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Abstract

We consider the transverse-momentum (qT ) distribution of generic high-mass systems (lepton pairs, vec-
tor bosons, Higgs particles, . . . ) produced in hadron collisions. At small qT , we concentrate on the all-order
resummation of the logarithmically-enhanced contributions in QCD perturbation theory. We elaborate on
the b-space resummation formalism and introduce some novel features: the large logarithmic contributions
are systematically exponentiated in a process-independent form and, after integration over qT , they are
constrained by perturbative unitarity to give a vanishing contribution to the total cross section. At interme-
diate and large qT , resummation is consistently combined with fixed-order perturbative results, to obtain
predictions with uniform theoretical accuracy over the entire range of transverse momenta. The formalism
is applied to Standard Model Higgs boson production at LHC energies. We combine the most advanced
perturbative information available at present for this process: resummation up to next-to-next-to-leading
logarithmic accuracy and fixed-order perturbation theory up to next-to-leading order. The results show a
high stability with respect to perturbative QCD uncertainties.
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1. Introduction

This paper is devoted to study the transverse-momentum (qT ) spectrum of high-mass systems
produced by hard-scattering of partons in hadron–hadron collisions. In Ref. [1] we presented
some quantitative results on the qT spectrum of the Standard Model (SM) Higgs boson, produced
via the gluon fusion mechanism, at LHC energies. The formalism used in Ref. [1] is quite general
and applies to the transverse-momentum distribution of generic high-mass systems (lepton pairs,
vector bosons, Higgs particles, . . . ) produced in hadron collisions. The purpose of the present
paper is twofold. Owing to its general applicability, we find it useful to first describe and discuss
the formalism with quite some details. We then perform a more systematic phenomenological
analysis of the qT distribution of the Higgs boson at the LHC.
In this introductory section, rather than illustrating the resummation formalism in general

terms, we mainly consider the explicit case of the qT spectrum of the Higgs boson. This also
serves for underlying some general features of the formalism in concrete, rather than abstract,
terms.
Within the SM of electroweak interactions, the Higgs boson [2] is responsible for the mech-

anism of the electroweak symmetry breaking, but this particle has so far eluded experimental
discovery. Direct searches at LEP have established a lower bound of 114.4 GeV [3] on the mass
MH of the SM Higgs boson, whereas SM fits of electroweak precision data lead to the upper
limit MH < 260 GeV at 95% CL [4]. The next search for Higgs boson(s) will be carried out at
hadron colliders, namely, the Fermilab Tevatron [5,6] and the CERN LHC [7,8].
The main production mechanism of the SM Higgs boson H at hadron colliders is the gluon

fusion process gg→H , through a heavy-quark (mainly, top-quark) loop. When combined with
the decay channels H → γ γ , H →WW and H → ZZ, this production mechanism is one of
the most important for Higgs boson searches and studies over the entire mass range, 100 GeV!
MH ! 1 TeV, to be investigated at the LHC [7]. To fully exploit the physics potential of the gluon
fusion process, it is relevant to provide reliable theoretical predictions for the corresponding total
cross section and for the associated distributions, such as, for instance, the Higgs qT distribution.
The dominant source of theoretical uncertainties on these quantities is the effect of QCD radiative
corrections, which, therefore, have to be carefully investigated.
The total cross section for Higgs boson production by gluon fusion has been computed in QCD

perturbation theory at the leading order (LO), O(α2S), at the next-to-leading order (NLO) [9,10]
and at the next-to-next-to-leading order (NNLO) [11–14] in the QCD coupling αS. The NNLO
computation of the rapidity distribution of the Higgs boson has recently been completed [15].
A key point of this theoretical activity is that the origin of the dominant perturbative contributions
to the total cross section has been identified and understood: the bulk of the radiative corrections
is due to virtual and soft-gluon terms [12]. This point has a twofold relevance. On one side, it
explains the observation [16] of the validity of the large-Mt approximation (Mt being the mass
of the top quark) in the calculation at the NLO, and, therefore, it justifies the use of the same
approximation at and beyond the NNLO. On the other side, it allows to estimate higher-order
QCD contributions by supplementing the NNLO calculation with an all-order resummation of
the logarithmically-enhanced terms due to multiple soft-gluon emission [17]. Having these terms
under control allows us to reliably predict the value of the cross section and, more importantly,
to reduce the associated perturbative uncertainty at the level of about ±10% [17].
When studying the qT distribution of the Higgs boson in QCD perturbation theory, it is con-

venient to start by considering separately the large-qT and small-qT regions.
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The large-qT region is identified by the condition qT ∼MH . In this region, the perturbative
series is controlled by a small expansion parameter, αS(M2

H ), and calculations based on the trun-
cation of the series at a fixed order in αS are theoretically justified. SMHiggs boson production at
large qT via gluon fusion has to be accompanied by the radiation of at least one recoiling parton,
so the LO term for this observable is of O(α3S). The LO calculation was reported in Ref. [18]; it
shows that the large-Mt approximation works well as long as MH ! 2Mt and qT ! Mt . Similar
results on the validity of the large-Mt approximation were obtained in the case of the associated
production of a Higgs boson plus 2 jets (2 recoiling partons at large transverse momenta) [19].
In the framework of the large-Mt approximation, the NLO QCD corrections to the transverse-
momentum distribution of the SM Higgs boson were computed in Refs. [20–23]. Corrections to
the large-Mt approximation are considered in Ref. [24]. The numerical programs of Refs. [20,23]
can also be used to evaluate arbitrary infrared- and collinear-safe observables up to NLO in the
large-qT region and, in the case of Ref. [23], up to NNLO when qT = 0.
In the small-qT region (qT $MH ), where the bulk of events is produced, the convergence of

the fixed-order expansion is spoiled, since the coefficients of the perturbative series in αS(M2
H )

are enhanced by powers of large logarithmic terms, lnm(M2
H /q2T ). To obtain reliable perturbative

predictions, these terms have to be resummed to all orders in αS. The method to systemati-
cally perform all-order resummation of classes of logarithmically-enhanced terms at small qT

is known [25–33]. In the case of the SM Higgs boson, resummation has been explicitly worked
out at leading logarithmic (LL), next-to-leading logarithmic (NLL) [34,35] and next-to-next-to-
leading logarithmic (NNLL) [36] level.
The fixed-order and resummed approaches at small and large values of qT can then be matched

at intermediate values of qT , to obtain QCD predictions for the entire range of transverse mo-
menta. Phenomenological studies of the SM Higgs boson qT distribution have been performed in
Refs. [1,35,37–46], by combining resummed and fixed-order perturbation theory at different lev-
els of theoretical accuracy. A comparison of theoretical calculations [1,40,42,44] and of results
from parton shower Monte Carlo generators [47–50] is presented in Ref. [51].
In the present paper we compute the Higgs boson qT distribution at the LHC by combining the

most advanced perturbative information that is available at present: NNLL resummation at small
qT and NLO perturbation theory at large qT . The first results of our calculation were presented in
Refs. [1,52]. Here we perform a more complete phenomenological study and present a discussion
of theoretical uncertainties.
The formalism used to obtain these results was briefly described in Refs. [1,33] and is il-

lustrated in detail in the present paper. Three distinctive features are anticipated here. The
resummation is performed at the level of the partonic cross section; this implies that the par-
ton distributions are evaluated at the factorization scale µF , which has to be chosen of the order
of the hard scale M . The resummed terms are embodied in a form factor that is universal: it
depends only on the flavour of the partons that initiate the hard-scattering subprocess at the Born
level (e.g., qq̄ annihilation in the case of Drell–Yan lepton pair production, and gg fusion in
the case of Higgs boson production). A constraint of perturbative unitarity is imposed on the
resummed terms, to the purpose of reducing the effect of unjustified higher-order contributions
at large values of qT and, especially, at intermediate values of qT . The constraint implies that
the total cross section at the nominal fixed-order accuracy (NLO or NNLO) is recovered upon
integration over qT of the transverse-momentum spectrum (at NLL+ LO or NNLL+NLO).
The paper is organized as follows. In Section 2 the resummation formalism is discussed in de-

tail. After illustrating the general aspects of our approach in Section 2.1, we discuss the structure
of the resummed cross section in Section 2.2. The relation to the standard b-space resummation
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is given in Section 2.3. Section 2.4 is devoted to the finite component of the cross section. In
Section 3 we apply the resummation formalism to the production of the SM Higgs boson at the
LHC. In Section 4 we draw our conclusions. In Appendix A we discuss the details of the ex-
ponentiation in the general multiflavour case. In Appendix B we illustrate the calculation of the
Bessel integrals required in the computation of the perturbative expansion of the resummed cross
section.

2. Transverse-momentum resummation

The formalism [1,33] that we use to compute the qT distribution of the Higgs boson applies
to more general hard-scattering processes. Therefore, we describe it in general terms.

2.1. The resummation formalism: from small to large values of qT

We consider the inclusive hard-scattering process

(1)h1(p1) + h2(p2)→ F(M,qT ) + X,

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the trig-
gered final-state system F , accompanied by an arbitrary and undetected final state X. We denote
by
√

s the centre-of-mass energy of the colliding hadrons (s = (p1 + p2)
2 & 2p1p2). The ob-

served final state F is a generic system of non-QCD partons such as one or more vector bosons
(γ ∗,W,Z, . . .), Higgs particles, Drell–Yan (DY) lepton pairs and so forth. We do not consider
the production of strongly interacting particles (hadrons, jets, heavy quarks, . . . ), since in this
case the resummation formalism of small-qT logarithms has not yet been fully developed.
Throughout the paper we limit ourselves to considering the case in which only the total in-

variant mass M and transverse momentum qT of the system F are measured. According to the
QCD factorization theorem (see Ref. [53] and references therein), the corresponding transverse-
momentum differential cross section1 dσ̂F /dq2T can be written as

dσF

dq2T
(qT ,M, s)

(2)

=
∑

a,b

1∫

0

dx1

1∫

0

dx2 fa/h1

(
x1,µ

2
F

)
fb/h2

(
x2,µ

2
F

)dσ̂Fab

dq2T

(
qT ,M, ŝ;αS(µ2R),µ2R,µ2F

)
,

where fa/h(x,µ2F ) (a = qf , q̄f , g) are the parton densities of the colliding hadrons at the
factorization scale µF , dσ̂Fab/dq2T are the partonic cross sections, ŝ = x1x2s is the partonic
centre-of-mass energy, and µR is the renormalization scale. Throughout the paper we use parton
densities as defined in the MS factorization scheme, and αS(q2) is the QCD running coupling in
the MS renormalization scheme.
The partonic cross section is computable in QCD perturbation theory as a power series ex-

pansion in αS. We assume that at the parton level the system F is produced with vanishing qT

(i.e., with no accompanying final-state radiation) in the lowest-order approximation, so that the

1 To be precise, when the system F is not a single on-shell particle of massM , what we denote by dσ̂F /dq2T is actually
the differential cross sectionM2 dσ̂F /dM2 dq2T .
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corresponding cross section is dσ̂
(0)
Fcc̄/dq2T ∝ δ(q2T ). Since F is colourless, the lowest-order par-

tonic subprocess, c + c̄→ F , is either qq̄ annihilation (c = q), as in the case of γ ∗,W and Z

production, or gg fusion (c = g), as in the case of the production of the SM Higgs boson H .
As recalled in Section 1, higher-order perturbative contributions to the partonic cross section

dσ̂Fab/dq2T contain logarithmic terms of the type ln
m(M2/q2T ) that become large in the small-

qT region (qT $M). Therefore, we introduce the following decomposition of the partonic cross
section in Eq. (2):

(3)
dσ̂Fab

dq2T
= dσ̂

(res.)
Fab

dq2T
+ dσ̂

(fin.)
Fab

dq2T
.

The distinction between the two terms on the right-hand side is purely theoretical. The first
term, dσ̂

(res.)
Fab , on the right-hand side contains all the logarithmically-enhanced contributions,

(αn
S/q

2
T ) lnm(M2/q2T ), at small qT , and has to be evaluated by resumming them to all orders in

αS. The second term, dσ̂ (fin.)
Fab , is free of such contributions, and can be computed by fixed-order

truncation of the perturbative series. More precisely, we define the ‘finite’ component dσ̂ (fin.)
Fab in

such a way that we have2

(4)lim
QT→0

Q2
T∫

0

dq2T

[
dσ̂

(fin.)
Fab

dq2T

]

f.o.
= 0,

where the right-hand side vanishes order-by-order in perturbation theory. In particular, this im-
plies that any perturbative contributions proportional to δ(q2T ) have been removed from dσ̂

(fin.)
Fab

and included in dσ̂
(res.)
Fab .

The ‘resummed’ component dσ̂ (res.)
Fab of the partonic cross section cannot, of course, be eval-

uated by computing all the logarithmic contributions in the perturbative series. However, as
discussed in Section 2.2, these contributions can systematically be organized in classes of LL,
NLL, . . . terms and, then, this logarithmic expansion can be truncated at a given logarithmic
accuracy.
In summary, the qT distribution in Eq. (2) is evaluated, in practice, by replacing the partonic

cross section on the right-hand side as follows

(5)
dσ̂Fab

dq2T
→

[
dσ̂

(res.)
Fab

dq2T

]

l.a.
+

[
dσ̂

(fin.)
Fab

dq2T

]

f.o.
.

The first and second terms on the right-hand side denote the truncation of the resummed and
finite components at a given logarithmic accuracy and at a given fixed order, respectively. The
resummed component gives the dominant contribution in the small-qT region, while the finite
component dominates at large values of qT . The two components have to be consistently matched
at intermediate values of qT , so as to obtain a theoretical prediction with uniform formal accuracy
over the entire range of qT , from qT $M up to qT ∼M . To this aim, we compute [dσ̂ (fin.)

ab ]f.o.
starting from [dσ̂ab]f.o., the usual perturbative series for the partonic cross section truncated at
a given fixed order in αS, and subtracting from it the perturbative truncation of the resummed

2 The notation [X]f.o. means that the quantity X is computed by truncating its perturbative expansion at a given fixed
order in αS.
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component at the same fixed order in αS:

(6)
[
dσ̂

(fin.)
Fab

dq2T

]

f.o.
=

[
dσ̂Fab

dq2T

]

f.o.
−

[
dσ̂

(res.)
Fab

dq2T

]

f.o.
.

Moreover, we impose the condition:

(7)
[[

dσ̂
(res.)
Fab

dq2T

]

l.a.

]

f.o.
=

[
dσ̂

(res.)
Fab

dq2T

]

f.o.
.

This matching procedure guarantees that the replacement in Eq. (5) retains the full information of
the perturbative calculation up to the specified fixed order plus resummation of logarithmically-
enhanced contributions from higher orders. Eqs. (6) and (7) indeed imply that the matching is
perturbatively exact, in the sense that the fixed-order truncation of the right-hand side of Eq. (5)
exactly reproduces the customary fixed-order truncation of the partonic cross section in Eq. (2).
The (small-qT ) resummed and (large-qT ) fixed-order approaches are thus consistently combined
without double-counting (or neglecting) of perturbative contributions and by avoiding the intro-
duction of ad-hoc boundaries (such as, for instance, the choice of some intermediate value of qT

as ‘switching’ point between the resummed and fixed-order calculations) between the large-qT

and small-qT regions.
The resummed contributions that are present in the term [dσ̂ (res.)

Fab ]l.a. of Eq. (5) are necessary
and fully justified at small qT . Nonetheless they can lead to sizeable higher-order perturbative
effects also at large qT , where the small-qT logarithmic approximation is not valid. To reduce the
impact of these unjustified higher-order terms, we require that they give no contributions to the
most basic quantity, namely the total cross section, that is not affected by small-qT logarithmic
terms. We thus impose that the integral over qT of Eq. (5) exactly reproduces the fixed-order
calculation of the total cross section. Since dσ̂

(fin.)
Fab is evaluated in fixed-order perturbation the-

ory, the perturbative constraint on the total cross section is achieved by imposing the following
condition:

(8)
∞∫

0

dq2T

[
dσ̂

(res.)
Fab

dq2T

]

l.a.
=
∞∫

0

dq2T

[
dσ̂

(res.)
Fab

dq2T

]

f.o.
.

Eq. (8) can be regarded, in some sense, as a unitarity constraint. As a matter of fact, the loga-
rithmic contributions that are resummed in dσ̂

(res.)
Fab are, precisely speaking, plus distributions of

the type [(αn
S/q

2
T ) lnm(M2/q2T )]+. Therefore, it is quite natural to require that these resummed

terms give a vanishing contribution to the total cross section. Note that the bulk of the qT distrib-
ution is in the region qT ! MH . Since resummed and fixed-order perturbation theory controls the
small-qT and large-qT regions respectively, the total cross section constraint mainly acts on the
size of the higher-order contributions introduced in the intermediate-qT region by the matching
procedure.
Another distinctive feature of the formalism illustrated so far is that we implement pertur-

bative QCD resummation at the level of the partonic cross section. In the factorization formula
(2), the parton densities are thus evaluated at the factorization scale µF , as in the customary per-
turbative calculations at large qT . Although we are dealing with a process characterized by two
distinct hard scales, qT andM , the dominant effects from the scale region qT $M are explicitly
taken into account through all-order resummation. Therefore, the central value of µF and µR has
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to be set equal toMH , the ‘remaining’ typical hard scale of the process. Then the theoretical ac-
curacy of the resummed calculation can be investigated as in customary fixed-order calculations,
by varying µF and µR around this central value.
At small values of qT , the perturbative QCD approach has to be supplemented with non-

perturbative contributions, since they become relevant as qT decreases. A discussion on non-
perturbative effects on the qT distribution of the SM Higgs boson is presented in Section 3.1.
The resummation and matching formalism, which we have so far illustrated in quite general

terms, is set up to deal with the transverse-momentum region where qT ! M . Resummation of
small-qT logarithms cannot lead to any theoretical improvements in the large-qT region, where
those logarithms are not the dominant contributions. When qT " M , the use of the resummation
formalism is no longer justified (recommended), and we have to use the customary fixed-order
perturbative expansion.

2.2. The resummed component

The method to systematically resum the logarithmically-enhanced contributions at small
qT was set up [26–30] shortly after the first resummed calculation of the DY qT spectrum
to double logarithmic accuracy [25]. The resummation procedure has to be carried out in the
impact-parameter space, to correctly take into account the kinematics constraint of transverse-
momentum conservation. The resummed component of the transverse-momentum cross section
in Eq. (3) is then obtained by performing the inverse Fourier (Bessel) transformation with respect
to the impact parameter b. We write3

dσ̂
(res.)
Fab

dq2T

(
qT ,M, ŝ;αS

(
µ2R

)
,µ2R,µ2F

)

(9)= M2

ŝ

∫
d2b
4π

eib·qT WF
ab

(
b,M, ŝ;αS

(
µ2R

)
,µ2R,µ2F

)

(10)= M2

ŝ

∞∫

0

db
b

2
J0(bqT )WF

ab

(
b,M, ŝ;αS

(
µ2R

)
,µ2R,µ2F

)
,

where J0(x) is the 0th-order Bessel function.
The perturbative and process-dependent factorWF

ab embodies the all-order dependence on the
large logarithms lnM2b2 at large b, which correspond to the qT -space terms lnM2/q2T that are
logarithmically enhanced at small qT (the limit qT $M corresponds to Mb* 1, since b is the
variable conjugate to qT ). Resummation of these large logarithms is better expressed by defining
the N -moments4 WN ofW with respect to z = M2/ŝ at fixedM :

(11)

WF
ab,N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)
≡

1∫

0

dz zN−1WF
ab

(
b,M, ŝ = M2/z;αS

(
µ2R

)
,µ2R,µ2F

)
.

3 The subscript b, which labels the parton flavour, should not be confused with the impact parameter b.
4 Throughout the paper, the N -moments hN of any function h(z) of the variable z are defined as hN =

∫ 1
0 dz zN−1h(z).
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The resummation structure ofWF
ab,N can indeed be organized in exponential form, as discussed

below.
In the following of this subsection, the subscripts denoting the flavour indices are understood.

More precisely, we present the resummation formulae in a simplified form, which is valid when
there is a single species of partons. This simplified form illustrates more clearly the key structure
and the main features of the resummed partonic cross section. The generalization to considering
more species of partons does not require any further conceptual steps: it just involves algebraic
complications, which are discussed in Section 2.3 and in Appendix A.
The logarithmic terms embodied inWF

ab,N are due to final-state radiation of partons that are
soft and/or collinear to the incoming partons. Their all-order resummation can be organized [33]
in close analogy to the cases of soft-gluon resummed calculations for hadronic event shapes
in hard-scattering processes [54–57] and for threshold contributions to hadronic cross sections
[58,59]. We write

WF
N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)

=HF
N

(
M,αS

(
µ2R

)
;M2/µ2R,M2/µ2F ,M2/Q2)

(12)× exp
{
GN

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2)}.

The function HF
N does not depend on the impact parameter b and, therefore, it contains all the

perturbative terms that behave as constants in the limit b→∞. The function G includes the
complete dependence on b and, in particular, it contains all the terms that order-by-order in αS
are logarithmically divergent when b→∞. This factorization between constant and logarithmic
terms involves some degree of arbitrariness [56], since the argument of the large logarithms can
always be rescaled as lnM2b2 = lnQ2b2 + lnM2/Q2, provided that Q is independent of b and
that lnM2/Q2 = O(1) when bM * 1. To parametrize this arbitrariness, on the right-hand side
of Eq. (12) we have introduced the scale Q, such that Q ∼M , and we have defined the large
logarithmic expansion parameter, L, as

(13)L≡ ln Q2b2

b20
,

where the coefficient b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) has a kinematical origin
(the use of b0 in Eq. (13) in purely conventional: it simplifies the algebraic expression of G).
The role played by the auxiliary scale Q (which we name the ‘resummation scale’) in the

context of the resummation program is analogous to the role played by the renormalization (fac-
torization) scale in the context of renormalization (factorization). Although the resummed cross
sectionWF

N does not depend on Q when evaluated to all perturbative orders, its explicit depen-
dence on Q appears whenWF

N is computed by truncation of the resummed expression at some
level of logarithmic accuracy (see below). As in the case of µR and µF , we should set Q at
the central value Q = M ; variations of the resummation scale Q around this central value can
then be used to estimate the uncertainty from yet uncalculated logarithmic corrections at higher
orders. Note that the resummation scale dependence of WF

N should not be confused with the
‘resummation scheme’ dependence considered in Ref. [33]. In fact, as shown in Section 2.3,WF

N
is exactly independent of the resummation scheme.
All the large logarithmic terms αn

SL
m with 1# m # 2n are included in the form factor exp{G}.

More importantly, all the logarithmic contributions to G with n + 2 # m # 2n are vanishing.
This property, which is called exponentiation, follows [26–30] from the perturbative dynamics of
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(Abelian and non-Abelian) gauge theories and from kinematics factorization in impact parameter
space. Thus, the exponent G can systematically be expanded as

GN

(
αS,L;M2/µ2R,M2/Q2)

= Lg(1)(αSL) + g
(2)
N

(
αSL;M2/µ2R,M2/Q2) + αS

π
g

(3)
N

(
αSL;M2/µ2R,M2/Q2)

(14)+
+∞∑

n=4

(
αS
π

)n−2
g

(n)
N

(
αSL;M2/µ2R,M2/Q2),

where αS = αS(µ2R) and the functions g(n)(αSL) are defined such that g(n) = 0 when αSL = 0.
Thus the term Lg(1) collects the LL contributions αn

SL
n+1; the function g(2) resums the NLL

contributions αn
SL

n; g(3) controls the NNLL terms αn
SL

n−1, and so forth. Note that in the context
of the resummation approach, the parameter αSL is formally considered as being of order unity.
Thus, the ratio of two successive terms in the expansion (14) is formally of O(αS) (with no L

enhancement). In this respect, the resummed logarithmic expansion in Eq. (14) is as systematic
as any customary fixed-order expansion in powers of αS.
The function HF

N in Eq. (12) does not contain large logarithmic terms to be resummed. It can
be expanded in powers of αS = αS(µ2R) as

HF
N

(
M,αS;M2/µ2R,M2/µ2F ,M2/Q2)

= σ (0)
F (αS,M)

[

1+ αS
π
HF(1)

N

(
M2/µ2R,M2/µ2F ,M2/Q2)

+
(
αS
π

)2
HF(2)

N

(
M2/µ2R,M2/µ2F ,M2/Q2)

(15)+
+∞∑

n=3

(
αS
π

)n

HF(n)
N

(
M2/µ2R,M2/µ2F ,M2/Q2)

]

,

where σ (0)
F = αp

Sσ
(LO)
F is the lowest-order partonic cross section for the hard-scattering process

in Eq. (1).
Two other general aspects of the resummed partonic cross section WF

N are the factorization
scale (and scheme) dependence and the process dependence. As discussed below, the form factor
exp{G} does not depend on both the factorization scale (and scheme) and the specific hard-
scattering process.
The hadronic cross section on the left-hand side of Eq. (2) is a physical observable and cannot

depend on the factorization scale µF . In practice, the evaluation of the right-hand side at a certain
perturbative accuracy introduces theµF dependence of the partonic cross section dσ̂Fab. This de-
pendence is perturbatively balanced by the µF dependence of the parton densities fa/h(x,µ2F ).
Note that the parton densities in Eq. (2) do not depend on the transverse momentum qT (or on
the impact parameter b). Recall also that we implement transverse-momentum resummation at
the level of the partonic cross section dσ̂Fab, by using Eqs. (9) and (12). Therefore, any µF de-
pendence of the parton densities cannot introduce any logarithmic dependence on b in the form
factor exp{G}. In other words, the perturbative expansion (15) of the function HF

N depends on
µF , while the exponent G of the form factor and its corresponding logarithmic functions g

(n)
N in

Eq. (14) do not depend on µF and on the factorization scheme used to define the parton densities.
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As explicitly shown in Section 2.3, the form factor exp{G} in Eq. (12) does not depend on the
final-state system F produced in the hard-scattering process of Eq. (1). The form factor is process
independent: it is produced by universal soft and collinear radiation from the QCD partons enter-
ing the hard-scattering process (when the simplification of considering a single parton species is
removed, there are various process-independent form factors for the various partonic channels).
The dependence on the process is fully taken into account by the hard-scattering function HF

N ,
which embodies contributions produced by virtual corrections at transverse-momentum scales
qT ∼M .
The truncation [WF

N ]l.a. of the resummed cross section at a given logarithmic accuracy is
defined as follows. At LL accuracy, we include the function g(1) in the exponent G and we
approximate HF

N by the Born cross section σ (0)
F . At NLL accuracy, we include the functions

g(1) and g
(2)
N and the coefficientHF(1)

N . At NNLL accuracy, we also include g
(3)
N andHF(2)

N . The
reason for including bothHF(1)

N and g
(2)
N at NLL accuracy is that the combined effect of αSHF(1)

N

and Lg(1)(αSL) leads to logarithmic contributions, αn
SL

n, that are of the same order as those in
g

(2)
N (αSL). An analogous observation applies to the inclusion of both g

(3)
N and HF(2)

N at NNLL
accuracy.
The logarithmic truncation of the resummed component of the cross section can then be com-

bined, as in Eq. (5), with the fixed-order expansion of the finite component in Eq. (6). The
NLL + LO result is obtained by supplementing NLL resummation with the LO expansion5 at
large qT . The NNLL + NLO result combines NNLL resummation with the NLO expansion
at large qT . This procedure for combining the resummed and fixed-order approaches exactly
satisfies the matching conditions in Eqs. (4) and (7). Note that the fulfillment of the matching
conditions is not completely trivial. For instance, if HF(1)

N was not included in dσ̂
(res.)
F at NLL

accuracy, the matching condition in Eq. (7) would be violated at LO (in other words, Eq. (4)
would be violated since the qT integral of [dσ̂ (fin.)

Fab ]LO would lead to a non-vanishing finite value
when QT → 0).
To reduce the impact of unjustified resummed logarithms in the large-qT region, we use a

procedure inspired by that introduced in Ref. [55] to deal with kinematical constraints when
performing soft-gluon resummation in e+e− event shapes. We consider the exponent G(αS,L)

of the form factor in Eqs. (12) and (14) and we perform the replacement

(16)G(αS,L)−→ G(αS, L̃).

In other words, in the argument of G(αS,L) we replace the logarithmic variable L with the
variable L̃ defined as

(17)L̃≡ ln
(

Q2b2

b20
+ 1

)
.

Comparing the definitions in Eqs. (13) and (17), we see that in the resummation region Qb* 1
we have L̃ = L + O(1/(Qb)2), and thus the replacement in Eq. (16) is fully legitimate6 to
arbitrary logarithmic accuracy. Although the variables L and L̃ are equivalent to organize the

5 We recall that there is a mismatch of notation between the qT distribution at qT ∼M and the total cross section. The
LO (NLO) term of the finite component of the qT distribution contributes to the total cross section at NLO (NNLO).
6 Note that the replacement in Eq. (16) introduces an explicit dependence of dσ̂

(res.)
F on the resummation scale Q.

Owing to the matching procedure in Eq. (6), this dependence is balanced by the Q dependence of the dσ̂
(fin.)
F .
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resummation formalism in the region Qb* 1, they lead to a different behaviour of the form
factor at small values of b (i.e., large values of qT ): when Qb $ 1, we have L̃→ 0 and
exp{G(αS, L̃)}→ 1. Therefore, performing the replacement in Eq. (16), we reduce the effect
produced by the resummed contributions in the small-b region, where the use of the large-b
resummation approach is not justified.
In particular, since exp{G(αS, L̃)} = 1 at b = 0, using Eqs. (9) and (12) we obtain the relation
∞∫

0

dq2T
dσ̂

(res.)
F

dq2T

(
qT ,M, ŝ;αS

(
µ2R

)
,µ2R,µ2F ,Q2)

(18)= M2

ŝ
HF

(
M, ŝ,αS

(
µ2R

)
;M2/µ2R,M2/µ2F ,M2/Q2),

which simply follows from the fact that the value at b = 0 of the (b-space) Fourier transformation
of the qT distribution is equal to the integral over qT of the qT distribution itself. Since the hard
cross sectionHF is evaluated in fixed-order perturbation theory, the relation (18) implies that the
replacement in Eq. (16) also allows us to implement the perturbative constraint (8) on the total
cross section. More precisely, the integral over qT of the qT distribution dσ̂F /dqT at NLL+LO
(NNLL + NLO) accuracy exactly reproduces the calculation of the total cross section at NLO
(NNLO).
The purpose of the transverse-momentum resummation program [26–30] is to explicitly eval-

uate the logarithmic functions g
(n)
N of Eq. (14) in terms of few coefficients that are perturbatively

computable. As illustrated in Section 2.3, this goal is achieved by showing that the all-order
resummation formula (14) has the following integral representation:

(19)

GN

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2) =−

Q2∫

b20/b
2

dq2

q2

[
A

(
αS

(
q2

))
ln

M2

q2
+ B̃N

(
αS

(
q2

))]
,

where A(αS) and B̃N (αS) are perturbative functions

(20)A(αS) = αS
π

A(1) +
(
αS
π

)2
A(2) +

(
αS
π

)3
A(3) +

∞∑

n=4

(
αS
π

)n

A(n),

(21)B̃N (αS) = αS
π

B̃
(1)
N +

(
αS
π

)2
B̃

(2)
N +

∞∑

n=3

(
αS
π

)n

B̃
(n)
N .

The coefficients A(n) and B̃
(n)
N are related to the customary coefficients of the Sudakov form

factors and of the parton anomalous dimensions. This relation is discussed in Section 2.3.
Using Eq. (9), the resummed component dσ̂

(res.)
F /dq2T of the qT distribution is fully deter-

mined by the functions HF
N and GN in Eq. (12). These functions are in turn specified by the

perturbative coefficients HF(n)
N (see Eq. (15)), A(n) and B̃

(n)
N (see Eqs. (19)–(21)), which can be

extracted from the logarithmic terms in the perturbative expansion of the qT distribution at the
n-th relative order in αS. Therefore, the customary fixed-order computation of the qT distribution
is sufficient to obtain the full information that is necessary to explicitly perform resummation at
the required logarithmic accuracy.
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By inspection of the q2 integration in Eq. (19), it is evident that the exponent GN of the
process-independent form factor in Eq. (12) has the logarithmic structure of Eq. (14). The func-
tions g

(n)
N depend on the coefficients in Eqs. (20) and (21), and the functional dependence is

completely specified by Eq. (19). More precisely (see Eqs. (22)–(24)), the LL function g
(1)
N de-

pends on A(1), the NLL function g
(2)
N depends also on A(2) and B̃

(1)
N , the NNLL function g

(3)
N

depends also on A(3) and B̃
(2)
N , and so forth. Starting from the integral representation in Eq. (19),

the explicit functional form of the functions g
(n)
N (for arbitrary values of n) can easily be com-

puted by using the method that is described in Appendix C of Ref. [17].
The LL, NLL and NNLL functions g(1)

N , g(2)
N and g

(3)
N have the following explicit expressions7:

(22)g(1)(αSL) = A(1)

β0

λ+ ln(1− λ)
λ

,

g
(2)
N

(
αSL; M2

µ2R
,
M2

Q2

)

= B̄
(1)
N

β0
ln(1− λ)− A(2)

β20

(
λ

1− λ + ln(1− λ)
)

+ A(1)

β0

(
λ

1− λ + ln(1− λ)
)
ln

Q2

µ2R

(23)+ A(1)β1

β30

(
1
2
ln2(1− λ) + ln(1− λ)

1− λ + λ

1− λ

)
,

g
(3)
N

(
αSL; M2

µ2R
,
M2

Q2

)

=−A(3)

2β20

λ2

(1− λ)2 −
B̄

(2)
N

β0

λ

1− λ + A(2)β1

β30

(
λ(3λ− 2)
2(1− λ)2 −

(1− 2λ) ln(1− λ)
(1− λ)2

)

+ B̄
(1)
N β1

β20

(
λ

1− λ + ln(1− λ)
1− λ

)
− A(1)

2
λ2

(1− λ)2 ln
2 Q2

µ2R

+ ln Q2

µ2R

(
B̄

(1)
N

λ

1− λ + A(2)

β0

λ2

(1− λ)2 + A(1) β1

β20

(
λ

1− λ + 1− 2λ
(1− λ)2 ln(1− λ)

))

+ A(1)
(
β21
2β40

1− 2λ
(1− λ)2 ln

2(1− λ) + ln(1− λ)
[
β0β2 − β21

β40
+ β21
β40 (1− λ)

]

(24)+ λ

2β40 (1− λ)2
(
β0β2(2− 3λ) + β21λ

))
,

where

(25)λ= 1
π
β0αS

(
µ2R

)
L,

(26)B̄
(n)
N = B̃

(n)
N + A(n) ln

M2

Q2 ,

7 Note that the functional form of the functions g
(n)
N is exactly the same as that of the functions that appear in the

calculation of the energy–energy correlation in e+e− annihilation [60].
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and βn are the coefficients of the QCD β function:

(27)
d lnαS(µ2)

d lnµ2
= β

(
αS

(
µ2

))
=−

+∞∑

n=0
βn

(
αS
π

)n+1
.

The explicit expression of the first three coefficients, β0, β1 and β2, is [61]

β0 = 1
12

(11CA − 2Nf ), β1 = 1
24

(
17C2A − 5CANf − 3CF Nf

)
,

(28)

β2 = 1
64

(
2857
54

C3A −
1415
54

C2ANf −
205
18

CACF Nf + C2F Nf + 79
54

CAN2
f + 11

9
CF N2

f

)
,

where Nf is the number of QCD massless flavours and the SU(Nc) colour factors are CA = Nc

and CF = (N2
c − 1)/(2Nc).

Note that the functions g
(n)
N (αSL) in Eqs. (22)–(24) are singular at the point λ= 1, which in

terms of the impact parameter corresponds to the value b2 = b2L = (b20/Q
2) exp{π/(β0αS(µ

2
R))}

(i.e., bL ∼ 1/ΛQCD, where ΛQCD is the momentum scale of the Landau pole in QCD). These
singularities, which are related (see Eq. (19) when b ∼ 1/ΛQCD) to the divergent behaviour of
the perturbative running coupling αS(q2)/π ∼ [β0 ln(q2/Λ2QCD)]−1 near the Landau pole, signal
the onset of non-perturbative phenomena at very large values of b or, equivalently, in the region
of very small transverse momenta.
This type of singularities8 is a common feature of all-order resummation formulae of soft-

gluon contributions. Within a perturbative framework, these singularities have to be regularized.
A possible regularization procedure consists in introducing a ‘minimal prescription’, such as
those introduced in Ref. [59] (in the case of threshold resummation) and [44,62] (in the case
of b-space or joint resummation). In the case of b-space resummation, other procedures are to
use the ‘b∗ prescription’ of Ref. [29], by freezing the integration over b below a fixed upper
limit, or more simply, to introduce a cut-off at a very large (but smaller than bL) value of b

[63]. Admittedly, when the non-perturbative contributions are sizeable, they have to be properly
included, according to the prescription used to regularize the singularities.

2.3. Sudakov form factor, universal form factor and perturbative coefficients

The b-space resummation approach was fully formalized by Collins, Soper and Sterman
[28,32] in terms of perturbative coefficients. Considering the generic hard-scattering process in
Eq. (1), the transverse-momentum differential cross section in Eq. (2) is written as

(29)
dσF

dq2T
(qT ,M, s) = M2

s

∞∫

0

db
b

2
J0(bqT )WF (b,M, s) + · · · ,

where the dots on the right-hand side stand for terms that are not logarithmically enhanced at
small qT (large b). Note that Eq. (29) regards the hadronic cross section (and not the partonic
cross section in Eq. (10)). Therefore, the b-space function WF (b,M, s), which embodies the

8 Note that these singularities are not related to the presence of factorially-growing coefficients, such as those due to
renormalon singularities, at very high perturbative orders. A concise discussion on this point can be found in Section 3.1
of Ref. [59], in the related context of threshold resummation.
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logarithmically-enhanced terms, depends on the parton densities of the colliding hadrons. The
all-order resummation of the large logarithms ln(M2b2) in the region Mb* 1 is accomplished
by showing that the N -moments WN(b,M) of W(b,M, s) with respect to z = M2/s at fixedM

can be recast in the following form [32,33]:

WF
N (b,M)

=
∑

c

σ
(0)
cc̄,F

(
αS

(
M2),M

)
HF

c

(
αS

(
M2))Sc(M,b)

(30)×
∑

a,b

Cca,N

(
αS

(
b20/b

2))Cc̄b,N

(
αS

(
b20/b

2))fa/h1,N
(
b20/b

2)fb/h2,N
(
b20/b

2),

where fa/h,N (µ2) are the N -moments of the parton density fa/h(z,µ
2), and σ (0)

cc̄,F is the lowest-
order cross section for the partonic subprocess c+ c̄→ F . The function Sc(M,b) is the Sudakov
form factor of the quark (c = q, q̄) or of the gluon (c = g), and it has the following expression9:

(31)Sc(M,b) = exp

{

−
M2∫

b20/b
2

dq2

q2

[
Ac

(
αS

(
q2

))
ln

M2

q2
+ Bc

(
αS

(
q2

))]
}

.

The functions A,B,C and HF in Eqs. (30) and (31) are perturbative series in αS:

(32)Ac(αS) =
∞∑

n=1

(
αS
π

)n

A(n)
c ,

(33)Bc(αS) =
∞∑

n=1

(
αS
π

)n

B(n)
c ,

(34)Cab(αS, z) = δabδ(1− z) +
∞∑

n=1

(
αS
π

)n

C
(n)
ab (z),

(35)HF
c (αS) = 1+

∞∑

n=1

(
αS
π

)n

HF(n)
c .

The functions Ac,Bc and Cab are process independent, while HF
c depends on the specific hard-

scattering process.
The resummation formulae (30) and (31) are invariant under the following ‘resummation

scheme’ transformations [33]:

HF
c (αS)→HF

c (αS)
[
h(αS)

]−1
,

Bc(αS)→ Bc(αS)− β(αS)
d lnh(αS)

d lnαS
,

(36)Cab(αS, z)→ Cab(αS, z)
[
h(αS)

]1/2
.

9 In Ref. [32] the upper limit of the integral in Eq. (31) is set to C2M
2, where C2 is an arbitrary factor. The scale

C2M
2 is thus related to the resummation scale Q2 in Eq. (19).
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The invariance can easily be proven by using the following renormalization-group identity
(see Eq. (27)):

(37)h
(
αS

(
b20/b

2)) = h
(
αS

(
M2)) exp

{

−
M2∫

b20/b
2

dq2

q2
β
(
αS

(
q2

))d lnh(αS(q
2))

d lnαS(q2)

}

,

which is valid for any perturbative function h(αS).
The physical origin of the resummation scheme invariance of Eq. (30) is discussed in Ref.

[33]. The invariance implies that the factors HF
c ,Sc (more precisely, the function Bc) and Cab

are not unambiguously computable order by order in perturbation theory. In other words, these
factors can be unambiguously defined only by choosing a ‘resummation scheme’. The choice of a
resummation scheme amounts to defining HF

c (or Cab) for a single process. More precisely, HF
c

has to be defined for two processes: one process that is controlled, at the lowest perturbative order,
by qq̄ annihilation (c = q, q̄) and another process that is controlled by gg fusion (c = g). Having
done that, the process-dependent factor HF

c and the universal (process-independent) factors Sc

and Cab are unambiguously determined for any other process of the type in Eq. (1).
Note that Eq. (30) is usually presented in a form where HF

c (αS) = 1. Such a form is certainly
consistent since, by choosing h(αS) = HF

c (αS) and using the invariance under the transforma-
tion in Eq. (36), it is always possible to set HF

c (αS) = 1 on a process-dependent basis. Note
that this procedure does not correspond to the definition of a resummation scheme. Indeed, the
corresponding Sudakov form factor SF

c and the functions CF
ab turn out to be process-dependent

quantities, as pointed out by the explicit and general calculation of B(2)
c and C

(1)
ab (z) in Ref. [36].

For example, in the case of gg fusion processes, the Sudakov form factors for the production
of a scalar and a pseudoscalar Higgs boson turn out to be different and to have even a different
dependence on the mass of the top quark.
Comparing the partonic and the hadronic cross sections in Eqs. (10) and (30), we see that the

resummed factorsWF
ab and WF (b,M) are related by

(38)WF
N (b,M) =

∑

a,b

WF
ab,N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)
fa/h1,N

(
µ2F

)
fb/h2,N

(
µ2F

)
.

To express the resummed partonic cross sectionWF
ab in terms of the perturbative coefficients in

Eqs. (32)–(35), we have to use Eq. (30) and substitute the parton densities fa/h,N (b20/b
2) for the

same parton densities evaluated at the factorization scale µF . The substitution can be done by
using

(39)fa/h,N

(
µ2

)
=

∑

b

Uab,N

(
µ2,µ20

)
fb/h,N

(
µ20

)
,

where the QCD evolution operator Uab,N (µ2,µ20) fulfills the evolution equations

(40)
dUab,N (µ2,µ20)

d lnµ2
=

∑

c

γac,N

(
αS

(
µ2

))
Ucb,N

(
µ2,µ20

)
,

and γab,N (αS) are the parton anomalous dimensions or, more precisely, the N -moments of the
customary Altarelli–Parisi splitting functions Pab(αS, z) [64]:

(41)γab,N (αS) =
1∫

0

dz zN−1Pab(αS, z) =
∞∑

n=1

(
αS
π

)n

γ
(n)
ab,N .
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We finally obtain [33]

WF
ab,N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)

=
∑

c

σ
(0)
cc̄,F

(
αS

(
M2),M

)
HF

c

(
αS

(
M2))Sc(M,b)

×
∑

a1,b1

Cca1,N
(
αS

(
b20/b

2))Cc̄b1,N
(
αS

(
b20/b

2))

(42)×Ua1a,N

(
b20/b

2,µ2F
)
Ub1b,N

(
b20/b

2,µ2F
)
,

which relates the resummed partonic cross section in Eq. (10) to the perturbative coefficients in
Eqs. (32)–(35) and the anomalous dimensions coefficients in Eq. (41).
In the following we explicitly show how Eq. (42) is related to the exponential structure of

Eq. (12) in the case with a single species of partons. The general case with partons of different
flavours is discussed in Appendix A. Here we only anticipate that the generalization of Eq. (12)
to the multiflavour case10 simply involves a sum of exponential terms, namely

WF
ab,N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)

=
∑

{I }
H{I },F

ab,N

(
M,αS

(
µ2R

)
;M2/µ2R,M2/µ2F ,M2/Q2)

(43)× exp
{
G{I },N

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2)},

where the index {I } labels a set of flavour indices (which is precisely specified in Appendix A).
Within the simplified treatment in which there is a single species of partons, the resummed

partonic cross section in Eq. (42) can easily be recast in the factorized exponential form of
Eqs. (12) and (19). To this aim, we first use the identity (37) with h(αS) = CN(αS) to replace
CN(αS(b

2
0/b

2)) in Eq. (42) in terms of CN(αS(M
2)). Then, we insert in Eq. (42) the solution of

the evolution equation (40):

(44)UN

(
b20/b

2,µ2F
)
= exp

{

−
µ2F∫

b20/b
2

dq2

q2
γN

(
αS

(
q2

))
}

.

We finally obtain the exponential form in Eq. (19), where the perturbative function A(αS) is
exactly the perturbative function in Eq. (32), and the function B̃N (αS) is given as follows in
terms of the perturbative functions in Eqs. (27), (33), (34) and (41):

(45)B̃N (αS) = B(αS) + 2β(αS)
d lnCN(αS)

d lnαS
+ 2γN(αS).

10 In the multiflavour case, Eq. (12) directly applies to the flavour non-singlet components of the resummed partonic
cross section.
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The expression of the hard-process function HF
N in Eq. (12) is

(46)

HF
N

(
M,αS

(
µ2R

)
;M2/µ2R,M2/µ2F ,M2/Q2)

= σ (0)
F

(
αS

(
M2),M

)
HF

(
αS

(
M2))C2N

(
αS

(
M2))

× exp
{ Q2∫

M2

dq2

q2

[
A

(
αS

(
q2

))
ln

M2

q2
+ B̃N

(
αS

(
q2

))]
+

M2∫

µ2F

dq2

q2
2γN

(
αS

(
q2

))
}

.

Note that, as discussed in Section 2.2, the form factor exp{G} and, hence, the perturbative
functions A(αS) and B̃N (αS) in Eq. (19) do not depend on the factorization scale µF . As a con-
sequence, the functionsA(αS) and B̃N (αS) are also independent of the factorization scheme used
to define the parton densities. Since, as is well known, the anomalous dimensions γab,N (αS) do
depend on the factorization scheme, the relation (45) implies that both the perturbative functions
Bc(αS) and Cab(αS) depend on the factorization scheme in such a way that B̃N (αS) turns out to
be factorization-scheme independent.
As anticipated in Section 2.2, the form factor exp{G} does not depend on the final-state system

F produced in the hard-scattering process. From Eqs. (19) and (45), this independence is a simple
consequence of the process independence of each of the perturbative functions Ac(αS), Bc(αS),
Cab(αS) and γab,N (αS).
The relation (45) also implies that the form factor exp{G} does not depend on the resumma-

tion scheme used to express the various factors in the resummation formulae (30) and (31) (we
recall that the customary Sudakov form factor Sc(M,b) in Eq. (31) does instead depend on the
resummation scheme). It is indeed straightforward to show that the function B̃N (αS) in Eq. (45)
is invariant under the resummation-scheme transformations in Eq. (36).
Unlike the form factor exp{G}, the non-logarithmic functionHF

N in Eq. (46) explicitly depends
on the factorization scale µF , on the factorization scheme (through Cab,N (αS) and γab,N (αS))
and on the final-state system F (through σ (0)

F and HF ). Nonetheless,HF
N does not depend on the

resummation scheme, since the factor HF (αS)C
2
N(αS) is invariant under the transformations in

Eq. (36).
The universal (i.e., independent of the process and of the factorization and resummation

schemes) perturbative function Ac(αS) in Eqs. (20) and (32) is known up to O(α2S). The LL
and NLL coefficients A

(1)
c and A

(2)
c are [30,34]

(47)A(1)
c = Cc, A(2)

c = 1
2
Cc

[(
67
18
− π

2

6

)
CA −

5
9
Nf

]
,

where Cc = CF if c = q, q̄ andCc = CA if c = g. The NNLL coefficientA(3)
c is not yet known. In

our quantitative study of transverse-momentum resummation at NNLL accuracy (see Section 3),
we assume that the value of A(3)

c is the same as the one [65,66] that appears in resummed calcu-
lations of soft-gluon contributions near partonic threshold. This assumption is based on the fact
that the two coefficients A

(1)
c and A

(2)
c in Eq. (47) are exactly equal to those of the related pertur-

bative function that controls threshold resummation [58] in the MS factorization scheme. Note,
however, that the two soft-gluon functions Ac(αS) do not necessarily coincide at high perturba-
tive orders since, for instance, the soft-gluon function for transverse-momentum resummation is
universal while the soft-gluon function for threshold resummation depends on the factorization
scheme.
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The first-order coefficient B̃(1)
c,N of the universal perturbative function B̃N (αS) in Eqs. (21) and

(45) is

(48)B̃
(1)
c,N = B(1)

c + 2γ (1)
cc,N ,

where [30,34]

(49)B(1)
q = B

(1)
q̄ =−3

2
CF , B(1)

g =−1
6
(11CA − 2Nf ).

Note that, since the LO anomalous dimensions γ (1)
cc,N are universal, the NLL coefficients B

(1)
c in

Eq. (49) are themselves independent of the factorization and resummation schemes.
The universal second-order coefficient B̃(2)

c,N in Eq. (45) is

(50)B̃
(2)
c,N = B(2)

c − 2β0C(1)
cc,N + 2γ (2)

cc,N ,

or, equivalently, by performing the inverse Mellin transformation to z-space:

(51)B̃(2)
c (z) = δ(1− z)B(2)

c − 2β0C(1)
cc (z) + 2P (2)

cc (z).

The value of the quark coefficient B̃
(2)
q can be obtained by using the results of Ref. [67] for

the coefficients B
(2)
q and C

(1)
qq (z) of the DY process. These results are confirmed by the general

(process-independent) calculation of Ref. [36], which considers both the qq̄-annihilation and the
gluon fusion channels. From the results of Ref. [36] we obtain the value of the gluon coefficient
B̃

(2)
g , and we can also explicitly check the universality of both B̃

(2)
q and B̃

(2)
g . To write down the

expression of B̃
(2)
c , we recall that the second-order term P

(2)
cc (z) of the Altarelli–Parisi splitting

functions Pcc(αS, z) has the following general dependence on z:

(52)P (2)
cc (z) = 1

(1− z)+
A(2)

c + δ(1− z)
1
2
γ (2)
c + P

(2)reg
cc (z),

where A
(2)
c is the coefficient in Eq. (47), 1/(1 − z)+ is the customary ‘plus’-distribution and

P
(2)reg
cc (z) denotes all the remaining and less singular (when z→ 1) contributions to P

(2)
cc (z).

The explicit expressions of P
(2)reg
cc (z) and of the constants γ (2)

c can be found in the literature
(see, e.g., Ref. [64]). Using the notation of Eq. (52), the universal NNLL coefficient B̃(2)

c is [36]

(53)B̃(2)
c (z) = 2

(1− z)+
A(2)

c + δ(1− z)β0Cc
π2

6
+ 2P (2)reg

cc (z) + 2β0P̂ εcc(z),

where

(54)P̂ εqq(z) =−1
2
CF (1− z), P̂ εgg(z) = 0.

The first-order coefficients C
(1)
qg and C

(1)
gq in Eq. (34) do not depend on the process and on

the resummation scheme, and were first computed in Refs. [67] and [35], respectively. Their
expressions in the MS factorization scheme are

(55)C(1)
qg (z) = C

(1)
q̄g (z) = 1

2
z(1− z), C(1)

gq (z) = C
(1)
gq̄ (z) = 1

2
CF z.

The flavour-diagonal first-order coefficients C
(1)
qq and C

(1)
gg and the coefficients H

F(1)
q and

H
F(1)
g depend on the resummation scheme. The dependence on the resummation scheme is
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canceled in the perturbative coefficients of the hard-process function HF
N . For example, by ex-

panding Eq. (46) in powers of αS(µ2R), we obtain the following expression for the first-order
coefficient HF(1)

N of Eq. (15):

HF(1)
N

(
M2/µ2R,M2/µ2F ,M2/Q2)

(56)= HF(1) + 2C(1)
N − pβ0*R + 2γ (1)

N *F −
(
1
2
A(1)*Q + B̃

(1)
N

)
*Q,

where we have defined

(57)*R = ln
M2

µ2R
, *F = ln

M2

µ2F
, *Q = ln

M2

Q2 .

The coefficient HF(1)
N depends on the process and is explicitly known for several processes (see

Ref. [36] and references therein).
To complete the resummation program at NNLL, the coefficient HF(2)

N is also needed. This
coefficient is not known in analytic form for any hard-scattering process. Nonetheless, within
our resummation formalism, it can be determined for any hard-scattering process whose corre-
sponding total cross section is known at NNLO. This point is discussed in detail at the end of
Section 2.4.

2.4. The finite component

The finite component dσ̂
(fin.)
Fab /dq2T of the transverse-momentum cross section is computed

at a given fixed order in αS according to Eq. (6). To implement Eq. (6), we have to subtract
[dσ̂ (res.)

Fab ]f.o. from [dσ̂Fab]f.o..
As discussed in Sections 2.1 and 2.2, the finite component dσ̂

(fin.)
Fab /dq2T does not con-

tain any perturbative contributions proportional to δ(q2T ) (these contributions and all the
logarithmically-enhanced terms at small qT are included in dσ̂

(res.)
Fab /dq2T ). Therefore, when com-

puting [dσ̂ (fin.)
Fab ]f.o. according to the subtraction procedure in Eq. (6), we can consistently neglect

any terms proportional to δ(q2T ) both in [dσ̂Fab]f.o. and in [dσ̂ (res.)
Fab ]f.o.. This is formally equiv-

alent to the evaluation of both [dσ̂Fab]f.o. and [dσ̂ (res.)
Fab ]f.o. in the large-qT region (or, more

precisely, in the region where qT -= 0). The expansions of [dσ̂ (fin.)
Fab ]f.o. at the first and at the

second perturbative order thus give

(58)
[
dσ̂

(fin.)
Fab

dq2T

]

LO
=

[
dσ̂Fab

dq2T

]

LO
−

[
dσ̂

(res.)
Fab

dq2T

]

LO
,

(59)
[
dσ̂

(fin.)
Fab

dq2T

]

NLO
=

[
dσ̂Fab

dq2T

]

NLO
−

[
dσ̂

(res.)
Fab

dq2T

]

NLO
,

where the subscript LO (NLO) denotes the perturbative truncation of the various cross sections at
the leading order (next-to-leading order) in the region where qT -= 0. The extension of Eqs. (58)
and (59) at still higher perturbative order is straightforward.
The contributions [dσ̂Fab]f.o. on the right-hand side of Eqs. (58) and (59) are obtained by

computing the customary perturbative series for the partonic cross section at a given fixed order
(f.o.= LO, NLO, . . . ) in αS. The fixed-order truncation [dσ̂ (res.)

Fab ]f.o. of the resummed component
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is obtained by perturbatively expanding the resummed component dσ̂
(res.)
ab in Eq. (10). To this

purpose, we define the perturbative coefficients Σ̃ (n) as follows:

WF
ab

(
b,M, ŝ;αS,µ2R,µ2F ,Q2)

=
∑

c

σ
(0)
cc̄,F (αS,M)

{

δcaδc̄bδ(1− z)

(60)

+
∞∑

n=1

(
αS
π

)n[
Σ̃

F(n)
cc̄←ab

(
z, L̃; M2

µ2R
,
M2

µ2F
,
M2

Q2

)
+HF(n)

cc̄←ab

(
z; M2

µ2R
,
M2

µ2F
,
M2

Q2

)]}

,

where z = M2/ŝ, αS = αS(µ2R), σ (0)
cc̄,F (αS,M) = αpcF

S σ
(LO)
cc̄,F (M) and, in general, the power pcF

depends on the lowest-order partonic subprocess c + c̄→ F . In Eq. (60),WF
ab is the resummed

cross section on the right-hand side of Eq. (10). Note, however, that Eq. (60) depends on the re-
summation scaleQ2. The dependence on the resummation scale has been introduced in Eqs. (10)
and (12) through the replacement in Eq. (16). The perturbative coefficient Σ̃ (n) on the right-hand
side of Eq. (60) is a polynomial of degree 2n in the logarithmic variable L̃ defined in Eq. (17).
The coefficients Σ̃ (n) vanish by definition when L̃ = 0 (i.e., when b = 0), and the b-independent
part ofWF

ab,N (b,M) is embodied in the coefficients H(n).
The perturbative expansion of Eq. (12) or, more precisely, of Eq. (42) gives

(61)Σ̃
F(1)
cc̄←ab(z, L̃) =ΣF(1;2)

cc̄←ab(z)L̃
2 +ΣF(1;1)

cc̄←ab(z)L̃,

(62)Σ̃
F(2)
cc̄←ab(z, L̃) =ΣF(2;4)

cc̄←ab(z)L̃
4 +ΣF(2;3)

cc̄←ab(z)L̃
3 +ΣF(2;2)

cc̄←ab(z)L̃
2 +ΣF(2;1)

cc̄←ab(z)L̃,

where the dependence on the scale ratiosM2/µ2R,M2/µ2F andM2/Q2 is understood. The exten-
sion of Eqs. (61) and (62) to the higher order terms Σ̃F(n)

cc̄←ab(z, L̃) with n $ 3, is straightforward.
The b-independent coefficients ΣF(1;k)(z),HF(1)(z),ΣF(2;k)(z) and HF(2)(z) are more easily
presented by considering their N -moments with respect to the variable z. We have

(63)Σ
F(1;2)
cc̄←ab,N =−1

2
A(1)

c δcaδc̄b,

(64)Σ
F(1;1)
cc̄←ab,N

(
M2/Q2) =−

[
δcaδc̄b

(
B(1)

c + A(1)
c *Q

)
+ δcaγ (1)

c̄b,N + δc̄bγ (1)
ca,N

]
,

HF(1)
cc̄←ab,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)

= δcaδc̄b
[
HF(1)

c −
(

B(1)
c + 1

2
A(1)

c *Q

)
*Q − pcFβ0*R

]

(65)+ δcaC(1)
c̄b,N + δc̄bC(1)

ca,N +
(
δcaγ

(1)
c̄b,N + δc̄bγ (1)

ca,N

)
(*F − *Q),

(66)Σ
F(2;4)
cc̄←ab,N = 1

8
(A(1)

c )2δcaδc̄b,

(67)Σ
F(2;3)
cc̄←ab,N

(
M2/Q2) =−A(1)

c

[
1
3
β0δcaδc̄b + 1

2
Σ

F(1;1)
cc̄←ab,N

(
M2/Q2)

]
,
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(68)

Σ
F(2;2)
cc̄←ab,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)

=−1
2
A(1)

c

[
HF(1)

cc̄←ab,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)
− β0δcaδc̄b(*R − *Q)

]

− 1
2

∑

a1,b1

Σ
F(1;1)
cc̄←a1b1,N

(
M2/Q2)[δa1aγ

(1)
b1b,N + δb1bγ (1)

a1a,N

]

− 1
2
[
A(2)

c δcaδc̄b +
(
B(1)

c + A(1)
c *Q − β0

)
Σ

F(1;1)
cc̄←ab,N

(
M2/Q2)],

Σ
F(2;1)
cc̄←ab,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)

=ΣF(1;1)
cc̄←ab,N

(
M2/Q2)β0(*Q − *R)

−
∑

a1,b1

HF(1)
cc̄←a1b1,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)

×
[
δa1aδb1b

(
B(1)

c + A(1)
c *Q

)
+ δa1aγ (1)

b1b,N + δb1bγ (1)
a1a,N

]

(69)−
[
δcaδc̄b

(
B(2)

c + A(2)
c *Q

)
− β0

(
δcaC

(1)
c̄b,N + δc̄bC(1)

ca,N

)
+ δcaγ (2)

c̄b,N + δc̄bγ (2)
ca,N

]
,

HF(2)
cc̄←ab,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)

= δcaδc̄bHF(2)
c + δcaC(2)

c̄b,N + δc̄bC(2)
ca,N + C

(1)
ca,NC

(1)
c̄b,N

+ HF(1)
c

(
δcaC

(1)
c̄b,N + δc̄bC(1)

ca,N

)
+ 1
6
A(1)

c β0*
3
Qδcaδc̄b

+ 1
2
[
A(2)

c δcaδc̄b + β0ΣF(1;1)
cc̄←ab,N

(
M2/Q2)]*2Q

−
[
δcaδc̄b

(
B(2)

c + A(2)
c *Q

)
− β0

(
δcaC

(1)
c̄b,N + δc̄bC(1)

ca,N

)
+ δcaγ (2)

c̄b,N + δc̄bγ (2)
ca,N

]
*Q

+ 1
2
β0

(
δcaγ

(1)
c̄b,N + δc̄bγ (1)

ca,N

)
*2F +

(
δcaγ

(2)
c̄b,N + δc̄bγ (2)

ca,N

)
*F

−HF(1)
cc̄←ab,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)
β0*R

+ 1
2

∑

a1,b1

[
HF(1)

cc̄←a1b1,N

(
M2

µ2R
,
M2

µ2F
,
M2

Q2

)
+ δca1δc̄b1HF(1)

c + δca1C(1)
c̄b1,N

+ δc̄b1C(1)
ca1,N

][(
δa1aγ

(1)
b1b,N + δb1bγ (1)

a1a,N

)
(*F − *Q)

− δa1aδb1b
((

B(1)
c + 1

2
A(1)

c *Q

)
*Q + pcFβ0*R

)]

(70)− δcaδc̄bpcF

(
1
2
β20*

2
R + β1*R

)
.

The right-hand side of Eqs. (63)–(70) is expressed in terms of the resummation-scheme indepen-
dent coefficients given in Section 2.3 and of the logarithms *Q,*F and *R defined in Eq. (57).
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To explicitly exhibit the independence of the resummation scheme we can, for example, rewrite
the contribution in the third line of Eq. (69) in terms of the resummation-scheme independent
coefficients B̃

(2)
cN (see Eq. (50)) and C

(1)
ab,N with a -= b (see Eq. (55)):

[
δcaδc̄b

(
B(2)

c + A(2)
c *Q

)
− β0

(
δcaC

(1)
c̄b,N + δc̄bC(1)

ca,N

)
+ δcaγ (2)

c̄b,N + δc̄bγ (2)
ca,N

]

= δcaδc̄b
(
B̃

(2)
cN + A(2)

c *Q
)
+ δca(1− δc̄b)

(
γ

(2)
c̄b,N − β0C

(1)
c̄b,N

)

(71)+ δc̄b(1− δca)
(
γ

(2)
ca,N − β0C

(1)
ca,N

)
.

Inserting Eqs. (60)–(62) in Eq. (10), performing the integral over the impact parameter b,
and removing the contributions proportional to δ(q2T ) (for example, all the contributions coming
from HF(n)

cc̄←ab in Eq. (60)), we obtain the following expressions for the fixed-order contributions
[dσ̂ (res.)

Fab ]f.o. on the right-hand side of Eqs. (58) and (59):
[
dσ̂

(res.)
Fab

dq2T

(
qT ,M, ŝ = M2

z
;αS

(
µ2R

)
,µ2R,µ2F ,Q2

)]

LO

= αS(µ
2
R)

π

z

Q2

∑

c

σ
(0)
cc̄,F

(
αS

(
µ2R

)
,M

)

(72)×
[
Σ

F(1;2)
cc̄←ab(z)Ĩ2(qT /Q) +ΣF(1;1)

cc̄←ab

(
z; M2

Q2

)
Ĩ1(qT /Q)

]
,

[
dσ̂

(res.)
Fab

dq2T

(
qT ,M, ŝ = M2

z
;αS

(
µ2R

)
,µ2R,µ2F ,Q2

)]

NLO

=
[
dσ̂

(res.)
Fab

dq2T

(
qT ,M, ŝ;αS

(
µ2R

)
,µ2R,µ2F ,Q2)

]

LO

+
(
αS(µ

2
R)

π

)2 z

Q2

∑

c

σ
(0)
cc̄,F

(
αS

(
µ2R

)
,M

)

(73)×
4∑

k=1
Σ

F(2;k)
cc̄←ab

(
z; M2

µ2R
,
M2

µ2F
,
M2

Q2

)
Ĩk(qT /Q).

On the right-hand side of Eqs. (72) and (73), the dependence on qT is fully embodied in the
functions Ĩn(qT /Q), which are obtained by the following Bessel transformation:

(74)Ĩn(qT /Q) = Q2
∞∫

0

db
b

2
J0(bqT ) lnn

(
Q2b2

b20
+ 1

)
.

The term lnn(1 + Q2b2/b20) = L̃n in the integrand comes from the replacement L→ L̃ (see
Eq. (16)). In customary implementations of b-space resummation, one has to consider the Bessel
transformation of powers of lnn(Q2b2/b20) = Ln, which can be expressed in terms of powers
of lnn(Q2/q2T ). The functions Ĩn(qT /Q) have instead a more involved functional dependence
on qT . As shown in Appendix B, this functional dependence can be expressed in terms of
Kν(qT /Q), the modified Bessel function of imaginary argument that is defined by the following



G. Bozzi et al. / Nuclear Physics B 737 (2006) 73–120 95

integral representation:

(75)Kν(x) =
∞∫

0

dt e−x cosh t coshνt.

We conclude this section with some observations on the hard-scattering function HF
cc̄←ab .

This function is resummation-scheme independent, but it depends on the specific hard-scattering
subprocess c + c̄→ F . The coefficientsHF(n)

cc̄←ab of its perturbative expansion can be determined
by performing a customary perturbative calculation of the qT distribution in the limit qT → 0.
Moreover, as discussed in Section 2.2, within our resummation formalism HF controls the strict
perturbative normalization of the corresponding total cross section (i.e., the integral of the qT

distribution). This property can be exploited to determine the coefficients HF(n)
cc̄←ab in a different

manner, that is, from the perturbative calculation of the total cross section.
To illustrate this point we consider the total cross section, σ̂ totFab , at the partonic level,

(76)σ̂ totFab

(
M, ŝ;αS

(
µ2R

)
,µ2R,µ2F

)
=
∞∫

0

dq2T
dσ̂Fab

dq2T

(
qT ,M, ŝ;αS

(
µ2R

)
,µ2R,µ2F

)
,

and we evaluate the qT spectrum on right-hand side according to the decomposition in terms
of ‘resummed’ and ‘finite’ components (see Eq. (3)). Then we use Eq. (18) to integrate the
resummed component over qT , and we obtain

(77)σ̂ totFab = M2

ŝ
HF

ab +
∞∫

0

dq2T
dσ̂

(fin.)
Fab

dq2T
.

This expression is valid order by order in QCD perturbation theory. Once the perturbative coef-
ficients of the fixed-order expansions of σ̂ totFab, H

F
ab and dσ̂

(fin.)
Fab /dq2T are all known, the relation

(77) has to be regarded as an identity, which can explicitly be checked. Note, however, that since
the fixed-order truncation [dσ̂ (fin.)

Fab /dq2T ]f.o. does not contain any contributions proportional to
δ(q2T ), [dσ̂ (fin.)

Fab /dq2T ]LO does not explicitly depend on the coefficient HF(1)
ab (see Eqs. (58) and

(72)). Analogously, [dσ̂ (fin.)
Fab /dq2T ]NLO does not explicitly depend on the coefficient HF(2)

ab (see
Eqs. (59) and (73)), and so forth. Therefore, Eq. (77) can be used to determine the NnLO coeffi-
cient HF(n)

ab from the knowledge of σ̂ totFab at N
nLO and of dσ̂

(fin.)
Fab /dq2T at N

n−1LO, without the
need of explicitly computing the small-qT behaviour of the spectrum dσ̂Fab/dq2T at N

nLO. For
example, at NLO Eq. (77) gives

αS
π

M2

ŝ

∑

c

σ
(0)
cc̄,F (αS,M)HF(1)

cc̄←ab

(
M2

ŝ
; M2

µ2R
,
M2

µ2F
,
M2

Q2

)

=
[
σ̂ totFab

(
M, ŝ;αS,µ2R,µ2F

)]
NLO −

[
σ̂ totFab(M, ŝ;αS)

]
LO

(78)−
∞∫

0

dq2T

[
dσ̂

(fin.)
Fab

dq2T

(
qT ,M, ŝ;αS,µ2R,µ2F ,Q2)

]

LO
,

where αS = αS(µ2R) and we have used

(79)
[
σ̂ totFab

(
M, ŝ;αS

)]
LO = δ

(
1−M2/ŝ

)∑

c

σ
(0)
cc̄,F (αS,M)δcaδc̄b.
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At NNLO Eq. (77) gives
(
αS
π

)2M2

ŝ

∑

c

σ
(0)
cc̄,F (αS,M)HF(2)

cc̄←ab

(
M2

ŝ
; M2

µ2R
,
M2

µ2F
,
M2

Q2

)

(80)=
{[
σ̂ totFab

]
NNLO −

[
σ̂ totFab

]
NLO

}
−
∞∫

0

dq2T

{[
dσ̂

(fin.)
Fab

dq2T

]

NLO
−

[
dσ̂

(fin.)
Fab

dq2T

]

LO

}
,

and the generalization at still higher orders n (n > 2) is
(
αS
π

)n M2

ŝ

∑

c

σ
(0)
cc̄,F (αS,M)HF(n)

cc̄←ab

(81)

=
{[
σ̂ totFab

]
NnLO −

[
σ̂ totFab

]
Nn−1LO

}
−
∞∫

0

dq2T

{[
dσ̂

(fin.)
Fab

dq2T

]

Nn−1LO
−

[
dσ̂

(fin.)
Fab

dq2T

]

Nn−2LO

}
.

In our study of the transverse-momentum spectrum of the Higgs boson at NNLL accuracy (see
Section 3), we use Eq. (80) to obtain a numerical value for the corresponding perturbative coef-
ficient H(2).

3. The qT spectrum of the Higgs boson at the LHC

In this section we apply the resummation formalism described in Section 2 to the production
of the SM Higgs boson at the LHC.
We consider the gluon fusion production mechanism gg→H , whose Born level cross section

in Eqs. (15) and (60) is

(82)σ
(0)
cc̄,H (αS,MH ) = δcgδc̄gα2Sσ (0)(MH ;Mt,Mb),

where Mt and Mb denote the masses of the top and bottom quark, which circulate in the heavy-
quark loop that couples to the Higgs boson. In our numerical study we use Mt = 175 GeV and
Mb = 4.75 GeV. The expression of σ (0)(MH ;Mt,Mb) can be found, for instance, in Eq. (3) of
Ref. [17]. Though the Born cross section is evaluated exactly, i.e., including its dependence on
the top– and bottom–quark masses, the computation of the higher-order QCD corrections is per-
formed in the framework of the large-Mt approximation. More precisely, we proceed as in Ref.
[17]: we first compute dσH /dqT in the large-Mt limit and then we rescale the result by the factor
σ (0)(MH ;Mt,Mb)/σ

(0)
∞ , where σ (0)

∞ is obtained from σ (0)(MH ;Mt,Mb) by settingMb = 0 and
Mt/MH →∞. As recalled in Section 1, this implementation of the large-Mt approximation is
expected to produce an uncertainty that is smaller than the uncertainties from yet uncalculated
perturbative terms from higher orders.
We compute the Higgs boson differential cross section dσ/dqT at the LHC (pp collisions at√

s = 14 TeV) and present quantitative results at NLL+ LO and NNLL+NLO accuracy.
As discussed in Section 2.2, at NLL + LO accuracy the resummed component in Eq. (12)

is evaluated by including the functions g(1) and g
(2)
N in Eq. (14) and the coefficient HF(1)

N in
Eq. (15), and then it is matched with the fixed-order contribution evaluated at the LO (i.e., at
O(α3S)) in the large-qT region. The functions g(1) and g

(2)
N are process independent and given in

terms of the universal coefficients A(1),A(2) and B̃
(1)
N (see Section 2.3). The flavour off-diagonal
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part ofHH(1)
gg←ab,N is also process independent and given by Eq. (65); setting µF = Q = MH , we

simply have

(83)HH(1)
gg←gq,N =HH(1)

gg←qg,N = C
(1)
gq,N = 1

2(N + 1)CF ,

where the coefficient C(1)
gq,N is the Mellin transformation of Eq. (55). Of course, these process-

independent coefficients are exact, i.e., they are not affected by the large-Mt approximation. The
flavour diagonal coefficient HH(1)

gg←gg,N is instead process dependent; therefore it depends on Mt

and, in the large-Mt approximation, it is given by [35,39]

(84)HH(1)
gg→gg,N = HH(1)

g + 2C(1)
gg,N = 1

2
[(
5+ π2

)
CA − 3CF

]
= 1
2
(
11+ 3π2

)
,

where, for simplicity, the scale-dependent terms have been dropped (i.e., we have set µR = µF =
Q = MH in Eq. (65)).
At NNLL+NLO accuracy the function g

(3)
N and the coefficientHH(2)

N have also to be included
in the resummed component of the qT cross section, and the finite component has to include the
fixed-order contribution to the cross section evaluated at the NLO (i.e., at O(α4S)) in the large-
qT region. The process-independent function g

(3)
N depends on the universal coefficients A(3) and

B̃
(2)
N (see Section 2.3). The scale-independent part of the coefficient HH(2)

N (its scale-dependent
part can be obtained from Eq. (70)) is not known in analytic form. We thus exploit Eq. (80),
which follows from the constraint of perturbative unitarity, to extract the numerical value of
HH(2)

N from the knowledge of the total cross section at the NNLO [14]. The scale-independent
part of HF(2)

gg←gg,N can be written as

(85)HH(2)
gg←gg,N

∣∣
µR=µF =Q=MH

= HH(2)
g + 2C(2)

gg,N +
(
C

(1)
gg,N

)2 + 2HH(1)
g C

(1)
gg,N

(86)=
(
19
16

+ 1
3
Nf

)
ln

M2
H

M2
t

+ cN,

where theMt -dependent contribution on the right-hand side is obtained from the results in Refs.
[16,68], and cN does not depend on Mt in the large-Mt approximation. Since from Eq. (84) we
know that C

(1)
gg,N is actually independent of N , the N dependence of cN can only follow from

that of C
(2)
gg,N in Eq. (85). Using Eq. (80) and the NNLO total cross section, we find that the

flavour off-diagonal terms in HF(2)
cc̄←ab,N can numerically be neglected, and that the coefficient

cN in Eq. (86) can numerically be approximated by an N -independent value, cN & 232.5. This
numerical approximation is pretty good, since the integral of the NNLL + NLO spectrum re-
produces the NNLO total cross section to better than 1% accuracy in a wide Higgs mass range,
100! MH ! 300 GeV, at the LHC.
We recall that the functions g

(k)
N (λ) are singular when λ→ 1 (see Eqs. (22)–(24)). The sin-

gular behaviour is related to the presence of the Landau pole in the perturbative running of the
QCD coupling αS(q2). As mentioned at the end of Section 2.2, a practical implementation of
the resummation procedure requires a prescription to deal with these singularities. In our numer-
ical study we follow Ref. [62] and deform the integration contour in the complex b space. In
particular we choose the two integration branches as

(87)b = (cosφ ± i sinφ)t, t ∈ {0,∞}.
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We have checked that the result is very mildly dependent on the choice of φ. We have also used
the simpler procedure of integrating over the real b-axis, using a sharp cut-off at a large value of
b, and checking the independence of the actual value of the cut-off. We found that the numerical
differences between the results obtained by these two procedures are negligible.
Our complete calculation of the qT spectrum of the Higgs boson at the LHC is implemented in

the numerical code HqT, which can be downloaded from [69] together with some accompanying
notes. This code is a slightly modified and numerically improved version of the code used in Ref.
[1]: the most important difference regards the computation of the finite component. In Ref. [1]
we used the Monte Carlo program of Ref. [20] to compute the fixed-order contribution to the
qT cross section at LO and NLO. Here we have implemented the analytic calculation of Glosser
and Schmidt [22]. Although the two methods are in principle equivalent, the use of the analytic
calculation allows us to achieve a faster numerical stability in the small-qT region. In the next
subsection we present a selection of numerical results that can be obtained with our code. We
also include a discussion of theoretical uncertainties.

3.1. Numerical results at the LHC

To compute the hadronic cross section, we use the MRST2004 set [70] of parton distribution
functions. As for the perturbative order of the parton densities and αS, at variance with Ref. [1],
we adopt here the following choice. At NLL+ LO we use NLO parton densities and 2-loop αS,
whereas at NNLL+NLO we use NNLO parton densities and 3-loop αS. This choice is perfectly
consistent in the small qT region, since the corresponding partonic cross section is dominated by
the resummed component evaluated at NLL and NNLL accuracy, respectively. The choice is fully
justified also at intermediate values of qT , where the calculation of the partonic cross section is
driven by the small-qT resummation and strongly constrained by the total cross section at NLO
and NNLO, respectively. At large values of qT , qT ∼MH , our evaluation of the partonic cross
section is dominated by the fixed-order contributions at LO and NLO, respectively. Therefore,
our choice introduces a formal mismatch with respect to the customary use of parton densities
and αS. However, as shown and discussed later in this subsection, this formal mismatch does not
lead to any inconsistencies at the quantitative level.
The NLL+ LO spectrum with MH = 125 GeV is shown in Fig. 1. In the left-hand side, the

full NLL+LO result (solid line) is compared with the LO one (dashed line) at the default scales
µF = µR = Q = MH . We see that the LO calculation diverges to +∞ as qT → 0. The effect
of the resummation, which is relevant below qT ∼ 100 GeV, leads to a physically well-behaved
distribution: it has a kinematical peak at qT ∼ 12 GeV and vanishes as qT → 0. The LO finite
component of the spectrum (dotted line), which is defined in Eq. (58), is also shown: as expected
it dominates when qT ∼MH and vanishes as qT → 0. Note, however, that the contribution of
the finite component is sizeable in the intermediate-qT region (about 20% at qT ∼ 50 GeV) and
not yet negligible at small values of qT (about 8% around the peak region). This underlies the
importance of a careful and consistent matching between the resummed and fixed-order calcu-
lations. In the right-hand side of Fig. 1 we show the NLL + LO band as obtained by varying
µF and µR simultaneously and independently in the range 0.5MH # µF ,µR # 2MH with the
constraint 0.5# µF /µR # 2 (the resummation scale is kept fixed atQ = MH ). The scale depen-
dence increases from about ±15% at the peak to about ±20% at qT = 100 GeV. The integral
over qT of the NLL+LO spectrum is in agreement with the value of the NLO total cross section
to better than 1%, thus proving the numerical accuracy of the code.
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Fig. 1. The qT spectrum at the LHC withMH = 125 GeV: (left) setting µR = µF = Q = MH , the results at NLL+LO
accuracy are compared with the LO spectrum and the finite component of the LO spectrum; (right) the uncertainty band
from variations of the scales µR and µF at NLL+ LO accuracy.

The NNLL+NLO results at the LHC are shown in Fig. 2. In the left-hand side, the full result
(solid line) is compared with the NLO one (dashed line) at the default scales µF = µR = Q =
MH . The NLO result diverges to −∞ as qT → 0 and, at small values of qT , it has an unphysical
peak (the top of the peak is above the vertical scale of the plot) that is produced by the numerical
compensation of negative leading logarithmic and positive subleading logarithmic contributions.
The resummed result is physically well-behaved at small qT . The NLO finite component of the
spectrum (dotted line), which is defined in Eq. (59), vanishes smoothly as qT → 0; its contri-
bution amounts to about 10% in the peak region, about 17% at qT ∼ 25 GeV and about 35% at
qT ∼ 50 GeV. This shows both the quality and the relevance of the matching procedure.
We find that the contribution of A(3) (recall from Section 2.3 that we are using an educated

guess on the value of the coefficient A(3)) to the resummed component can safely be neglected.
The coefficientHH(2)

N contributes significantly, and enhances the qT distribution by roughly 20%
in the region of intermediate and small values of qT . The NNLL resummation effect starts to be
visible below qT ∼ 100 GeV, and it increases the NLO result by about 25% at qT = 50 GeV.
The right-hand side of Fig. 2 shows the scale dependence computed as in Fig. 1. The scale

dependence is now about 8% at the peak and increases to about 20% at qT = 100 GeV.
To better illustrate the main features of the dependence on the scales µR and µF , we present

numerical results at two fixed values of qT in Figs. 3 and 4. In Fig. 3 we show our results at
qT = 50 GeV andMH = 125 GeV. The scale dependence is analysed by varying the factorization
and renormalization scales around the default value MH . The plot on the left corresponds to the
simultaneous variation of both scales, µF = µR = χMH , whereas the plot in the centre (on
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Fig. 2. The qT spectrum at the LHC with MH = 125 GeV: (left) setting µR = µF = Q = MH , the results at
NNLL+ NLO accuracy are compared with the NLO spectrum and the finite component of the NLO spectrum; (right)
the uncertainty band from variations of the scales µR and µF at NNLL+NLO accuracy.

the right) corresponds to the variation of the factorization (renormalization) scale µF = χF MH

(µR = χRMH ) by fixing the other scale at the default valueMH .
As expected from the QCD running of αS, the cross sections typically decrease when µR

increases around the characteristic hard scale MH , at fixed µF = MH . In the case of variations
of µF at fixed µR = MH , we observe the opposite behaviour. This is not unexpected, since
when MH = 125 GeV the cross section is mainly sensitive to partons with momentum fraction
x ∼ 10−2, and in this x-range scaling violations of the parton densities are (moderately) positive.
Varying the two scales simultaneously (µF = µR) leads to a partial compensation of the two
different behaviours. As a result, the scale dependence is mostly driven by the renormalization
scale, because the lowest-order contribution to the process is proportional to α3S, a (relatively)
high power of αS.
Comparing the LO with the NLL+ LO results and the NLO with the NNLL+NLO results,

we see that the scale dependence of the resummed results (solid lines) is smaller than that of
the corresponding fixed-order results (dashed lines): the LO and NLL+ LO curves have a com-
parable slope, but the NLL + LO results are higher; the NLO and NNLL + NLO results have
smaller differences, but the slope of the NNLL+NLO curve is flatter. In summary, resummation
reduces the scale dependence of the fixed-order calculations also in the region of intermediate
values of qT .
In Fig. 4 we report analogous results at a smaller value of qT , namely qT = 15 GeV. The

qualitative behaviour is similar to the one in Fig. 3. In this region of small transverse momenta
the fixed-order result is no longer reliable (see Figs. 1 and 2), but its relative scale dependence
does not increase and is even smaller than at qT = 50 GeV. This is due to the fact that the fixed-
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Fig. 3. Scale dependence of the LHC cross section for Higgs boson production (MH = 125 GeV) at qT = 50 GeV.
Results at (upper) LO, NLL+ LO and (lower) NLO, NNLL+NLO accuracy.

order cross section is much larger than at higher values of qT . The slope of the resummed results
(solid lines) is sizeably flatter than that of the corresponding fixed-order results (dashed lines).
We also notice a slight reduction in the scale dependence of the resummed results compared to
Fig. 3, especially at NNLL+NLO accuracy.
In Fig. 5 the NLL+ LO and NNLL+ NLO bands shown in Figs. 1 and 2 are compared. We

see that the NNLL+NLO band (solid lines) is smaller than the NLL+LO one (dashed lines) and
overlaps with the latter at qT ! 100 GeV. This suggests a good convergence of the resummed
perturbative expansion. This result is confirmed by the inset plot, that shows the NNLL+ NLO
band normalized to the NLL + LO result at central value of the scales. This qT -dependent K

factor,

(88)K(qT ) = dσNNLL+NLO(µF ,µR)

dσNLL+LO(µF = µR = MH )
,
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Fig. 4. Scale dependence of the LHC cross section for Higgs boson production (MH = 125 GeV) at qT = 15 GeV.
Results at (upper) LO, NLL+ LO and (lower) NLO, NNLL+NLO accuracy.

is stable, around the values 1.1–1.2, in the central region of the inset plot, and it increases (de-
creases) drastically when qT " 50 GeV (qT ! 2 GeV). In the large-qT region, the effect of
perturbative higher-order corrections is known to be important [20–22]. At very small values of
qT , non-perturbative effects are definitely expected to be relevant. We observe that a naive rescal-
ing of the NLL+LO result by a constant (i.e., independent of qT ) K factor would not reproduce
the NNLL+NLO result over the entire qT -range.
The nice convergence of the resummed perturbative expansion suggested by Fig. 5 should be

contrasted with the results in Fig. 6, where the corresponding fixed-order bands, computed as
in Fig. 5, are shown. The results in Fig. 6 have no physical significance in the small-qT region,
owing to the non-convergence of the fixed-order expansion herein. When qT " 25 GeV, we see
that the scale dependence of the NLO (LO) result is larger than the one of the corresponding
NNLL + NLO (NLL + LO) result in Fig. 5. More importantly, we see that the LO and NLO
bands do not overlap. This implies that the scale dependence enclosed by these bands certainly
underestimates the true theoretical uncertainty from missing higher-order terms. Equivalently,
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Fig. 5. Comparison of the NLL+LO and NNLL+NLO bands (MH = 125 GeV). The inset plot shows the NNLL+NLO
band normalized to the central value of the NLL+ LO result.

we can say that the uncertainty of these fixed-order calculations is more reliably estimated by
performing scale variations over a range of scales that is wider than that used in Fig. 6. All this
indicates a poor convergence of the fixed-order perturbative expansion at intermediate values
of qT .
As mentioned at the beginning of this subsection, in our resummed calculations at NLL +

LO and NNLL + NLO accuracy we use parton densities and αS at perturbative orders that are
different from those customarily used in fixed-order calculations at LO and NLO, respectively.
Indeed, the consistent procedure at large values of qT would be to use LO densities with 1-loop
αS at the LO, and NLO densities with 2-loop αS at the NLO. We have also explained why our
procedure is justified in the intermediate-qT region, and we have postponed the discussion on the
large-qT region. To come back to this point, in Fig. 7 we compare our NLL+ LO and NNLL+
NLO results with the customary NLO results, which are obtained by using NLO parton densities
and 2-loop αS. We also include the corresponding bands, computed from scale variations. In the
left-hand side we see that in the intermediate-qT region our NLL+ LO result catches the bulk
of the NLO effect. Obviously, at large qT , the inclusion of NLO corrections is necessary. In the
right-hand side, the calculations at NNLL+NLO accuracy and at the NLO are compared. In spite
of the fact that the two calculations use different parton densities and αS, the corresponding bands
show a very good overlap when qT ∼MH . We thus conclude that, within the NLO theoretical
uncertainty, the two calculations are perfectly compatible at the quantitative level in the large-qT

region, qT ∼MH .
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Fig. 6. Comparison of the LO and NLO bands (MH = 125 GeV).

Fig. 7. Comparison of the NLL+LO (left) and NNLL+NLO (right) bands with the NLO band computed by using NLO
parton densities and 2-loop αS.
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Fig. 8. NLL+ LO spectra for different choices of the resummation scale Q at fixed µR = µF = MH .

Fig. 9. NNLL+NLO spectra for different choices of the resummation scale Q at fixed µR = µF = MH .
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In Fig. 8 (Fig. 9) we plot the NLL + LO (NNLL + NLO) spectra for different choices of
the resummation scale Q. We remind the reader that the resummation scale Q has to be cho-
sen of the order of MH . Variations of the resummation scale around MH can be studied to
estimate the uncertainty of the resummed calculation arising from not yet computed terms at
higher logarithmic accuracy. In our quantitative study we consider four different values of Q,
Q = 2MH ,MH ,MH /2,MH /4.
We first comment on the behaviour at large transverse momenta, which is best visible looking

at the plots on the right of Figs. 8 and 9. We see that the NLL+ LO cross section can become
negative if Q = 2MH . This behaviour should not be regarded as particularly worrisome: it takes
place when qT > MH , where the use of the resummation formalism is not anymore justified.
In general, the cross section has a better behaviour at large qT when the resummation scale
has the values Q = MH ,MH /2,MH /4. In particular, at large-qT the results of the fixed-order
calculation at LO (NLO) accuracy are very well approximated by the NLL+LO (NNLL+NLO)
calculation with Q = MH /2; the line corresponding to the LO (NLO) results is not shown in
the plot on the right of Fig. 8 (Fig. 9), since it is hardly distinguishable from the dotted and dot-
dashed lines. The fact that the fixed-order behaviour at large qT is approximated better whenQ is
smaller is not unexpected. By varyingQ, we smoothly set the transverse-momentum scale below
which the resummed logarithmic terms are mostly effective; whenQ is smaller, the resummation
effects are confined to a range of smaller values of qT .
To quantify the resummation-scale uncertainty on the cross section at small and intermediate

values of qT , we proceed as in the case of the renormalization and factorization scales, and we
vary Q by a factor of 2 up and down from a reference value. We choose the reference value
Q = MH /2, because of the better quality of the behaviour of the corresponding cross section at
large qT . From Fig. 8, we see that at NLL+ LO accuracy a scale variation between 1/4MH and
MH produces a variation of the cross section of about ±15% in the region around the peak. At
NNLL+ NLO accuracy (Fig. 9) the resummation-scale dependence is much reduced: when Q

varies between MH /4 and MH the change in the cross section at the peak is about ±5%, i.e.,
smaller than the corresponding uncertainty from variations of the renormalization and factoriza-
tion scales (see Fig. 2).
Throughout this section we used the MRST2004 set [70] of parton distribution functions at

NLO and NNLO. The NLO and NNLO parton densities from Alekhin are currently being up-
dated [71]. The CTEQ [72] and GRV [73] groups do not include sets of NNLO parton densities.
The parton distribution sets of MRST, Alekhin and CTEQ include estimates of experimental un-
certainties, which lead to effects below to about 5% on the total cross section for Higgs boson
production at the LHC. We do not expect significantly different results in the case of the qT cross
section at the LHC, and we refer to Ref. [17] for results and discussions about the effects of
available parton densities on the total cross section.
The numerical results presented so far refer to the value MH = 125 GeV of the Higgs boson

mass. By varying MH , the typical features of the results are unchanged, the main difference be-
ing the decrease of the cross section as MH increases. In Fig. 10 we plot the NNLL + NLO
spectra, normalized to the total cross section, for different values of the Higgs boson mass,
MH = 125,165,200 and 300 GeV. For reference, the corresponding values of the NNLO total
cross sections are σNNLO = 38.43,24.37,17.78 and 10.03 pb. As expected, the qT distribution
becomes harder as MH increases. The average value, 〈qT 〉, of the transverse momentum in-
creases almost linearly with increasing MH , and it is very roughly approximated by an effective
lowest-order expression, 〈qT 〉 ∼ CAαS(M

2
H )MH .
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Fig. 10. NNLL + NLO spectra for different values of the Higgs boson mass. The scales are set at the default value
µF = µR = Q = MH .

The quantitative predictions presented up to now are obtained in a purely perturbative frame-
work. It is known (see, e.g., Ref. [29] and references therein) that the transverse-momentum
distribution is affected by non-perturbative (NP) effects, which become important as qT becomes
small. In impact parameter space, these effects are associated to the large-b region. In our per-
turbative study the integral over the impact parameter turns out to be dominated by the region
where b ! 0.1–0.2 GeV−1, larger values of b being strongly suppressed by the resummation
of the logarithmic terms in the gluon form factor. Thus we do not expect particularly-large NP
effects in the case of Higgs boson production at the LHC. This expectation is in agreement with
the findings in Refs. [40–44].
A customary way of modeling NP effects in the case of DY lepton-pair production is to

introduce an NP transverse-momentum smearing of the distribution. This is implemented by
multiplying the b-space perturbative form factor by an NP form factor. Several different parame-
trizations of the NP form factor are available in the literature [63,74–77]; the corresponding NP
parameters are obtained from global fits to DY data.
In the case of Higgs boson production, the estimate of NP effects is obviously more uncertain,

since we cannot exploit available experimental data. In Ref. [78] we studied the impact of NP
contributions on the qT spectrum of the Higgs boson, by applying the DYNP corrections of Refs.
[74–76] to our resummed results at NLL accuracy. We also considered the effect of rescaling the
DY NP coefficients by the factor CA/CF , to take into account the different colour charges of the
initial-state partons (qq̄ in the DY process, gg in Higgs boson production) in the hard-scattering
subprocess. Alternatively, we used the NP coefficients extracted in Ref. [43] from a fit of data on
Υ production, a production process that is more sensitive to the gluon content of the colliding
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hadrons. All these different quantitative implementations of NP corrections, although certainly
not fully justified, can give an idea of the size of the NP effects on the Higgs boson spectrum.
The results of Ref. [78] show that the impact of the NP effects on the NLL resummed distri-

bution is definitely below 10% for qT " 10 GeV, and it decreases very rapidly as qT increases.
Moreover, when qT ! 10 GeV, different parametrizations of the NP terms can lead to sizeably
different relative effects, as a consequence of our present ignorance on the absolute value of the
NP contributions.
In view of these results, in the present paper we limit ourselves to considering a sim-

ple parametrization of the NP contributions. We multiply the b-space resummed component
WH

ab(b,M, ŝ) on the right-hand side of Eq. (10) by a NP factor, SNP, which includes a Gaussian
smearing of the form

(89)SNP = exp
{
−gNPb

2}.

The NP coefficient gNP is varied in the range suggested by the study of Ref. [43]: gNP =
1.67–5.64 GeV2. Note that this procedure, with these values of gNP, well approximates the quan-
titative spread of NP effects found in Ref. [78] at NLL accuracy. In Fig. 11 we plot the effect of
the NP smearing on our best perturbative predictions, as given by the results at NNLL+ NLO
accuracy. The inner plot shows the relative deviation from the NNLL+NLO perturbative result,
as defined by the ratio

(90)0=
dσNPNNLL+NLO − dσNNLL+NLO

dσNNLL+NLO
,

where dσNPNNLL+NLO is the NNLL + NLO cross section, dσNNLL+NLO, supplemented with the
NP form factor. We see that the NP effects give deviations from the purely perturbative result
that are below 10% for qT " 5 GeV. Comparing the inset plots in Figs. 5 and 11, we also notice
that the inclusion of higher-order contributions (going from NLL+LO to NNLL+NLO) and of
NP contributions have a qualitatively similar effect at intermediate and small values of transverse
momenta: both contributions make the distribution harder. At the quantitative level, 0 is much
smaller thanK− 1 when qT " 10 GeV, while0 andK− 1 are comparable when qT ! 10 GeV.
This points towards a non-trivial interplay between higher-order perturbative effects and NP
effects at fixed value of the Higgs boson mass.
In summary, the comparison of the NLL+ LO and NNLL+NLO results from small (around

the peak region) to intermediate (say, roughly, qT ! MH /3) values of transverse momenta shows
a nice convergence of the resummed QCD predictions for the qT spectrum of the Higgs boson
at the LHC. From this comparison and from the effects of variations of the renormalization, fac-
torization and resummation scales, we conclude that the perturbative QCD uncertainty of the
NNLL + NLO results is uniformly of about 10% over this range of transverse momenta. The
perturbative and NP uncertainty increases at smaller values of qT (see Figs. 5 and 11); the per-
turbative uncertainty increases also at larger values of qT [20–22]. The perturbative uncertainty
on the NNLO cross section [14], as estimated in the same manner (i.e., by comparing the NLO
and NNLO results, and performing scale variations), is about 15% [17]. Our results on the qT

spectrum are thus fully consistent with those on the total cross section, since the bulk of the
events is concentrated at small and intermediate values of the Higgs boson qT .
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Fig. 11. The NNLL + NLO perturbative results supplemented with the NP form factor in Eq. (89). The upper (lower)
curve at small qT is obtained with gNP = 1.67 GeV2(gNP = 5.64 GeV2).

4. Conclusions

In this paper we have considered the transverse-momentum spectrum of generic systems of
high-massM produced in hadron–hadron collisions. Following our previous work on the subject
[1,33], we have illustrated and discussed in detail a perturbative QCD formalism that allows us to
resum the large logarithmic contributions in the small-qT region (qT $M) and to consistently
match the ensuing result to the fixed-order contributions in the large-qT region (qT ∼M). The
main features of our approach, that make it different from other implementations of b-space
resummation presented in the literature, are summarized below.

• The resummation is performed at the level of the partonic cross section. The parton dis-
tributions are thus evaluated at the factorization scale µF , which has to be chosen of the order
of the hard scale M . The resummation formula is then organized in a form that is in close anal-
ogy with the case of event shapes variables in hard-scattering processes [54–57] and threshold
resummation in hadronic collisions [58,59]: the various classes of logarithmic contributions are
controlled by the QCD coupling αS(µ2R) evaluated at the renormalization scale µR . This proce-
dure naturally allows us to perform a systematic study of renormalization- and factorization-scale
dependence, as is customarily done in fixed-order calculations. This should be compared with the
other implementations of b-space resummation, where the scale at which the parton distributions
are evaluated is of the order of 1/b, which also necessarily requires an extrapolation of the parton
distributions in the NP region.
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• The large logarithmic contributions are exponentiated in the form factor exp{GN }, where the
function GN (see Eq. (14)) is universal: it does not depend on the produced high-mass system,
and it only depends on the flavour of the partons involved in the hard-scattering subprocess.
More precisely (see Appendix A), various process-independent form factors control the various
partonic channels. The process dependence, as well as the factorization-scale and factorization-
scheme dependence is fully included in the hard-scattering coefficient HN (see Eq. (12)).

• We impose a constraint of perturbative unitarity through the replacement in Eq. (16): the b-
space form factor exp{GN(L̃)} is equal to unity at b = 0. This constraint has a twofold purpose.
On one hand, it avoids the introduction of unjustified higher-order contributions in the small-
b region, which are present [79] in standard implementations of b-space resummation. On the
other hand, it allows us to recover the total cross section at the nominal fixed-order accuracy
upon integration over qT . Note that, as a consequence, perturbative uncertainties at intermediate
values of qT are reduced.

The resummation formalism has been applied to the production of the SM Higgs boson in pp

collisions. We combined the most advanced perturbative information that is available at present
for this process: NNLL resummation at small qT and fixed-order perturbation theory at NLO
at large qT . We developed a numerical code, named HqT [69], that performs the calculation
at NLL + LO and NNLL + NLO accuracy. In Section 3.1 we have presented a selection of
results that can be obtained by our program at LHC energies. Owing to the unitarity constraint,
the integral of our spectra at NLL + LO (NNLL + NLO) correctly reproduces the total NLO
(NNLO) cross sections. The results show a high stability with respect to scale variations and an
increasing stability when going from NLL+ LO to NNLL+ NLO accuracy. As summarized at
the end of Section 3.1, this suggests that the uncertainty from missing higher-order perturbative
contributions is under good control.
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Appendix A. Exponentiation in the multiflavour case

In Sections 2.2 and 2.3, we have discussed the exponentiation structure of the resummed
component of the qT distribution. To simplify the notation and the presentation, we have limited
ourselves to illustrating the case in which the partonic scattering involves a single flavour of
partons. This appendix is devoted to generalize the exponentiation to the case with partons of
different flavours.
To obtain Eq. (43), the multiflavour analogue of Eq. (12), we start from the representation in

Eq. (42) of the resummed partonic cross sectionWF
ab,N , and then we proceed as in Section 2.3.

The main difference with respect to the steps in Eqs. (44)–(46) is that the solution of the QCD
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evolution equations (40) has the customary form11

(A.1)UN

(
b20/b

2,Q2) = P exp

{ b20/b
2∫

Q2

dq2

q2
γ N

(
αS

(
q2

))
}

,

where the symbol P on the right-hand side denotes the path ordering expansion of the expo-
nential matrix. Because of its matrix structure, the exponential in Eq. (A.1) has only a formal
meaning. To recast Eq. (A.1) in a true exponential form, we can perform a systematic logarith-
mic expansion of the solution of the Altarelli–Parisi equations, by using a well-known method
that dates back, at least, to Ref. [80].
The evolution operator in Eq. (A.1) can be written in the following form [80] (see also Ref.

[81] for technical details):

(A.2)UN

(
b20/b

2,Q2) = V N

(
αS

(
b20/b

2))U (LO)
N

(
αS

(
b20/b

2),αS
(
Q2))V −1N

(
αS

(
Q2)),

where U (LO)
N is determined by the lowest-order anomalous dimensions γ (1)

N ,

(A.3)
dU (LO)

N (αS,α
′
S)

d lnαS
=− 1

β0
γ (1)

N U (LO)
N (αS,α

′
S),

and the operator V N fulfills the following differential equation:

(A.4)
dV N(αS)

d lnαS
= 1
β(αS)

γ N(αS)V N(αS) + V N(αS)
1
β0

γ (1)
N .

The evolution equation (A.3) can be solved by diagonalizing the anomalous dimensions matrix
γ (1)

N , which has three different eigenvalues γ (1)
i,N : one eigenvalue in the flavour non-singlet sector

(i =NS), and two eigenvalues in the flavour singlet sector (i = ±). The solution of Eq. (A.3) is

(A.5)U (LO)
N

(
αS

(
b20/b

2),αS
(
Q2)) =

∑

i=NS,±

[
αS(Q

2)

αS(b
2
0/b

2)

]γ (1)
i,N /β0

E(i)
N ,

where E(i)
N denotes the projector onto the flavour eigenspace corresponding to the eigenvalue

γ
(1)
i,N . By inspection of Eq. (A.4), we see that it can be solved by performing a perturbative ex-
pansion,

(A.6)V N(αS) = 1+
∞∑

n=1

(
αS
π

)n

V (n)
N ,

and the perturbative coefficients V (n)
N are obtained in terms of the anomalous dimensions co-

efficients γ (k+1)
N and the β function coefficients βk with k # n. For example, the first-order

coefficient V (1)
N is given by

(A.7)V (1)
N =

∑

i,j=NS,±

1
γ

(1)
j,N − γ

(1)
i,N − β0

E(i)
N

(
γ (2)

N −
β1
β0

γ (1)
N

)
E

(j)
N .

11 In this appendix we use the boldface notation X to denote the flavour space matrix whose matrix elements are
Xab = (X)ab .
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We now come back to the right-hand side of Eq. (42). The evolution operator UN(b20/b
2,µ2F )

is rewritten as UN(b20/b
2,µ2F ) = UN(b20/b

2,Q2)UN(Q2,µ2F ). Then UN(b20/b
2,Q2) is re-

placed by the expression in Eq. (A.2). Eq. (42) thus becomes

WF
ab,N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)

=
∑

c

σ
(0)
cc̄,F

(
αS

(
M2),M

)
HF

c

(
αS

(
M2))

×
∑

a2,b2

[
V −1N

(
αS

(
Q2))UN

(
Q2,µ2F

)]
a2a

[
V −1N

(
αS

(
Q2))UN

(
Q2,µ2F

)]
b2b

×
{
Sc(M,b)

∑

a1,b1

C̃ca1,N
(
αS

(
b20/b

2))C̃c̄b1,N
(
αS

(
b20/b

2))

(A.8)×U
(LO)
a1a2,N

(
αS

(
b20/b

2),αS
(
Q2))U(LO)

b1b2,N

(
αS

(
b20/b

2),αS
(
Q2))

}
,

where we have defined the perturbative function

(A.9)C̃N(αS) = CN(αS)V N(αS) = 1+
∞∑

n=1

(
αS
π

)n

C̃
(n)

N ,

and inside the curly brackets we have collected all the factors, Sc, C̃N and U (LO)
N , that depend

on the impact parameter b. These factors contain the logarithmically-enhanced contributions that
have to be resummed and organized in exponential form. The factor Sc can be rewritten as

(A.10)Sc(M,b) = Sc(M,b0/Q) exp
{
Gc

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2)},

where (see Eq. (31))

(A.11)

Gc

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2) =−

Q2∫

b20/b
2

dq2

q2

[
Ac

(
αS

(
q2

))
ln

M2

q2
+ Bc

(
αS

(
q2

))]
.

The factor U (LO)
N is

(A.12)

U
(LO)
ab,N

(
αS

(
b20/b

2),αS
(
Q2)) =

∑

i=NS,±
E

(i)
ab,N exp

{
Gi,N

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2)},

where (see Eq. (A.5))

(A.13)

Gi,N

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2) =

γ
(1)
i,N

β0
ln

αS(Q
2)

αS(b
2
0/b

2)
=
γ

(1)
i,N

β0

Q2∫

b20/b
2

dq2

q2
β
(
αS

(
q2

))
.

The factor C̃ca,N can be written as

(A.14)C̃ca,N

(
αS

(
b20/b

2)) = C̃ca,N

(
αS

(
Q2)) exp

{
Gca,N

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2)},
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where (see Eq. (37))

(A.15)

Gca,N

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2) =−

Q2∫

b20/b
2

dq2

q2
β
(
αS

(
q2

))d ln C̃ca,N (αS(q
2))

d lnαS(q2)
.

Note a key point: Eq. (A.14) does not regard the flavour matrix C̃N , but rather its matrix element
C̃ca,N . Therefore, its right-hand side involves a true c-number exponential instead of a formal
matrix exponential.
Inserting Eqs. (A.10), (A.12) and (A.14) in Eq. (A.8), we eventually obtain the final exponen-

tiated result in Eq. (43), namely

WF
ab,N

(
b,M;αS

(
µ2R

)
,µ2R,µ2F

)

=
∑

{I }
H{I },F

ab,N

(
M,αS

(
µ2R

)
;M2/µ2R,M2/µ2F ,M2/Q2)

× exp
{
G{I },N

(
αS

(
µ2R

)
,L;M2/µ2R,M2/Q2)},

where the sum extends over the following set of flavour indices:

(A.16){I } = c, c̄, i, j, a1, b1.

The exponent G{I },N of the universal form factor and the process-dependent hard factor H{I },F
ab,N

are

(A.17)G{I },N = Gc + Gi,N + Gj,N + Gca1,N + Gc̄b1,N ,

H{I },F
ab,N

(
M,αS

(
µ2R

)
;M2/µ2R,M2/µ2F ,M2/Q2)

= σ (0)
cc̄,F

(
αS

(
M2),M

)
HF

c

(
αS

(
M2))Sc(M,b0/Q)C̃ca1,N

(
αS

(
Q2))C̃c̄b1,N

(
αS

(
Q2))

(A.18)
×

[
E(i)

N V −1N

(
αS

(
Q2))UN

(
Q2,µ2F

)]
a1a

[
E

(j)
N V −1N

(
αS

(
Q2))UN

(
Q2,µ2F

)]
b1b

.

From Eqs. (A.11), (A.13) and (A.15) we see that G{I },N in Eq. (A.17) has exactly the integral
representation of Eq. (19). The logarithmic expansion (see Eq. (14)) of Gc and Gi,N starts at
LL and NLL accuracy, respectively. The term Gca,N starts at NLL accuracy in the flavour off-
diagonal case (c -= a) and at NNLL accuracy in the flavour diagonal case (c = a). The hard
functionH{I },F

ab,N does not depend on the impact parameter b. It can be perturbatively expanded in
powers of αS(µ2R) (with µR ∼M), since the various factors on the right-hand side of Eq. (A.18)
involve only scales (M,Q,µF ) that are of the order of the hard-scattering scaleM .
We conclude this appendix with a comment on the solution (A.2) of the Altarelli–Parisi evolu-

tion equations and its relation with the resummation in Eq. (14) of the logarithmic contributions
to the impact-parameter form factor exp{G{I },N (αS,L)}.
The evolution operator UN(b20/b

2,Q2) does not contribute to the LL function g(1)(αSL) in
Eq. (14). It starts to contribute to the resummation at the level of the NLL function g

(2)
N (αSL).

Indeed, from Eqs. (A.12) and (A.13) we see that U (LO)
N (αS(b

2
0/b

2),αS(Q
2)), the solution of

the evolution equations at the lowest-perturbative order, contributes to the NLL terms αn
SL

n.
The higher-order corrections to the evolution equations are taken into account by the operator
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V N(αS) in Eq. (A.2). The role of these corrections can be examined by organizing them in
classes of logarithmic contributions αk

S(αSL)n. Using the expansion in Eq. (A.6), Eq. (A.2) gives

(A.19)UN

(
b20/b

2,Q2) = U (LO)
N

(
αS

(
b20/b

2),αS
(
Q2)) +O

(
αn+2
S Ln+1) (n $ 0),

(A.20)UN

(
b20/b

2,Q2) = U (NLO)
N

(
αS

(
b20/b

2),αS
(
Q2)) +O

(
αn+3
S Ln+1) (n $ 0),

where U (NLO)
N is the customary solution [80,81] of the evolution equations at NLO:

U (NLO)
N

(
b20/b

2,Q2)

= U (LO)
N

(
αS

(
b20/b

2),αS
(
Q2)) + αS(b

2
0/b

2)

π
V (1)

N U (LO)
N

(
αS

(
b20/b

2),αS
(
Q2))

(A.21)− αS(Q
2)

π
U (LO)

N

(
αS

(
b20/b

2),αS
(
Q2))V (1)

N .

The terms denoted by O(αn+2
S Ln+1) on the right-hand side of Eq. (A.19) contribute at NNLL

accuracy (they are of the same logarithmic accuracy as those in the function αSg(3)
N (αSL) in

Eq. (14)). Analogously, the terms denoted by O(αn+3
S Ln+1) on the right-hand side of Eq. (A.19)

contribute at NNNLL accuracy (they are of the same logarithmic accuracy as those in the function
α2Sg

(4)
N (αSL) in Eq. (14)). Therefore, to resum the NLL (NNLL) contributions to the form factor

is sufficient to implement the solution of the evolution equations at the LO (NLO). Note, however,
that, to be consistent with the resummed logarithmic expansion, the scale dependence of the
running couplings αS(b20/b

2) and αS(Q2) in Eq. (A.19) (Eq. (A.20)) has to be evaluated at the
NLO (NNLO).

Appendix B. Bessel transformation of logarithmic contributions

This appendix is devoted to the computation of the Bessel transformation of logarithmic con-
tributions.
We recall the definition of the functions Ĩn(qT /Q) introduced in Eq. (74):

(B.1)Ĩn(qT /Q) = Q2
∞∫

0

db
b

2
J0(bqT ) lnn

(
Q2b2

b20
+ 1

)
.

These integrals are easily evaluated in terms of derivatives of the corresponding generating func-
tion Ĩ (x; ε):

(B.2)Ĩn(x) = lim
ε→0

(
∂

∂ε

)n

Ĩ (x; ε),

where

(B.3)Ĩ (x; ε)≡
∞∑

n=0

1
n!ε

nĨn(x).

Inserting Eq. (B.1) in the right-hand side of Eq. (B.3), we have

(B.4)Ĩ (x; ε) =
∞∫

0

dt
t

2
J0(tx)

(
t2

b20
+ 1

)ε
,



G. Bozzi et al. / Nuclear Physics B 737 (2006) 73–120 115

and this integral can be expressed [82] as follows in terms ofKν(x), the modified Bessel function
of imaginary argument (see Eq. (75)):

(B.5)Ĩ (x; ε) =−
(
2

b0x

)1+ε εb20
22(1− ε)K1+ε(b0x).

Inserting Eq. (B.5) in Eq. (B.2) and using the relation

(B.6)2(1− ε) = exp

{

γEε +
∞∑

k=2

1
k
ζkε

k

}

,

where ζn is the Riemann zeta-function (ζ2 = π2/6 = 1.645 . . . , ζ3 = 1.202 . . .), the integrals
Ĩn(x) can straightforwardly be expressed in terms of the derivatives, K(n)

1 (z), of the Bessel func-
tion with respect to its index ν:

(B.7)K
(n)
1 (z)≡

[
∂nKν(z)

∂νn

]

ν=1
.

These derivatives have the following integral representation:

(B.8)K
(2n)
1 (z) =

∞∫

0

dt t2ne−z cosh t cosh t,

(B.9)K
(2n+1)
1 (z) = 2n + 1

z

∞∫

0

dt t2ne−z cosh t ,

which can simply be obtained from Eq. (75).
As discussed in Section 2.4, the computation of the finite component of the qT distribution

requires the evaluation of the functions Ĩn(x) when x > 012. In particular, the computation up to
NLO (see Eq. (73)) requires Ĩn(x) with n = 1,2,3,4; these functions are

(B.10)Ĩ1(x) =−b0
x

K1(b0x),

(B.11)Ĩ2(x) = 2b0
x

[
K1(b0x) lnx −K

(1)
1 (b0x)

]
,

(B.12)Ĩ3(x) =−3b0
x

[
K1(b0x)

(
ln2 x − ζ2

)
− 2K(1)

1 (b0x) lnx + K
(2)
1 (b0x)

]
,

(B.13)

Ĩ4(x) = 4b0
x

[
K1(b0x)

(
ln3 x − 3ζ2 lnx + 2ζ3

)
− 3K(1)

1 (b0x)
(
ln2 x − ζ2

)

+ 3K(2)
1 (b0x) lnx −K

(3)
1 (b0x)

]
.

The functions Ĩn(x) diverge when x→ 0. To examine the divergent behaviour at small values
of x, we introduce the functions Īn(x) and the corresponding generating function Ī (x; ε):

(B.14)Ĩn(x) = Īn(x)
[
1+O

(
x2

)]
,

(B.15)Ĩ (x; ε) = Ī (x; ε)
[
1+O

(
x2

)]
.

12 The behaviour of Ĩn(x) when x = 0 is discussed at the end of this appendix.
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Using the small-x behaviour of the Bessel function K1+ε(x) [82] and performing the small-x
limit of Eq. (B.5), we get

(B.16)Ī (x; ε) =−εD(ε)
(
x2

)−1−ε
,

where

(B.17)D(ε) =
(
2
b0

)2ε 2(1+ ε)
2(1− ε) = exp

{

−2
∞∑

k=1

ζ2k+1
2k + 1ε

2k+1
}

.

Note that the functions Īn(x) exactly correspond to the following Bessel transformations:

(B.18)Īn(qT /Q) = Q2
∞∫

0

db
b

2
J0(bqT ) lnn

(
Q2b2

b20

)
,

as can be checked by performing the limit qT → 0 of Eq. (B.1) or by verifying that the generating
function in Eq. (B.16) has the following integral representation:

(B.19)Ī (x; ε) = 1
2
b−2ε0

∞∫

0

dt t1+2εJ0(tx).

The relation between Īn(qT /Q) and the small-qT limit of Ĩn(qT /Q) is not unexpected in view
of the discussion in Section 2.2. The integral in Eq. (B.1) originates from Eq. (B.18) after the
replacement L = ln(Q2b2/b20)→ L̃ = ln(1 + Q2b2/b20) at the integrand level: when qT → 0,
such a replacement has no effects on the singular behaviour at any logarithmic accuracy.
Though Īn(qT /Q) and Ĩn(qT /Q) coincide when qT → 0, they behave quite differently at

very large values of qT . When x→∞, from Eqs. (B.5) and (B.16) we get

(B.20)Ĩn(x) = (−1)n n

x

√
πb0
2x

e−b0x lnn−1 b0x

2

[
1+O

(
1
lnx

)]
,

(B.21)Īn(x) = (−1)n 2
n−1n
x2

lnn−1 x

[
1+O

(
1
lnx

)]
.

Note, in particular, that Ĩn(x) is integrable over x2 when x→∞, whereas Īn(x) it is not.
The function Īn(x) can easily be computed by performing the nth derivative of the generating

function (B.16) with respect to the parameter ε. To present the result, we first exclude the singular
point x = 0 and consider only the region x > 0. Since the generating function depends on x only
through the factor (x2)−1−ε , x2Īn(x) is simply a polynomial of degree n−1 in the variable lnx2:

(B.22)Īn(x) =− 1
x2

n−1∑

k=0

n!
k!(n− k − 1)!dk lnn−k−1 1

x2
, x > 0,

where the coefficients dn are obtained from Eq. (B.17):

(B.23)dn =
[(

d

dε

)n

D(ε)

]

ε=0
.

The value of the first few coefficients is
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d0 = 1, d1 = d2 = 0, d3 =−4ζ3,
(B.24)d4 = 0, d5 =−48ζ5, d6 = 160ζ 23 .

The result in Eq. (B.22) agrees with that in Ref. [83], where one can find the numerical values
of dn with n # 19 (dn = 2nb̄n(∞), where b̄n(∞) are given in Table 1 of Ref. [83]). The small-x
limit of Eqs. (B.10)–(B.13) thus gives

Ī1(x) =− 1
x2

, Ī2(x) =− 2
x2
ln
1
x2

, Ī3(x) =− 3
x2
ln2

1
x2

,

(B.25)Ī4(x) =− 4
x2

(
ln3

1
x2
− 4ζ3

)
.

Note that, since d1 = d2 = d4 = 0, Īn(x) can be expressed in a simple form to very high logarith-
mic accuracy. For example, we have

Īn(x) =− n

x2

{
lnn−1 1

x2
− 2
3
ζ3

(n− 1)!
(n− 4)! ln

n−4 1
x2
− 2
5
ζ5

(n− 1)!
(n− 6)! ln

n−6 1
x2

(B.26)+ 2
9
ζ 23

(n− 1)!
(n− 7)! ln

n−7 1
x2

+O
(
lnn−8 1

x2

)}
, x > 0.

We now discuss how to deal with the region around the singular point x = 0. We first split
the x range in a large-x (x > x0) and a small-x (x # x0) region, where the parameter x0 can be
chosen arbitrarily. Setting x0 = 1, we have

(B.27)Īn(x) = Īn(x)Θ(x − 1) + Īn(x)Θ(1− x).

In the large-x region, which excludes the point x = 0, Īn(x) is given by Eq. (B.22). In the small-x
region, to properly treat the singularity at x = 0, we have to consider the generating function in
Eq. (B.16) and use the expansion

(B.28)

(
x2

)−1−ε
Θ(1− x) =−1

ε
δ
(
x2

)
+

[
1
x2

(
x2

)−ε
]

+
=−1

ε
δ
(
x2

)
+
∞∑

n=0

εn

n!

[
1
x2
lnn 1

x2

]

+
,

where the plus-distribution is customarily defined by its action onto any function h(x2) that is
finite at x = 0:

(B.29)
1∫

0

dx2 h
(
x2

)[ 1
x2
lnn 1

x2

]

+
≡

1∫

0

dx2
h(x2)− h(0)

x2
lnn 1

x2
.

Therefore the generalization of Eq. (B.22) to include the point x = 0 is

(B.30)Īn(x) = dnδ
(
x2

)
−

n−1∑

k=0

n!
k!(n− k − 1)!dk

[
1
x2
lnn−k−1 1

x2

]

+
, 0# x # 1.

The procedure described in Eqs. (B.27) and (B.28) can also be applied to properly define
the integrals Ĩn(x) around the point x = 0 in the small-x region. Choosing x0 =∞, the final
result is equivalent to start from Ĩn(x > 0), the expression of Ĩn(x) when x -= 0 (for example,
Eqs. (B.10)–(B.13)), and then introduce a generalized plus-prescription that acts in the entire
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range 0# x <∞. Formally we can write

(B.31)Ĩn(x) =
[
Ĩn(x > 0)

]
+∞,

where the generalized plus-distribution is defined as

(B.32)
∞∫

0

dx2 h
(
x2

)[
Ĩn(x > 0)

]
+∞ ≡

∞∫

0

dx2
[
h
(
x2

)
− h(0)

]
Ĩn(x > 0).

The choice x0 =∞ to define the plus-prescription in the case of Ĩn is feasible since Ĩn(x) (unlike
Īn(x)) is integrable over x2 when x→∞. This choice simplifies the definition of Ĩn since the
right-hand side of Eq. (B.31) (unlike Eq. (B.30)) does not contain any contact term proportional
to δ(x2). The contact term vanishes since the integrand factor lnn(1 + Q2b2/b20) in Eq. (B.1)
vanishes at b = 0. The vanishing of the contact term is thus ultimately related to the unitarity
constraint in Eqs. (8) and (18).
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