand, contributions accounting for the
situations in which the jet is formed by two partons which
are denoted as &,_;;. On the other hand, we have to
subtract configurations in which the cone that defines the
jet contains two of the final state partons, that in the one-
particle-inclusive case were nevertheless classified as
These contributions will be denoted as &,
Discriminated by their partonic content, we have the fol-
lowing O(a?) contributions:

B g—gtgtaq
(678, — 2d6 . yp)] + [2d6, .,

—2dé, 0]+ 2dG

A

O 4—i-

o 2da—q—*s’(g)

+do

q—g(q) 998 q—88’

Y

(i) g—qg+q +q"
[d6 2]+ [do, .y — d&
+[d6 g — do

q—'q’(t?’)]

G gmgqg)) T d6ymyq,  (12)
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(i) g =g+ q+ g
[2d62., — 2d6 .y + [dG4g — 2d&
+2d6

—i(a)]
(13)

=99’

(iv) g—g+q+q

[d‘}gﬁg —dGg g~ dé’gﬁg(é)]
+ [da'g—w - dé’g—*q(g)] + [da'g—w? - d&g—*c?(g)]
FdOg gyt ATy gs (14)

where the & ,_,; terms are those already taken into account
in the one-particle-inclusive cross section, with the ade-
quate combinatoric prefactors. Notice that cross sections
with identical partons in the final state get a symmetry
factor, so we have to add them to the corresponding matrix
elements, before factorization. For instance, all the matrix
elements involved in the first and third reaction have to be
multiplied by 1/2 due to the presence of two gluons or two
identical quarks in the final state.

In the small cone approximation it is customary to
neglect O(5%) contributions in the cross section, which
means we can approximate the matrix elements associated
to two partons forming a jet with the corresponding col-
linear limit. This simplifies drastically the calculation be-
cause in this limit the O(a?) 1 — 3 matrix elements
factorize into O(«,) 1 — 2 matrix elements times LO
splitting functions. In the list above, we have skipped terms
that vanish in this approximation. For example, in the
second reaction ¢ — g + ¢’ + g', the matrix elements van-
ish in the limit in which quark ¢ is collinear with any of ¢’
or g'.

Restricting ourselves to the limit when partons j and k
become collinear, for both d& . and dé . i, the cor-
responding matrix elements are given by [17] (d = 4 + €):

jlle 2 _ .
|1Ma—»ijk|21_’s—477//~ “a | Miyl*Pi_jle, €), (15)
ik

where the momenta of the parent parton, J, is defined in
terms of those of partons j and k:

KX nm
pf=ap’f+k'l‘——l —,
a 2py-n
(16)
pr= (- app - - L "
k / L 1—a2p,-n

with  p,-k, =n-k;, =0 and  pi=n?=0.
Consequently

(1 - a)py — ap;
1 -2«

ps= — k. 7)

Notice that due to the singularities (poles in €) arising from
the s, factor in the denominator when integrating over the
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phase space, we need the splitting functions in (15) up to
order €. The poles in @ = 1 in the diagonal kernels (J = j)
will give rise to poles in z = 0.

C. d& . contributions

As we mentioned, these contributions correspond to
configurations where the jet is formed solely by parton j,
but parton k lies within the cone. They can be computed
along the lines of what has been done in Ref. [14] but now
for DIS kinematics. In the partonic center of mass frame
we have

Sik = 2p] ‘P = 2E1Ek(1 - Cosﬁjk),
g1/2 §1/2 (18)
EJ'ZT(I —z(1 =), Ek:TZ(l -,

while the collinear limit implies @ = 1 — z(1 — y). Then,
we can write the matrix element for d&,_, ) as

—z(1—y) 1
Z2(1—y) E5(1—cosb)

jllk 1
|Ma—>ijk|2]_)

R 2
X P, e)dmu cay ‘ Ma_,,-,(s, y

-y
l—dl—w>
(19)

For the phase space we have,

24=d /¢ \d—4
dpS(3):7T_S7<_> in=40..dcosf ;. (1 — y)?
G 1"2(‘1;2) pym sin ixdcost (1 —y)*z
X (1= y)y22(1—2)) =9 2dydz, (20)

and combining with the matrix elements in (19), we have

do,_,; 1 /6\¢
a—j(k) l+e. e
i [N o S =

X Pyyla=1-z2(1-y,0l @

where
Foo_f a2 1 (U-pi-9)P
RS2 G el2(1+9  1-z(1-y)
s \e y g
X € \M_” ) =
(477,uz> # ¢ J<s R _y)>

(22)

Notice that with this notation, the variables y and z in
Fasis(s,y,z) are defined in terms of the second parton
in the final state J. As mentioned above, the poles in & = 1
in the diagonal kernels, appear as poles in z = 0 (notice
that y = 1 is protected by the 1 — y factor coming from the
phase space). This poles have to be prescribed as usual,
leading to double poles in €, together with the appearance
of 6(z) and “plus* distributions in z = 0. The double poles
cancel with terms coming from do,_,;, whereas the re-
maining 1/€ poles cancel terms generated when the frag-
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mentation function factorization of the one-particle-
inclusive cross section is undone.

D. d6 .. ji contributions

These terms account for jets formed by two partons, j
and k. In the collinear limit (15) we have:
E; E

— ~_J ~
Ejg = Ej=—= ,
a 11—«

(23)

where « is again the momentum fraction in the splitting
function. The phase space in this case is

dpPS ® = | —
(4m)° T2(42) \4mr

E\d—4 E,
X (%) %ad_3dasind_30id9fdydz,
S k : '
(24)

where we have chosen the frame in such a way that the jet
momentum is oriented in the z axis. This result exhibits
some differences with the previous case. Because of the
presence of the 8(z) function, the dé,_.j pieces only
contribute at z = 0. On the other hand, now we have to
perform explicitly the integration over the argument of the
splitting functions, «. In addition, we see that the only
dependence on the angle in the matrix element comes,
again, form the s; denominator. However, now we are
integrating over 6; and not over 6 ;. As in [14], we find

and the integration limit over 6; is given by & if E; < Ej
and by (1 — @)/aé if E; > E;. Performing the angular
integrals in the partonic center of mass frame,

Ao, 1 /8\e 1 1
ek — () F, .8 da| O(= — a)as
dxpdQ*dydz S, <2> Fais (Z)ﬁ a[ (2 a>a
+ @(a - ;)(1 - a)ei|p.]—'jk(a? €),
(26)

E. Cancellation of singularities

The last step consists in reverting the factorization of
final state collinear singularities already done in the finite
one-particle-inclusive cross section. The simplest way to
implement this step is simply to add to the already finite
one-particle-inclusive cross section the terms we custom-
ary factorize into fragmentation functions, with the oppo-
site sign. This provides a check of the whole calculation, as
the simple poles still appearing in the correction terms have
to cancel when we add these contributions.

The terms that have to be added can be read from the
following factorization prescription formula for the par-
tonic cross sections at first order, when renormalizing
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fragmentation functions:

do,_,; a2 1—y T0+¢€/2)
dxpdQ*dy 27T< e)l —z(1—y) T'A+e
> M% E/2 d@'a_.,-
(47m2> dxpdQ*dy
X3 Pl = z(1 = y)). 7)
3

The splitting kernels in (27) are the regularized ones in 4
dimensions. The Born level cross sections are, in turn,
given by:

dé..; & 1 1 s\
dxgdQ*dy  x35% 8w I'(1 + €/2) (47T,LL2>
Xy 21 = ) pS | Ml (28)
J

The additional factor of 1/£ in the hadronic cross section is
simply re-expressed in terms of the new variables and
factors out everywhere.

Taking into account all the first order cross sections, we
have the following contributions coming from reverting
final state factorization

dG e = dbg(ge) T dGg(gq) T AT g(gg)
+ Z(dé-q—'(q’qi’) + da—q—'((]d)) + dé'g_,(qg)
q/
tdGg(go) T dFg(gq) T AT g5 (29)
where we have introduced the notation do ,_.(jy):
do ik (1 + €/2) (M3)\e/2
e SD) T F (=)
dxpdQ*dydz r'a+e s
X (1 =z(I =y) P ju(l — z(1 — y)).
(30)

Notice that we have already added a minus sign to these
contributions, as they must be subtracted to recover the
original, unfactorized, one-particle-inclusive cross section.
We also took into account the fact that at first order, the
sum in Eq. (28) contains only one term.

As mentioned, doubles poles must cancel explicitly
between the o, and o, j contributions. The remain-
ing single poles must cancel with do,_,j). To make this
cancellations more transparent, it is convenient to group
the different contributions in Eqgs. (11)—(14) and the ones
in (29). Starting with the quark initiated reactions and
omitting do,_,; contributions (which are already finite)
we have
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fo— —[2d6 —gg) — A0 4] — nfldG 41— yz)

+dGgig) ~ A6 y(gq) ~ dG -]
a Dd&q—'q(g) —2dG gy — dG q*(qg)]
—[2d6 ygq) = AT gy — dOy(ge) — 1pdO 4y )

€1y
For the gluon initiated reactions, we have:
fo— ~ldbgyiq) = dOgioq] — [dFgq) — dO o)
—[d —dé —dé
—[d —do —do

OA'g—'q(g) §—4qg g—'(qg)]

g—»(t?g)]- (32)

Tg—a(e) §—ag
In the Appendix, we list the results corresponding to the
cancellations for each of the terms in square brackets,

which completes the calculation.

III. COMPARISON WITH MONTE CARLO
RESULTS.

Having obtained the finite expressions for the NLO
corrections in the SCA, in this section we investigate the
accuracy of the approximation. In Fig. 1 we compare the
outcome of the SCA for the single-jet-inclusive DIS cross
section with a full Monte Carlo NLO calculation of [10].
The jets are reconstructed in the Breit frame and the rates
between both results are computed in the typical kinematic
range of forward jet DIS experiments at HERA. Jets are
defined using the inclusive k7 cluster algorithm [18] in the
Monte Carlo, and a cone radius of R = 0.7 for the SCA
value for which the agreement between both jet definitions
is maximized.

The rates are presented as a function of the transverse
momentum E7 and rapidity n of the jet, both measured in
the laboratory frame, and Bjorken momentum fraction xp
In both cases we use the MRST(02 NLO set of parton
densities [19] and we compute a, at NLO fixing Aycp
as in the MRST analysis so a,(M;) = 0.1197. The rapidity
variable varies between 2.0 and 3.5, the Bjorken variable
spans the interval between 0.0005 and 0.01, the transverse
momentum of the jet starts at 5 GeV, and 0? ranges from
20 to 100 GeV?.

As it has been observed in Refs. [13,14], for hadronic
collisions, even for rather large cone radius the SCA gives
acceptable approximations within less than a 10% of the
full Monte Carlo result. This is also the case for DIS and
the rates show a very mild dependence in the kinematical
variables.

Certainly, the accuracy of SCA is the better for smaller
cone radius, however the error introduced by the approxi-
mation with R = 0.7, which is of the order of a 10%,
always underestimating the cross section and with a very
mild dependence on the relevant variables, is comparable
or smaller than the theoretical uncertainty coming from the
particular choice of the factorization and renormalization
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FIG. 1 (color online).

scales, characteristic of the NLO corrections in this kine-
matical region. As we show in the following section, this
means that we can safely use the SCA results as an estimate
of the size and behavior of the NLO corrections. For
comparison, in the Fig. 1, we also plot as a band the
uncertainty resulting from varying the factorization and
renormalization scale by a factor of 2 in the full
Monte Carlo result.

IV. PHENOMENOLOGICAL CONSEQUENCES

Having established our level of confidence in the SCA
results, we proceed analyzing the distinctive features of the
NLO corrections in the forward region. We do the analysis
in the typical kinematic region tested by DESY experi-
ments, where large higher order effects have been
observed.

The most striking of these features is the size of the NLO
corrections as the rapidity of the jets increases. In Fig. 2 we

Er n

Ratio of NLO SCA estimate and the full Monte Carlo prediction with k7 jet reconstruction.

show both LO an NLO partonic level expectations coming
from the SCA approach in three different regions of rapid-
ity for 5 < 0? <100 GeV? and 0.2 < y,; < 0.6 as a func-
tion of transverse jet momentum. Clearly, NLO
corrections, which are moderate for central rapidities, be-
come significantly large in the forward region. This feature
is due to a suppression of the LO contributions rather than
to an increase in rapidity of the cross sections. K-factors
can exceed an order of magnitude there, invalidating the
lowest order approximation. We have included for refer-
ence the data obtained by H1 in that kinematical range
[20], although one should keep in mind that for a precise
comparison hadronization effects should also be taken into
account.

Another interesting feature of NLO corrections to be
taken into account is the rather large uncertainty these
corrections show associated with the choice for the facto-
rization and renormalization scales. In Fig. 2 we adopted
u? = Q7 for the factorization and renormalization scale.

7R -I<n<0.5 |L 0.5<n<lL.5 [ 1.5<n<2.8
© E o : :
S _— . .
= 2 =
= w2}
g | - T .
'\g 10 k - L 1
S v EF
I ¥ 3 T 3 ——
.1:
10 o+ HI 3 O
[ NLoy=0Q’ : _IF $
10-2 L--- Lo w=0 3 I 3
| N N | o E |
10 10 10
E,[GeV]

FIG. 2 (color online).

Size of NLO corrections as a function of Ey for different rapidity regions.
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Lﬂ& —-e— [=—=" ] -
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O
~=
I F E 3 = =
—e—|
10
10 F o iHI 3 3
2 f == NoyPelo? B —4 =4
10 3 1 3 1 3 1
10 10 10
E,[GeV]

FIG. 3 (color online).

The choice for these scales is in principle arbitrary; the
differences found in any perturbative estimate coming
from some particular choice for the scale or other, become
smaller as more terms in the perturbation series are in-
cluded. In inclusive DIS Q? is the typical choice, while E
is the one favored in jet physics. In Fig. 3 we plot the
uncertainty bands corresponding to vary the scale from Q°
to EZ, the two main scales of the process under
consideration.

With such a large scale uncertainty, any particular
choice will probably lead to miss the data at some point.
One possible choice in these cases is to take the average
between them, which leads to an intermediate estimate
within the band. Again we can see that in the most forward

Scale uncertainty in NLO corrections as a function of E; for different rapidity regions.

bin, the uncertainty associated to the choice of the scale
becomes more prominent and may be as large as a factor of
2.

More recently the ZEUS collaboration have performed a
detailed study of the single jet cross section in different
rapidity [3] regions comparing the data with the estimates
coming the Monte Carlo calculation of [10] and assessing
the uncertainty due to the choice in the factorization and
renormalization scales. There it is found a similar pattern
of increase in the k-factors and scale uncertainty as the
rapidity of the jet increases. As we shown in the previous
section, our estimate based on the SCA agrees with the
Monte Carlo result within a 10%, discrepancy which is not
significant compared to the scale uncertainty, found to be

— 1200 600 600
> -1.0<n<0.5 0.5<7<1.6 1,6<n<2.8
&}
N 2_ (2, 42
S W= (E7+Q?)/2 —NLO
B 1000 A T 500 500 RN
\ —99g
~ o
m |‘ [ — gg -
I sl no an fNLO %
‘ i _
= ' e[¢)
F o\ -
600 \\ 300 300
‘I
w0l \ 200 200
199\
200 100]- 100
'99\

FIG. 4 (color online).
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JEJE =

FIG. 5. Gluon initiated contributions at O(a?)

between 50 and 100%. Within the SCA uncertainty we
fully agree with the analysis of [3] and their conclusions in
that kinematics.

In order to better understand the correlation between
higher order corrections and rapidity, it is useful to dis-
criminate the different partonic contributions, classifying
them as in the one-particle-inclusive case in terms of the
initial state parton, i, and the one taken as the seed for the
jet, j, asin o, ;. The additional contributions coming from
the first two terms in Eq. (32) were added to the o,_,,
contribution, the remaining terms in that equation were
associated to o,_,,. Contributions in Eq. (31) were taken
together with o_,.

In Fig. 4 we show the different partonic contributions in
the three rapidity regions. While in the central region the
LO contribution is very close to the full NLO estimate, in
the forward region it is significantly smaller. In the former
region, the cross section is dominated by the o,_,, con-
tributions (an initial state gluon with a quark originating
the jet), which are already present at LO, while in the latter
the dominants are o,_,,, which are pure NLO, shown in
Fig. 5. These contributions start at order a2 so the NLO

PHYSICAL REVIEW D 73, 054014 (2006)

result is its lowest order estimate. The reason for their
dominance over the LO is just the kinematical region
chosen which suppress LO configurations. The dominance
of the o,_,, over o,_, NLO contributions can be traced
back to the negative ’plus’ contributions which are propor-
tional C% in the case of the former and to CrC, for the
latter.

Since the dominant partonic process in the forward
region is accounted, at order a2, only by only its lowest
order contribution, it is effectively a LO estimate and most
probably receives significant higher order corrections. The
first order corrections for other partonic processes in this
kinematic region rise typically to 50% effects, so it would
not be surprising that the NLO estimate falls short of the
data, specially if a more stringent kinematic range is
explored.

This is precisely what ZEUS and H1 have reported in
their respective analyses of measurements in the very for-
ward region in Refs. [4,21], respectively.

In Fig. 6 we plot the NLO estimates for the cross section
as distributions in different variables together with ZEUS
preliminary data [21]. The estimate correspond to rapid-
ities between 2.0 and 3.5, the Bjorken variable in the
interval 0.0004 and 0.005, the transverse momentum of
the jet starting at 5 GeV, and the virtuality of the photon
Q? range from 20 to 100 GeV?2. The NLO estimate falls
short of the preliminary data, and only allowing a rather
large scale uncertainty it may be considered consistent
with the measurements, specially at small xp.

- — 0.02
S ZEUS PRELIMINARY | £ o.018 — 05u<p<2u
ST [ — NLO |°N0.016 — =B+
§101 - Lo | ¥ W= (B0
<

do/dn (nb)

FIG. 6 (color online).

0.005

NLO estimates against ZEUS very forward preliminary data [21]
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FIG. 7 (color online).

The same conclusion is reached after comparing with
HI1 data in the very forward region [4] as shown in Fig. 8.
HI data in this last figure correspond to kinematical cuts
slightly different to those of ZEUS data in Fig. 6, but the
discrepancy between the NLO estimate and the data, and
the resulting scale uncertainty is similar. Notice that at
variance with Ref. [4], again we have taken the average
between the photon virtuality and the squared transverse
momentum of the jet as factorization and renormalization
scales in the NLO estimate.

0.002 0.004

<
E ¥ HI
~§:51000 — NLO
© --- LO
<
0.5u<p <2p

800 W=(Ej+Q))/2
600

400

200

FIG. 8 (color online).
data [4]

NLO cros sections agianst H1 forward

XBj

Partonic contributions in Zeus very forward measurement [21]

Further insight is obtained analyzing the different par-
tonic contributions as a function of 7 and xp. In Fig. 7 it
can be noticed that the o,_,, contributions dominate the
cross section, specially at low xp where the gluon parton
density grows dramatically and in the middle of the rapid-
ity range. In these two regions one can expect the first order
corrections to these processes, starting at NNLO, to be
significant. In fact, it is there where the NLO estimate
can be more distant to the data with a particular choice
for the scale, as can be seen when comparing with the
preliminary data in Ref. [21]. Identical conclusions are
reached in the case H1 data [4].

In Ref. [22] it had already been pointed out that the
consistent inclusion of the direct and resolved virtual pho-
ton contribution to the forward di-jet DIS cross leads to
considerable increase in the cross section and improves the
agreement between theory and data. These contributions
have also been analyzed in the context of hadron electro-
production in [7,23] and there it has been suggested that the
higher order corrections to the resolved contribution could
be related to NNLO contributions.

At larger xp and 7, O gg contributions decrease, even
below the LO contribution, but the other NLO contribu-
tions keep the total NLO effect very large. Of these con-
tributions, the most prominent is U(q’i).q, that corresponds to
diagrams, like the ones in Fig. 9, where the two quarks

FIG. 9. Typical quark initiated contributions at O@(a?)
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FIG. 10 (color online).

lines have different flavours, but where the quark that
initiates the jet has the same flavour as the one in the initial
state.

Going to even higher rapidities, these last contributions
eventually dominate the cross section, with the LO esti-
mate being completely suppressed as shown in Fig. 10. In
this region, with the two dominant contributions being
computed at the lowest order, the scale uncertainty of the
NLO estimate is twice as large as that found in the rapidity
region of Fig. 7.

VI. CONCLUSIONS

We have computed the single-jet-inclusive deep inelas-
tic scattering cross section at @(a?) in the small cone
approximation. We found that this approach approximates
the full NLO Monte Carlo results within a 10% accuracy,
error which is fairly moderate compared to the main source
of theoretical uncertainty, the scale dependence.

As in the case of hadroproduction in deep inelastic
scattering, a closely related process where the LO picture
fails to give a good descrption, we have found that the
dominant partonic processes in very forward jet production
start at order a2, being effectively a lowest order estimate,
and that higher order QCD corrections improves the agree-
ment between estimates and data. As in any lowest order
calculation, there is a large factorization scale uncertainty

which can not be neglected, and it is likely that there will
|

PHYSICAL REVIEW D 73, 054014 (2006)

So
S

(nb)

B
S

do/dx

Partonic contributions in an extremely forward region

be large corrections at the subsequent order in perturbation.
Although taking into account this large dependence on the
choice for the scale, one can bring agreement between data
and NLO estimates, the difference between them for a
particular choice is maximal precisely where the partonic
contributions computed for the first time are dominant.
This feature is expected to be even more apparent at higher
rapidities, and the corresponding measurements will con-
stitute an obligatory benchmark for the study of QCD at
NNLO.
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APPENDIX

Here we list the finite results obtained for each of the
terms in square brackets in Egs. (31) and (32).

ol = _j:qﬁqug)E[(l - Y)Hezeﬁq—*gq(l —z(1 =)l

T( + €/2) (M2 \e/2 .
- m(TD> (1= y)(1 = 2(1 = ) Pygy (1 — 2(1 - y))}, (A1)
Ty =—2n;F qaqg{@)E[(l — WP, (1 — 2(1 = y))]
T'( + €/2) /M2 \e/2
T (M) R - 3 = Pyt — 1 - ) (A2
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