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Occupation number formalism for arbitrary Nc baryons
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Abstract

A general method is presented for computing matrix elements of quark operators on baryonic states with low strangeness and arbitrary number
of colors Nc. These results are useful in applications of the large Nc expansion to baryons and exotics. As an application we compute the matrix
elements of strangeness changing operators contributing to kaon couplings to ground state baryons and pentaquarks, in broken SU(3).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the large Nc limit, with Nc the number of colors, a new
symmetry emerges in the baryon sector of QCD. This is the
contracted symmetry SU(2F)c , with F the number of light
quark flavors [1,2]. This symmetry can be used to organize the
1/Nc expansion of any quantity as an operator expansion. The
nonrelativistic quark model is a convenient bookkeeping tool
for implementing this expansion [3,4]. The baryons are con-
structed by placing the Nc quarks into one-body states. For
example, taking F = 3 a possible basis of one-body states con-
sists of

(1)|u↑〉, |u↓〉, |d↑〉, |d↓〉, |s↑〉, |s↓〉,
transforming in the fundamental representation of SU(6). The
operators representing physical quantities such as masses, axial
currents, etc., can be constructed from quark operators anni-
hilating the basis states in Eq. (1). The building blocks are
bilinears of the form q†ΛAq with ΛA the generators of SU(2F)

J i = q†
(

σ i

2
⊗ 1

)
q,
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T a = q†
(

1 ⊗ λa

2

)
q,

(2)Gia = q†
(

σ i

2
⊗ λa

2

)
q.

One important technical problem in the implementation of
this program is the computation of the matrix elements of these
operators on quark model states. Various methods have been
discussed in the literature for this purpose. The computation of
these matrix elements for F � 3 and arbitrary Nc turns out to
be rather involved. For F = 2 a method for computing with
any Nc was discussed in Refs. [5–7]. On the other hand, keep-
ing Nc = 3 (or other small values) other methods are available,
such as the holomorphic representation of the harmonic os-
cillator discussed in [8]. The difficulty is connected with the
necessity of manipulating complicated expressions involving
SU(3) Clebsch–Gordan (CG) coefficients. Although not insur-
montable (applications of the large Nc expansion in SU(3) have
been presented in Ref. [9] and analytic expressions for some
arbitrary Nc CG coefficients have been computed recently in
Ref. [10]), extracting the form of the result for arbitrary Nc re-
mains a challenge.

In practice, we are interested only in baryon states with at
most a few strange or heavy quarks. Therefore it is natural to
expect that the large Nc dependence comes from the large num-
ber of light quarks in the u,d sector. In this Letter we give the
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details required for constructing explicitly any such states and
computing matrix elements between them. The advantage of
our method is that only usual SU(2) CG coefficients are ever
required, and closed form expressions are found for all matrix
elements for arbitrary Nc.

2. States

Consider the spin-flavor group SU(6), which contains as a
subgroup (see, e.g. Ref. [11])

(3)SU(6)SF ⊃ SU(4)SI ⊗ SU(2)K ⊗ U(1)ns .

The factors on the right-hand side correspond to spin–isospin
SU(4), the strange quarks’ spin SU(2)K , and the U(1) associ-
ated with strangeness −ns .

We would like to construct the decomposition of a baryon
state containing Nc quarks and transforming in the completely
symmetric representation SNc of spin-flavor SU(6) into irre-
ducible representations of the subgroup on the rhs of Eq. (3).
This is given by

(4)SNc = (SNc ,1,0) ⊕ (SNc−1,2,1) ⊕ (SNc−2,3,2) ⊕ · · · .
We denoted the representations of SU(2)K by their multiplic-
ity 2K + 1, with K the spin of the strange quarks. The terms
written have K = |ns |/2, which corresponds to the maximally
possible value of the strange quark spin. This is required by
Fermi statistics as applied to the system of the strange quarks,
assuming that they are all in a completely symmetric orbital
wave function. This is satisfied by ground state baryons, but not
by orbitally excited states. We will comment on this case below.

The wave function of a hadron containing Nc quarks, of
which ns are strange quarks, factors according to Eq. (4) into a
product of wave functions for its components. The nonstrange
system has a symmetric spin-flavor wave function. For describ-
ing its state, it is convenient to use a Fock state formalism,
familiar from the theory of many-body systems [12].

Since the orbital wave functions of all quarks are the same,
we can label the state of a system of Nc identical quarks by giv-
ing the occupation numbers of the one-body spin-flavor states
in Eq. (1). We introduce the “6n-symbol” defined as

{n1, n2, n3, n4, n5, n6}

(5)

=
√

n1!n2!n3!n4!n5!n6!
N !

(
u

n1↑ u
n2↓ d

n3↑ d
n4↓ s

n5↑ s
n6↓ + perms

)
,

with N = ∑6
i=1 ni . These states are normalized as〈{n′

1, n
′
2, n

′
3, n

′
4, n

′
5, n

′
6}

∣∣{n1, n2, n3, n4, n5, n6}
〉

(6)= δn1n
′
1
δn2n

′
2
δn3n

′
3
δn4n

′
4
δn5n

′
5
δn6n

′
6
.

Nonstrange hadrons have n5 = n6 = 0 and can be described by
“4n-symbols” {n1, n2, n3, n4}. For simplicity we will use this
notation when appropriate.

The nonstrange states have spin and isospin satisfying
I = J . Their spin-flavor symmetric wave functions can be given
in closed form as [6,7]
|II3J3;Nud〉
=

∑
i

(
Nu

2
Nd

2 I

i J3 − i J3

)

(7)×
{

Nu

2
+ i,

Nu

2
− i,

Nd

2
+ J3 − i,

Nd

2
− J3 + i

}
,

where Nu,d are the number of up and down quarks, respectively

(8)Nu = Nud

2
+ I3, Nd = Nud

2
− I3,

with Nud = Nc −ns . A few representative nonstrange J3 = + 1
2

states are

(9)p↑ =
√

2

3
{2,0,0,1} − 1√

3
{1,1,1,0},

(10)Δ++
↑ = {2,1,0,0}.

Strange quarks are also straightforwardly added

(11)Σ+
↑ =

√
2

3
{2,0,0,0}s↓ − 1√

3
{1,1,0,0}s↑,

(12)Λ0↑ =
(

1√
2
{1,0,0,1} − 1√

2
{0,1,1,0}

)
s↑.

We could have equally well written these states in terms of the
“6n-symbol” introduced above, but we gave them here in a form
which is not symmetrized under the exchange of the s quark
with the u, d quarks. While the two choices give the same re-
sults for one light s quark, the expressions Eqs. (11), (12) are
appropriate in broken SU(3) and for hadrons containing one
heavy quark, with the replacement s → Q.

Exotic states containing both quarks and antiquarks can
also be constructed. We consider here only positive parity
pentaquark-type states, containing Nc + 1 quarks and one anti-
quark. We take the Nc + 1 quarks to contain only u, d quarks
in a spin-flavor symmetric state, as in Ref. [13], while the an-
tiquark can be a strange or heavy quark. Representative states
with I = 0,1 can be chosen as

(13)

Θ+
↑ =

(
1√
3
{2,0,0,2} − 1√

3
{1,1,1,1} + 1√

3
{0,2,2,0}

)
s̄↑,

Θ++
1↑ (I3 = +1)

=
(

1√
2
{3,0,0,1} − 1√

6
{2,1,1,0}

)
s̄↓

(14)−
(

1√
6
{2,1,0,1} − 1√

6
{1,2,1,0}

)
s̄↑.

Next we consider the action of quark operators on these
states. Any such operator can be constructed from one-body an-
nihilation qi and creation q

†
i operators, where i = 1–6 denotes

one of the basis states in Eq. (1). Their action is given explicitly
as

(15)qi{. . . , ni, . . .} = √
ni{. . . , ni − 1, . . .},

(16)q
†
i {. . . , ni, . . .} = √

ni + 1{. . . , ni + 1, . . .}
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with all occupation numbers nj �=i unchanged. They satisfy the

usual commutation relations for bosonic operators [qi, q
†
j ] =

δij .
As an example of their application, consider the isospin low-

ering and raising operators. Their action can be obtained by first
writing them in terms of quark operators

(17)I− = d
†
↑u↑ + d

†
↓u↓, I+ = u

†
↑d↑ + u

†
↓d↓

followed by the application of the rules Eq. (15). One finds

I−{n1, n2, n3, n4}
= √

n1(n3 + 1){n1 − 1, n2, n3 + 1, n4}
(18)+ √

n2(n4 + 1){n1, n2 − 1, n3, n4 + 1},
I+{n1, n2, n3, n4}

= √
n3(n1 + 1){n1 + 1, n2, n3 − 1, n4}

(19)+ √
n4(n2 + 1){n1, n2 + 1, n3, n4 − 1}.

These relations are useful for obtaining the entire isospin mul-
tiplets from the representative states listed above.

3. Matrix elements

In broken SU(3), the SU(6) generators in Eq. (2) can be de-
composed into generators of the subgroup Eq. (3) plus operators
mediating transitions between sectors of different ns . They can
be chosen as

J i, I a = T a, Gia = Gia (i, a = 1, . . . ,3),

t̃α = q†αs, tα = s†qα (α = ±1/2),

Ỹ iα = q†α σ i

2
s, Y i

α = s† σ i

2
qα,

(20)J i
s = s† σ i

2
s, Ns = s†s,

where q†α = (u†, d†)α and qα = (u, d)α . The adjoint of a
spherical tensor operator Oj,m is defined in terms of its compo-
nents as O†j,m ≡ (Oj,−m)†(−1)j−m = (O

j
m)†, where indices

are raised and lowered by contracting with the metric ten-
sor [14]

(21)O
j
m =

∑
m′

(
j

m m′

)
Ojm′

, Ojm =
∑
m′

(
j

m′ m

)
O

j

m′

defined as

(22)

(
j

m m′

)
= (−1)j−mδm,−m′ .

The most general n-body operator can be constructed from the
building blocks shown in Eq. (20).

The matrix elements of the strangeness conserving opera-
tors Ia , Gia , Ns , J i

s can be obtained using well-known SU(2)

methods [5,6]. The matrix element of Gia on states with Nud =
Nc − ns up and down quarks are given by

〈I ′I ′
3J

′
3|Gia|II3J3〉

(23)= 1
′ X(Nud)(I ′, I )

(
I 1 I ′
I a I ′

)(
J 1 J ′
J i J ′

)

2I + 1 3 3 3 3
Table 1
Reduced matrix elements Ỹ and t̃ for (sqNc−1) → (qNc ) transitions

Transition (I ′J ′, IJ ) Ỹ (I ′J ′K ′, IJK) t̃(I ′K ′, IJK)

Λ → NK̄
( 1

2
1
2 ,0 1

2

) √
3

2
√

Nc + 3 1
2
√

Nc + 3

Σ → NK̄
( 1

2
1
2 ,1 1

2

) − 1
2
√

Nc − 1
√

3
2

√
Nc − 1

→ ΔK̄
( 3

2
3
2 ,1 1

2

) − 1√
2

√
Nc + 5 –

Σ∗ → NK̄
( 1

2
1
2 ,1 3

2

) √
2
√

Nc − 1 –

→ ΔK̄
( 3

2
3
2 ,1 3

2

) 1
2

√
5
2
√

Nc + 5 1
2

√
3
2
√

Nc + 5

with X(Nud)(I ′, I ) = X(Nud)(I, I ′), given explicitly as

X(Nud)(I ′, I )

= 1

4

√
(2I ′ + 1)(2I + 1)

(24)×
√

(Nud + 2)2 − (I ′ − I )2(I ′ + I + 1)2.

For the matrix element of Gia on general states |JIns〉 contain-
ing Nud u, d quarks and ns strange quarks we obtain

〈I ′I ′
3, J

′J ′
3;ns |Gia|II3, JJ3;ns〉

(25)=
(

I 1 I ′
I3 a I ′

3

)(
J 1 J ′
J3 i J ′

3

)
X(I ′J ′, IJ ;K),

with

X(I ′J ′, IJ ;K)

(26)

=
√

2J + 1

2I ′ + 1
X(Nud)(I ′, I )(−)J+K+I ′+1

{
1 I I ′
K J ′ J

}
.

This matrix element has a 1/Nc expansion of the form

X(I ′J ′, IJ ;K)

(27)= NcX0(I
′J ′, IJ ;K) + X1(I

′J ′, IJ ;K) + · · ·
with the first two terms X0,1 in agreement with the model-
independent prediction following from the contracted symme-
try [2].

In the following we compute also the matrix elements of
the two strangeness lowering operators tα , Y iα (with raised in-
dices), and the two strangeness raising operators t̃ α , Ỹ iα .

We define the reduced matrix elements as

〈I ′I ′
3, J

′J ′
3;ns − 1|Ỹ iα|II3, JJ3;ns〉

(28)=
(

I 1
2 I ′

I3 α I ′
3

)(
J 1 J ′
J3 i J ′

3

)
Ỹ (I ′J ′K ′, IJK)

and similarly for Y iα , in terms of Y(I ′J ′K ′, IJK). The re-
duced matrix elements of tα and t̃ α are defined as

〈I ′I ′
3, J

′J ′
3;ns − 1|t̃ α|II3, JJ3;ns〉

(29)= δJJ ′δJ3J
′
3

(
I 1

2 I ′
I3 α I ′

3

)
t̃ (I ′K ′, IJK)

and similarly for t (I ′K ′, IJK).
The action of the strangeness changing operators on quark

states can be obtained straightforwardly using the rules Eq. (15).
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Table 2
Reduced matrix elements Ỹ and t̃ for (ssqNc−2) → (sqNc−1) transitions

Transition (I ′J ′, IJ ) Ỹ (I ′J ′K ′, IJK) t̃(I ′K ′, IJK)

Ξ → ΣK̄
(
1 1

2 , 1
2

1
2

) 5
3
√

2

√
Nc + 3 1√

6

√
Nc + 3

→ Σ∗K̄
(
1 3

2 , 1
2

1
2

) −
√

2
3

√
Nc + 3 –

→ ΛK̄
(
0 1

2 , 1
2

1
2

) 1√
2

√
Nc − 1

√
3
2
√

Nc − 1

Ξ∗ → ΣK̄
(
1 1

2 , 1
2

3
2

) − 2
3
√

Nc + 3 –

→ Σ∗K̄
(
1 3

2 , 1
2

3
2

) √
10
3

√
Nc + 3

√
2
3
√

Nc + 3

→ ΛK̄
(
0 1

2 , 1
2

3
2

)
2
√

Nc − 1 –

Table 3
The reduced matrix elements Y and t for Θ → NK,ΔK transitions

Transition (I ′J ′, IJ ) Y (I ′J ′K ′, IJK) t (I ′K ′, IJK)

Θ0
( 1

2

) → NK
( 1

2
1
2 ,0 1

2

) −
√

3
2

√
Nc + 1 1

2
√

Nc + 1

Θ1
( 1

2

) → NK
( 1

2
1
2 ,1 1

2

) 1
2
√

Nc + 5
√

3
2

√
Nc + 5

→ ΔK
( 3

2
3
2 ,1 1

2

) 1√
2

√
Nc − 1 –

Θ1
( 3

2

) → NK
( 1

2
1
2 ,1 3

2

) −√
2
√

Nc + 5 –

→ ΔK
( 3

2
3
2 ,1 3

2

) − 1
2

√
5
2
√

Nc − 1 1
2

√
3
2
√

Nc − 1

Θ2
( 3

2

) → ΔK
( 3

2
3
2 ,2 3

2

) 1
2

√
3
2
√

Nc + 7 1
2

√
5
2
√

Nc + 7

Θ2
( 5

2

) → ΔK
( 3

2
3
2 ,2 5

2

) −
√

3
2
√

Nc + 7 –

Typical relations are(
u†σ 3s

){n1, n2, n3, n4}s↓ = −√
n2 + 1{n1, n2 + 1, n3, n4},

(30)
(
u†s

){n1, n2, n3, n4}s↑ = √
n1 + 1{n1 + 1, n2, n3, n4}.

Repeated application of the s creation operators leads to states
containing multiple strange quarks. Typical matrix elements
that appear, for example, in the computation of Ξ → Σ matrix
elements are (in the notation of Eq. (7) for the nonstrange states)〈
111;Nc − 1

∣∣u†
↑
∣∣ 1

2
1
2

1
2 ;Nc − 2

〉

=
Nc−1

4∑
i=− Nc−5

4

(
Nc+1

4
Nc−3

4 1
i + 1

2
1
2 − i 1

)(
Nc−1

4
Nc−3

4
1
2

i 1
2 − i 1

2

)

(31)×
√

Nc + 3

4
+ i =

√
Nc

3
+ 1.

We show in Tables 1, 2 the results for the strangeness raising
transitions Ỹ (I ′J ′K ′, IJK) and t̃ (I ′K ′, IJK) for all ground
state baryons.

In Table 3 we give also the results for the kaon decays
of pentaquarks with symmetric spin-flavor wave function. The
computation of matrix elements of operators containing anti-
quarks requires some care. The antiquark spin doublet s̄ has
components s̄β = (−s̄↓, s̄↑)β . This can be used to express the
operators Y i

α, tα in terms of quark and antiquark one-body op-
erators as

Y 3
α = s† σ 3

2
qα − s̄

σ 3

2
qα

(32)= 1(
s

†
↑qα↑ − s

†
↓qα↓ + s̄↓qα↑ + s̄↑qα↓

)
,

2

tα = s†qα − s̄qα

(33)= s
†
↑qα↑ + s

†
↓qα↓ + s̄↓qα↑ − s̄↑qα↓.

For example, the action of a typical strangeness changing
operator on pentaquark states containing a s̄ quark is given by

(34)s̄σ 3u{n1, n2, n3, n4}s̄↑ = −√
n2{n1, n2 − 1, n3, n4}.

The results for the reduced matrix elements Y , Ỹ and t , t̃ take a
simpler form in the large Nc limit, and can be given in analytical
form. Expanding these operators as

(35)Y = √
Nc

(
Y0 + 1

Nc

Y1 + · · ·
)

and similarly for t and the strangeness raising operators, the
reduced matrix elements at leading order are given by (with
[I ] ≡ 2I + 1)

Ỹ0(I
′J ′K ′, IJK) = −Y0(I

′J ′K ′, IJK)

(36)= c(K,K ′)
√[I ][J ]

{ 1
2 1 1

2
I J K

I ′ J ′ K ′

}

and

t̃0(I
′K ′, IJK) = t0(I

′K ′, IJK)

(37)

= d(K,K ′)(−)J+I+K
√[I ]

{
K K ′ 1

2
I ′ I J

}
.

The result Eq. (36) was found in Ref. [2] using the method
of the induced representations for the contracted symmetry; the
result Eq. (37) is new. From Tables 1, 2 and 3 we find c(1, 1

2 ) =
3
√

2, c( 1
2 ,0) = √

6 and d(1, 1
2 ) = √

3, d( 1
2 ,0) = 1.

4. Discussion and extensions

The applications discussed so far were limited to symmetric
spin-flavor states. The methods of this Letter can be extended
also to mixed-symmetric states, which are relevant for the ap-
plication of the 1/Nc expansion to orbitally excited baryons in
the 70− [9,15,16], and to negative parity exotic states [17,18].

The corresponding decomposition in broken SU(3) of a state
transforming in the mixed-symmetric MSNc representation of
SU(6) is more complicated than that for the symmetric state
Eq. (4). Keeping only terms with ns = 0,1, this has the form

MSNc = (MSNc,1,0)

(38)⊕ (MSNc−1,2,1) ⊕ (SNc−1,2,1) ⊕ · · · ,
where the two terms with one strange quark have the wave
function of the nonstrange system in a MS and S representa-
tion of SU(4), respectively. The states in (MSNc−1,2,1) and
(SNc−1,2,1) that fall into MSNc can be constructed by requir-
ing that they are eigenstates of the quadratic SU(6) Casimir
C2 = ∑

A ΛAΛA with the eigenvalue of the MSNc represen-
tation.

The MS states of Nc − 1 nonstrange quarks can be repre-
sented in the usual way [7,9,15] as tensor products of a spin-
flavor symmetric “core” of Nc − 2 quarks with one “excited”
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quark. This can be accommodated in our formalism in a simi-
lar way as we treated the strange quark. New annihilation and
creation operators acting on this “excited” one-body state have
to be introduced, from which transition operators can be con-
structed in the usual way.

In conclusion, we presented in this Letter a new general
method which simplifies computations of matrix elements for
ordinary and exotic baryon states, containing both light and
strange or heavy quarks, for arbitrary number of colors Nc.
The main advantage of the method is that only SU(2) Clebsch–
Gordan coefficients need to be used at any stage, and closed
form results can be obtained for all matrix elements.
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