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ABSTRACT
The detection and characterisation of domains of intersecting fractures are important
goals in several disciplines of current interest, including exploration and production
of unconventional reservoirs, nuclear waste storage, CO2 sequestration, and ground-
water hydrology, among others. The objective of this study is to propose a theoretical
framework for quantifying the effects of fracture intersections on the frequency-
dependent elastic properties of fluid-saturated porous and fractured rocks. Three
characteristic frequency regimes for fluid pressure communication are identified. In
the low-frequency limit, fractures are in full pressure communication with the em-
bedding porous matrix and with other fractures. Conversely, in the high-frequency
limit, fractures are hydraulically isolated from the matrix and from other fractures. At
intermediate frequencies, fractures are hydraulically isolated from the matrix porosity
but can be in hydraulic communication with each other, depending on whether frac-
ture sets are intersecting. For each frequency regime, the effective stiffness coefficients
are derived using the linear-slip theory and anisotropic Gassmann equations. Explicit
mathematical expressions for the two characteristic frequencies that separate the three
frequency regimes are also determined. Theoretical predictions are then applied to
two synthetic 2D samples, each containing two orthogonal fracture sets: one with
and another without intersections. The resulting stiffness coefficients, Thomsen-style
anisotropy parameters, and the transition frequencies show good agreement with cor-
responding numerical simulations. The theoretical results are applicable not only to
2D but also to 3D fracture systems and are amenable to being employed in inversion
schemes designed to characterise fracture systems.
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1 INTRODUCT I ON

One of the challenges in unconventional oil and gas explo-
ration is finding the so-called sweet spots. Sweet spots are
areas of elevated fracture permeability, which often result
from the presence of multiple intersecting sets of open nat-
ural fractures. Thus, detecting and characterising domains of

∗E-mail: junxin.guo@postgrad.curtin.edu.au

intersecting fractures are important for the proper manage-
ment of unconventional reservoirs. Furthermore, this kind of
information is also crucial for the monitoring of CO2 seques-
tration and nuclear waste storage, as these operations may
fail due to leakage of fluids through connected fracture net-
works (Neuzil 2013; Luo and Bryant 2014). Apart from these,
there are many other areas where the importance of detecting
such fractured domains can be found, such as tunnel engineer-
ing, groundwater and contaminant hydrology, and mining
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engineering (e.g., Grenon and Hadjigeorgiou 2012; Lisjak,
Figi, and Grasselli 2014; Karay and Hajnal 2015). The seis-
mic method is currently considered as a potentially important
tool for detecting and characterising fractured rocks, as seis-
mic waves travelling through this kind of media experience
anisotropy, attenuation, and dispersion (Rubino et al. 2013,
2014, 2015).

Distinguishing intersecting from non-intersecting frac-
tures using seismic data is challenging, since intersections of
fractures have little effect on static elastic properties (Grechka
and Kachanov 2006). However, for fluid-saturated rocks
at finite frequencies, intersecting fracture sets may exhibit
somewhat different properties. Indeed, when a seismic wave
compresses a fluid-filled fracture, it induces a fluid pressure
increment within that fracture. This increment will be lower if
the fracture is in pressure communication with another frac-
ture of a different orientation, resulting in an increase in frac-
ture compliance. This effect of fluid pressure communication
within fractures having different orientations depends on the
frequency and hydraulic conductivity of the fracture system.
For isotropic or transversely isotropic distributions of frac-
tures, this effect has been explored in a number of publica-
tions (O’Connell and Budiansky 1977; Jones 1986; Endres
and Knight 1997; Chapman, Zatsepin, and Crampin 2002;
Guéguen and Sarout 2009; Sarout 2012). Other authors ex-
plored the effect of pressure communication between fractures
and background porosity, but these studies are often limited
to a single set of parallel fractures or random distributions
of fracture orientations (see, e.g., Chapman (2003), Gurevich
(2003), Jakobsen (2004), and Gurevich et al. (2009)).

Rubino et al. (2013, 2014, 2015) have explored this ef-
fect by determining the frequency-dependent elastic proper-
ties of porous rocks permeated by two orthogonal sets of
open fractures using a numerical algorithm based on the the-
ory of poroelasticity. In particular, Rubino et al. (2015) per-
formed simulations for both intersecting and non-intersecting
fracture sets and showed significant differences between the
observed elastic properties. These results are very promis-
ing for seismic characterisation of unconventional reservoirs;
however, performing numerical simulations for every config-
uration of fractures is impractical, especially for inverse prob-
lems. Hence, it is important to predict these effects theoreti-
cally. The aim of this paper is to find theoretical expressions
that can quantify the effects of fracture intersections on the
frequency-dependent elastic properties of rocks and compare
these theoretical predictions with the numerical simulations
of Rubino et al. (2013, 2014, 2015).

2 NUMERICAL S IMULATIONS

2.1 Upscaling procedure

Following the work of Rubino et al. (2015), we model 2D
fractured rocks in the framework of Biot’s theory of poroe-
lasticity (Biot 1941), with the fractures represented as highly
compliant and permeable heterogeneities embedded in a stiffer
porous background. Both the fractures and the background
are fluid saturated, and fluid pressure communication between
the fractures and the background and between connected frac-
tures can take place.

To estimate the effective seismic properties of fractured
reservoirs, we employ a numerical upscaling procedure based
on the application of three oscillatory relaxation tests on
a square sample representative of the medium of interest
(Rubino et al. 2016). First, we apply homogeneous time-
harmonic normal displacements on the top and bottom
boundaries of the sample, whereas the lateral boundaries are
confined. As we are interested in the undrained response, we
do not allow the fluid to flow into or out of the sample. Next,
a second test similar to the previous one is applied, but the
normal displacements are applied on the lateral boundaries of
the sample. Finally, in a third test, we apply a simple shear to
the probed sample.

To account for fluid-pressure diffusion effects on the seis-
mic properties of the considered fractured media, the solid and
relative fluid displacements in response to the three tests are
obtained by solving, through a finite-element approach and
under corresponding boundary conditions, Biot’s quasi-static
poroelastic equations (Biot 1941) in the space–frequency do-
main:

∇ · σ = 0, (1)

iω
η

κ
w = −∇ pf , (2)

where σ is the total stress tensor, ω is the angular frequency,
pf is the fluid pressure, w is the average relative fluid displace-
ment, κ is the rock permeability, and η is the shear viscosity
of the pore fluid.

Next, for each test, we compute the volume averages of
the stress and strain components:

〈
εk

ij

〉 = 1
V

∫
�

εk
ijdV, (3)

〈
σ k

ij

〉 = 1
V

∫
�

σ k
ij dV, (4)
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where ε is the strain tensor, � is the domain of volume V that
represents the probed sample, and k = 1,2,3 denotes the kth
oscillatory test previously described.

Assuming that the average responses of the probed
sample can be represented by an equivalent homogeneous
anisotropic viscoelastic solid, the average strain and stress
components can be connected through a complex-valued
frequency-dependent equivalent Voigt stiffness matrix C2D:

⎛
⎜⎝

〈
σ k

11

〉〈
σ k

22

〉〈
σ k

12

〉
⎞
⎟⎠ =

⎛
⎜⎝ C11 C12 C16

C12 C22 C26

C16 C26 C66

⎞
⎟⎠

⎛
⎜⎝

〈
εk

11

〉〈
εk

22

〉〈
2εk

12

〉
⎞
⎟⎠ . (5)

It should be noted that the stiffness coefficients in equa-
tion (5) are similar to those of the corresponding 3D samples
under the plane strain condition.

Equation (5) holds for the three oscillatory tests previ-
ously described. Therefore, we establish nine equations, and
the six unknown stiffness coefficients are computed using a
classic least squares algorithm. Readers are referred to the
work of Rubino et al. (2016) for the details of the numerical
upscaling procedure.

It is important to notice here that a slightly different nu-
merical approach has been proposed by Vinci, Renner, and
Steeb (2014), who model flow within fractures using Navier–
Stokes equations. However, the methodology of Vinci et al.

(2014) does not consider generic anisotropy of the probed syn-
thetic sample, and the results have only been reported for a
set of two intersecting fractures. This implies that their results
are unsuitable for comparison with an equivalent-medium
theory.

2.2 Results

Two synthetic 2D fractured rock samples considered by
Rubino et al. (2015) are shown in Fig. 1. Both samples
have dimensions of 20 cm × 20 cm and contain 20 hor-
izontal and 20 vertical fractures. The main difference be-
tween the samples, therefore, is that, in sample (a), fractures
do not intersect, whereas in sample (b), most fractures show
some degree of connectivity. This ensures that the differences
between their frequency-dependent elastic properties are pre-
dominantly caused by the fracture intersections. The coor-
dinate system is established (Fig. 1) such that the vertical
fractures are perpendicular to the x-axis and the horizontal
fractures are perpendicular to the y-axis. The samples are long
enough along the z-axis to make sure that the normal and
shear strains along the z-axis are negligible, thus satisfying

the condition of plane strain. This reduces the 3D problem to
a 2D problem.

Both the fractures and the background are assumed to
be fully saturated with water, with bulk modulus Kf = 2.25
GPa, density ρf = 1.09 g/cm3, and viscosity ηf = 0.001 Pa s.
We assume that the background is characterised by grain bulk
modulus Kg = 37 GPa and density ρg = 2.65 g/cm3. The re-
maining physical properties of the background are as follows
(Rubino et al. 2015): dry frame bulk modulus Kb = 26 GPa,
shear modulus Gb = 31 GPa, porosity φb = 0.1, and perme-
ability κb = 0.0001 mD.

The fractures are inclusions of rectangular geometry, with
lengths of �4 cm and apertures of 0.06 cm containing a
porous material, with the bulk and shear moduli of the dry
fractures Kfr and Gfr being of values 0.04 and 0.02 GPa, re-
spectively, which is consistent with a fracture shear compli-
ance value of 3×10−11 m/Pa and a drained normal compli-
ance value of 10−11 m/Pa, as employed by Nakagawa and
Schoenberg (2007). The grain moduli of this fracture infill
material are assumed to be the same as those in the back-
ground. This porous fracture infill material is characterised
by a porosity φfr of 0.8 and permeability κ fr of 100 D. It
should be noticed here that such permeability value is signif-
icantly lower than that corresponding to the cubic law for
the considered fracture aperture (Witherspoon et al. 1980).
However, this is consistent with the fact that, while the cu-
bic law is valid only for flow between two parallel plates,
natural fractures tend to be “rough walled”, with the walls
being in contact with each other at certain locations. More-
over, the regions between the contact areas often contain rock
fragments, weathering products, or mineral deposits, which
tend to significantly reduce the effective permeability of the
fracture.

Using the numerical approach and the physical parame-
ters previously described, the equivalent stiffness coefficients
for the two samples are obtained for frequencies varying from
10−5 to 108 Hz. It is imporant to mention that such a wide
frequency range may violate the quasi-static condition, as the
higher frequencies may be larger than Biot’s characteristic
frequency (Biot 1962; Dutta and Odé 1979). In addition, ef-
fective seismic properties can be determined provided that the
heterogeneities are much smaller than the considered seismic
wavelengths, which is not satisfied for the higher frequencies
analysed in the simulations. However, considering such a wide
frequency range is very useful in analysing the physics in terms
of the transition from relaxed to unrelaxed states, which is a
common practice in works dealing with effective media. In
addition, the frequency ranges where dispersion takes place
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Figure 1 Two-dimensional rock samples containing (a) non-intersecting fracture sets and (b) intersecting fracture sets.

are mainly controlled by the permeabilities of the involved
materials. This implies that, for materials with lower perme-
abilities, the features taking place above the aforementioned
threshold frequencies would shift towards lower frequencies,
eventually below such threshold values, thus showing that the
results obtained here for unrealistically high frequencies may
be useful in other situations.

The obtained numerical results show that, for most of
the considered frequencies, the values of C16 and C26 are
below 0.5 GPa, and their maximum values do not exceed
1 GPa. These values are negligibly small compared with the
remaining stiffness coefficients C11, C12, C22, and C66, and
hence, only these four coefficients are considered in the anal-
ysis, as shown in Fig. 2 (solid lines). To illustrate the influ-
ence of the fluid, we also compute the stiffness coefficients
for the dry samples by choosing the fluid bulk modulus to be
negligibly small. The results are shown as open triangles in
Fig. 2. Significant effects of fluid saturation on the stiffness
coefficients can be observed. Comparing the samples with
and without intersecting fractures, it is found that the val-
ues of the stiffness coefficients at the low- and high-frequency
limits are close. However, for the sample with intersecting
fractures, one can observe a plateau at intermediate frequen-
cies. The stiffness coefficients in this frequency range are quite
different from those for the sample with non-intersecting
fractures. Therefore, fracture intersections have great influ-
ence on the frequency-dependent elastic properties of the
samples.

3 T HEORY

To quantify the influence of fracture intersections, we propose
a theoretical framework that provides the elastic properties of
saturated fractured rocks for the two frequency limits and the

intermediate frequency range, as well as the characteristic fre-
quencies that separate these three regimes. Here, we derive
the formulas for the general 3D case. The resulting stiffness
coefficients in the x–y plane (C11, C12, C22, and C66) can be di-
rectly compared with the results of 2D numerical simulations
under plane strain conditions.

3.1 Dry fracture compliance

It is convenient to characterise dry fractured rocks using the
linear-slip theory, in which the compliance matrix of the frac-
tured rock S0 is expressed as a sum of the compliance matrix
of the background rock Sb plus a number of matrices Sci ex-
pressing the normal and tangential fracture compliance values,
ZN and ZT, for each fracture set (e.g., Schoenberg and Sayers
1995):

S0 = Sb +
m∑

i=1

Sci , (6)

where m is the number of fracture sets. Sb takes the following
form for an isotropic background:

Sb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Eb −νb/Eb −νb/Eb 0 0 0

−νb/Eb 1/Eb −νb/Eb 0 0 0

−νb/Eb −νb/Eb 1/Eb 0 0 0

0 0 0 2(1+νb)
Eb

0 0

0 0 0 0 2(1+νb)
Eb

0

0 0 0 0 0 2(1+νb)
Eb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where Eb and νb are Young’s modulus and Poisson’s ratio
of the dry background medium, respectively. For the samples
shown in Fig. 1, the compliance matrix for the fracture set
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(a) Sample with non-intersecting fractures (b) Sample with intersecting fractures 

Figure 2 (Solid lines) Numerical simulations and (solid circles) theoretical predictions for the real part of the frequency-dependent stiffness
coefficients. (Vertical solid lines) The two characteristic frequencies and (open triangles) the dry sample stiffness coefficients are also plotted.
Fracture permeability is doubled to investigate its influence on the characteristic frequencies for (dashed lines) the sample with intersecting
fractures.

perpendicular to x-direction Sc1 and that for the other fracture
set Sc2 are as follows:

Sc1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ZN1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ZT3 0
0 0 0 0 0 ZT1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

Sc2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 ZN2 0 0 0 0
0 0 0 0 0 0
0 0 0 ZT4 0 0
0 0 0 0 0 0
0 0 0 0 0 ZT2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Here, the two tangential compliance values of each frac-
ture set could be different if no rotational symmetry is found
around the fracture normal due to the different fracture
lengths in different directions (Far, Thomsen, and Sayers
2013), which is the case for our 2D samples under the plane
strain condition. Thus, six dry fracture compliance values
(ZN1, ZT1, ZT3, ZN2, ZT2, and ZT4) are essential in general
3D cases for the estimation of the elastic properties of the
dry samples and, therefore, for those of the saturated sam-
ples at different frequencies. However, for the calculations of
the elastic properties of the 2D samples investigated in this
paper, only four fracture compliance values are needed: ZN1,

ZT1, ZN2, and ZT2. To calculate their values, we apply the
theoretical formulas for 2D crack compliance values using
a non-interactive approximation (Kachanov and Sevostianov
2005) as follows:

ZNi = niπ L2

2E2D
b A

, i = 1, 2, (10)

ZTi = ZNi , i = 1, 2, (11)

where ni is the number of fractures of the corresponding frac-
ture set, L is the length of the fracture, A is the surface area
of the 2D sample, and E2D

b is the 2D Young’s modulus for the
background medium, which has the following relation with
3D parameters:

E2D
b = Eb

1 − ν2
b

. (12)

Equations (10) and (11) can be used to compute the dry
fracture compliance values. To assess their accuracy, we com-
pute the dry stiffness coefficients of the samples using these
fracture compliance values through equation (6) and compare
them with those provided by the numerical simulations for
dry fractured samples. For the sample with intersecting frac-
tures, the results are shown in Table 1 (columns 2 and 3). We
find that there are significant discrepancies between theoret-
ical predictions and the numerical simulations, especially for
C12 and C66 that show the largest relative differences. For fur-
ther comparison, we can compute Thomsen-style anisotropy
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Table 1 Comparison of the stiffness coefficients of the dry sample
with intersecting fractures computed using numerical simulations and
linear-slip theory with theoretical fracture compliance values

Numerical
simulations

Linear-slip theory with
theoretical fracture
compliance values

C11 (GPa) 25.82 29.69
C12 (GPa) 2.07 1.05
C22 (GPa) 32.57 29.69
C66 (GPa) 7.65 14.32

parameters for orthotropic media (Tsvankin 1997). For 2D
geometry, the relevant anisotropy parameters are ε(3) and δ(3)

(Tsvankin 1997; Collet et al. 2014):

ε(3) = C22 − C11

2C11
, (13)

δ(3) = (C12 + C66)2 − (C11 − C66)2

2C11 (C11 − C66)
. (14)

The theoretical predictions (Kachanov and Sevostianov
2005) indicate that both δ(3) and ε(3) are equal to zero, i.e., the
theory predicts the sample to be isotropic in the x–y plane.
However, the numerical simulations give values of ε(3) = 0.13
and δ(3) = −0.25, which are clearly not even close to zero.
Thus, numerical simulations show that the dry fractured sam-
ple is actually anisotropic in the x–y plane, and this anisotropy
is anelliptical. In the case of the sample with non-intersecting
fractures, we observe similar disagreement between the pre-
diction of the effective-medium theory and numerical results.
These discrepancies suggest that it is not appropriate to use
the theoretical non-interactive effective-medium approxima-
tion [equations (10) and (11)] in calculating the dry frac-
ture compliance values of the 2D samples investigated in this
paper.

A possible cause for the failure in the theoretical formu-
las of dry fracture compliance values may be boundary effects
due to the limited volume of the samples. We notice that, in
increasing the sample volume fourfold while keeping the other
properties comparable with the original ones, the discrepan-
cies between the theoretical approach and the numerical sim-
ulations become smaller. However, these discrepancies do not
vanish. This implies that there may be additional reasons for
these discrepancies, such as the finite aspect ratio of the frac-
tures, relatively large crack densities, or the rectangular shape
of the cracks, which are features ignored in the non-interactive

effective-medium approximation. A careful analysis on this
will be carried out in the future.

Indeed, in a recent work, Yousef and Angus (2016) have
found that the linear-slip theory may be inaccurate due to
scattering and wave propagation effects. Hence, they recom-
mended that a careful calibration of this theory is needed
before putting it into application. Our numerical simulations
and theoretical modelling are both quasi-static and, hence,
are not affected by the scattering and propagation phenom-
ena. However, the failure in the theoretical formulas of dry
fracture compliance values indicates that we also need to cal-
ibrate the linear-slip theory here due to the boundary effects
and other possible reasons previously stated.

Hence, we calibrate the linear-slip theory by inverting
the dry fracture compliance values from the stiffness matrix
of the dry 2D samples C2D, which is provided by the numer-
ical simulations. To do so, we first invert the stiffness matrix
C2D, which gives the compliance matrix S2D. Based on the
linear-slip theory, the fracture compliance values are then ob-
tained by subtracting the compliance values of the 2D dry
background medium from S2D as follows:

ZNi = S2D
ii − 1/E2D

b , i = 1, 2, (15)

ZT1 + ZT2 = S2D
66 − 2

(
1 + ν2D

b

)
/E2D

b , (16)

where S2D
ii is the corresponding component of matrix S2D,

and ν2D
b is the 2D Poisson’s ratio, which is related to the 3D

Poisson’s ratio as follows:

ν2D
b = νb

1 − νb
. (17)

This method only allows for the estimation of the sum
of the tangential excess compliance values of the two fracture
sets. Since the two fracture sets are generated in the same fash-
ion, it is reasonable to assume that they have the same value
of ZN/ZT. This value will be equal to (ZN1+ZN2)/(ZT1+ZT2).
Hence, we can obtain the following expression for ZTi:

ZTi = ZNi
ZT1 + ZT2

ZN1 + ZN2
, i = 1, 2. (18)

However, it is important to notice here that potential
departures from equation (18) are not expected to affect the
resulting elastic properties of the 2D samples, as only the sum
of ZT1 and ZT2, not the individual values, is involved in the
final expression of the compliance matrix in the 2D case.

In the following sections, we will use the inverted dry
fracture compliance values in calculating the elastic properties
of the saturated samples at different frequency regimes.
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3.2 Low-frequency limit

In the low-frequency limit, the fluid in the fractures has
enough time to communicate with that of the background
pores and of other fractures, resulting in uniform fluid pres-
sure throughout the pore and fracture space. Hence, the elastic
properties for the saturated sample can be obtained from those
for the dry sample by using anisotropic Gassmann equations
(Gassmann 1951; Gurevich 2003). The compliance matrix of
the dry fractured sample S0 is first obtained through equation
(6) using the inverted dry fracture compliance values (ZT3

and ZT4 are not needed for 2D samples). Then, the saturated
stiffness matrix Csat_lf can be computed from the dry stiffness
matrix C0 (inverse of S0) as follows:

csat l f
i j = c0

i j + α0
i α0

j M0, i, j = 1, . . . , 6, (19)

where

α0
m = 1 −

∑3
n=1 c0

mn

3Kg
, (20)

for m = 1, 2, and 3, α0
4 = α0

5 = α0
6 = 0, and the scalar M0 is

the direct analogue of Gassmann’s pore space modulus:

M0 = Kg

(1 − K∗
0/Kg) − φ(1 − Kg/K f )

. (21)

In equation (21), Kg and Kf are the grain and fluid bulk
moduli, respectively; φ is the overall porosity (including the

background and fracture porosity); and K∗
0 denotes the gen-

eralised drained bulk modulus, which is defined as:

K∗
0 = 1

9

3∑
i=1

3∑
j=1

c0
i j . (22)

This procedure of obtaining Csat_lf is schematically illus-
trated in Fig. 3.

3.3 Intermediate frequency range

In the intermediate frequency range, due to the low perme-
ability of the background, there is no time for communication

between the fluid of such region and that of the fractures,
i.e., fractures are hydraulically isolated from the background
medium. However, as open fractures are characterised by very
high permeability values, there is enough time for the fluid
pressure of intersecting fractures to equilibrate at a common
value. In these conditions, the isotropic Gassmann equations
can be applied first to calculate the elastic properties of the
saturated background medium:

Ksat
b = Kb + α2 Mb, (23)

Gsat
b = Gb, (24)

where Ksat
b and Gsat

b are the bulk and shear moduli of the
saturated background medium, respectively, and α and Mb

are the Biot–Willis coefficient and the pore space modulus for
the background medium, respectively, which can be expressed
as:

α = 1 − Kb

Kg
, (25)

Mb = Kg

(1 − Kb/Kg) − φ(1 − Kg/K f )
. (26)

Then, the linear-slip theory is used to obtain the compli-
ance matrix S1 for the saturated background medium perme-
ated with the dry fractures:

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Esat
b + ZN1 −νsat

b /Esat
b −νsat

b /Esat
b 0 0 0

−νsat
b /Esat

b 1/Esat
b + ZN2 −νsat

b /Esat
b 0 0 0

−νsat
b /Esat

b −νsat
b /Esat

b 1/Esat
b 0 0 0

0 0 0
2(1+νsat

b )
Esat

b
+ ZT4 0 0

0 0 0 0
2(1+νsat

b )
Esat

b
+ ZT3 0

0 0 0 0 0
2(1+νsat

b )
Esat

b
+ ZT1 + ZT2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where ZN1, ZN2, ZT1, ZT2, ZT3, and ZT4 are the normal and
tangential excess compliance values for the dry fracture, re-
spectively. For the 2D samples, only ZN1, ZN2, ZT1, and ZT2

are needed, which are obtained using the inversion method
as previously shown. Esat

b and νsat
b are the bulk and Poisson’s

ratio of the saturated background, which are related to Ksat
b

and Gsat
b as follows:

Esat
b = 9Ksat

b Gsat
b

3Ksat
b + Gsat

b

, (28)
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Dry background
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Dry fractures Dry fractured sample Fluid

Saturated fractured sample
at low-frequency limit

Linear-slip theory 

Anisotropic Gassmann 

Figure 3 Schematic illustration of the procedure proposed to obtain the stiffness coefficients of the saturated sample at the low-frequency limit.

νsat
b = 3Ksat

b − 2Gsat
b

2
(
3Ksat

b + Gsat
b

) . (29)

Finally, the dry fractures are saturated with fluid by using
the anisotropic Gassmann equations, and the stiffness matrix
Csat_mf of the rock for this frequency range is thus obtained as
follows:

csat mf
i j = c1

ij + α1
i α1

j M1, i, j = 1, . . . , 6, (30)

where c1
ij is the component of C1 inversed from S1; α1

m takes
the form:

α1
m = 1 −

∑3
n=1 c1

mn

3Ksat
b

, (31)

and M1 is expressed as

M1 = Ksat
b(

1 − K∗
1/Ksat

b

) − φf

(
1 − Ksat

b /K f

) , (32)

where K∗
1 is obtained from equation (22) by replacing c0

ij with
c1

ij, and φf is the volume fraction of the fractures. This pro-
cedure for obtaining Csat_mf is schematically illustrated in
Fig. 4.

It is important to mention that the derivation of the stiff-
ness matrix included here considers that every fracture is in-
tersected by at least another orthogonal fracture, to which its
fluid pressure increase can be released. If there are isolated
fractures, then the fluid pressure increase in response to the
propagation of a seismic wave cannot be relaxed, and there-
fore, the sample behaves in a stiffer manner. Corresponding
modifications could be applied to the model to deal with such
situations, but this is beyond the scope of this work.

3.4 High-frequency limit

In the high-frequency limit, the fluid flow not only between
background pores and fractures but also between different
fractures is negligible. This means that the fluid in each frac-
ture is isolated from both the background medium and the
other fractures. The effective fracture compliance is thus de-
creased due to the fluid effect, and its value can be computed
using the theory for isolated fluid-filled fractures (Hudson
1981; Schoenberg and Douma 1988; Gurevich 2003):

Zsat
Ni = ZNi

1 + Kf �Ni

Lsat
b φ f i (1−�Ni )

(
1 − Kf

Ksat
b

)−1 , i = 1, 2, (33)

Zsat
Ti = ZTi , i = 1, 2, 3, 4, (34)

where ZNi and ZTi are the normal and tangential excess com-
pliance values for the dry fractures, respectively. For the 2D
samples, only ZN1, ZN2, ZT1, and ZT2 are needed, which are
obtained using the inversion method as previously shown. Lsat

b

is the saturated P-wave modulus for the background medium,
which is computed as follows:

Lsat
b = Ksat

b + 4/3Gsat
b ; → . (35)

φfi and �Ni are the volume fraction and the dimensionless
weakness of the corresponding fracture set, respectively. Pa-
rameter �Ni has the following form:

�Ni = Lsat
b ZNi

1 + Lsat
b ZNi

, i = 1, 2. (36)

Hence, the elastic properties of the sample can be cal-
culated by first applying the isotropic Gassmann equations
[equations (23) and (24)] to the background medium and then
taking into account the influence of these isolated fractures
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Dry background medium Fluid 

Anisotropic Gassmann

FluidSaturated background medium 
permeated with dry fractures

Linear-slip theory 

Dry fractures Saturated background medium 

Isotropic Gassmann

Saturated fractured sample
in intermediate frequencies

Figure 4 Schematic illustration of the procedure proposed to obtain the stiffness coefficients of the saturated sample in the intermediate frequency
range.

with effective compliance values by using the linear-slip the-
ory (Gurevich 2003). The resulting compliance matrix Ssat_hf

is as follows:

Ssat hf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Esat
b + Zsat

N1 −νsat
b /Esat

b −νsat
b /Esat

b 0 0 0
−νsat

b /Esat
b 1/Esat

b + Zsat
N2 −νsat

b /Esat
b 0 0 0

−νsat
b /Esat

b −νsat
b /Esat

b 1/Esat
b 0 0 0

0 0 0
2(1+νsat

b )
Esat

b
+ Zsat

T4 0 0

0 0 0 0
2(1+νsat

b )
Esat

b
+ Zsat

T3 0

0 0 0 0 0
2(1+νsat

b )
Esat

b
+ Zsat

T1 + Zsat
T2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

The stiffness matrix Csat_hf of the rock in the high-
frequency limit can be obtained by taking the inverse of Ssat_hf.
This procedure of obtaining Csat_hf is schematically illustrated
in Fig. 5.

Once the stiffness matrices are computed for the three
regimes, the P- and S-wave velocities for any angle of incidence
can be obtained by using standard equations for anisotropic
media (Mavko, Mukerji, and Dvorkin 2009).

3.5 Characteristic frequencies

Two characteristic frequencies exist for rocks having inter-
secting fractures. The first characteristic frequency represents
the location of the attenuation peak and the largest slope
for the dispersion due to the wave-induced fluid flow between
the background medium and the fractures (FB-WIFF; Rubino
et al. 2014). The relevant spatial scale for this FB-WIFF is the
diffusion length l (Galvin and Gurevich 2006, 2007):

l =
√

2Db

f
, (38)

where f is the frequency of the seismic wave, and Db is the hy-
draulic diffusivity of the background medium. This diffusivity
has the following form:

Db = MbLbκb

ηLsat
b

, (39)

where Lb is the dry P-wave modulus for the background
medium as follows:

Lb = Kb + 4/3Gb; (40)

κb is the permeability of the background medium; η is the fluid
viscosity. For a medium with sets of randomly distributed
aligned fractures as shown in Fig. 1, maximum attenuation
due to FB-WIFF occurs when the diffusion length l is of similar
size as the radius of the fractures af (Galvin and Gurevich
2006, 2007). Therefore, the characteristic frequency fFB for
FB-WIFF has the following form:

fFB = 2Db

a2
f

. (41)

The second characteristic frequency denotes the location
of the attenuation peak and the largest slope for the disper-
sion due to the wave-induced fluid flow within connected
fractures (FF-WIFF; Rubino et al. 2014). At this frequency
range, typically, the fractures are hydraulically isolated from
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fractures

Linear-slip theory

Saturated fractured sample
at high-frequency limit

Figure 5 Schematic illustration of the procedure proposed to obtain the stiffness coefficients of the saturated sample at the high-frequency limit.

the background medium. When a fracture set is oriented per-
pendicular to the P-wave propagation direction, it experi-
ences a fluid pressure increase (or decrease) in response to
the stresses applied by the perturbation. The fluid is thus
injected into (or withdrawn from) a medium composed of
the fracture set parallel to the P-wave propagation direction
and the saturated background medium, where the fracture set
and the saturated background act as the pore space and the
solid (grain) phase, respectively. Similar to the diffusivity of
the background medium [equation (39)], the diffusivity De for
this effective medium should take the following form:

De = Me Leκe

ηLsat
e

, (42)

where Me is the effective pore space modulus for this medium;
Le and Lsat

e are the dry and saturated effective P-wave moduli,
respectively, and κe is the effective permeability.

In equation (42), the elastic properties of the effective
medium are needed to calculate its diffusivity. The dry stiff-
ness matrix Ce can be obtained using the linear-slip theory.
Then, the saturated stiffness matrix Ce_sat is computed using
the anisotropic Gassmann equations. The parameters in equa-
tion (42) thus can be calculated as follows:

Me = Ksat
b(

1 − Ke/Ksat
b

) − φe

(
1 − Ksat

b /K f

) , (43)

Le = Ce
11 + Ce

22 + Ce
33

3
, (44)

Lsat
e = Ce sat

11 + Ce sat
22 + Ce sat

33

3
, (45)

where Ksat
b is the saturated bulk modulus for the background

medium; φe is the fracture porosity contained in this medium;

Ce
ij and Ce sat

ij are the components of the stiffness matrix for
the dry and saturated moduli, respectively; Kf is the fluid bulk
modulus; and Ke denotes the generalised bulk modulus for
this medium, which can be calculated using equation (22) by
replacing C0

ij with Ce
ij.

Another important parameter to be determined is the ef-
fective permeability κe for this medium. Since the fluid only
flows in the fractures of this medium, the effective permeabil-
ity should be that of the fractures times the fraction of the
fractures according to the definition of permeability, i.e.,

κe = κ f rφe. (46)

Energy dissipation due to FF-WIFF occurs primarily in
the fractures of this effective medium as, for these frequen-
cies, fluid only flows within connected fractures (Rubino et al.

2013, 2014). Maximum attenuation thus occurs when the
fluid penetrates into the largest possible depth inside con-
nected fractures or, in other words, when the effective diffu-
sion length l computed using diffusivity De is comparable to
the radius of fractures af (Gurevich et al. 2009). The charac-
teristic frequency fFF for FF-WIFF is then given by

fF F = 2De

a2
f

. (47)

4 R ESULTS AND D ISCUSS IONS

Using the dry fracture compliance values obtained from the
inversion method, the elastic properties in the low- and high-
frequency limits and in the intermediate frequency range are
computed based on the theoretical framework proposed in
this work. The results for the two synthetic samples depicted
in Fig. 1 are shown as solid circles in Fig. 2, together with
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(a) Sample with non-intersecting fractures (b) Sample with intersecting fractures

Figure 6 Thomsen-style anisotropy parameters for the two 2D samples computed using the stiffness coefficients obtained from (solid lines) the
numerical simulations and (solid circles) the theoretical predictions.

the numerical simulation results. For the sample with non-
intersecting fracture sets, there is no communication between
the fluids of different fractures for frequencies close to fFF.
Therefore, only the low- and high-frequency limits exist in
this case. However, an intermediate frequency range arises
for the sample with intersecting fractures due to fluid pressure
communication between the orthogonal fracture sets.

Comparing the theoretical predictions with the numeri-
cal simulations, it is found that they are in good agreement
with each other. The maximum discrepancies between the es-
timations given by the two approaches occur for coefficient
C66. There are two possible reasons for the discrepancies.
One reason is that the numerical simulations consider generic
anisotropy for the resulting equivalent medium, whereas
the theoretical methodology approximates the medium as
orthotropic. The other reason is the limited volume of the sam-
ples in the numerical simulations, which can produce bound-
ary effects on the resulting average properties.

Apart from the elastic properties, the characteristic fre-
quencies for FB-WIFF and FF-WIFF are also computed and
shown in Fig. 2 (vertical solid lines). We observe that the es-
timated characteristic frequencies are in very good agreement
with the numerical simulations as they fall in the transition
regimes of the stiffness coefficients. Equations (41) and (47)
suggest that, while the characteristic frequency for FF-WIFF
is directly proportional to fracture permeability, the fracture
permeability has no influence on the FB-WIFF characteris-
tic frequency. To verify this, we double the fracture perme-
ability for the sample with intersecting fractures while keep-
ing the other parameters constant and repeat the numerical

simulations. The dashed lines in Fig. 2 show that, indeed, the
transition regime for FB-WIFF is not influenced, but that for
FF-WIFF shifts towards higher frequencies. This result is con-
sistent with our proposed formulas and thus supports their
applicability. In this context, it is important to mention that,
while Rubino et al. (2014) verified that the location in the
frequency axis of the attenuation peak related to FF-WIFF
due to the propagation of a P-wave in the vertical direction of
wave propagation is directly proportional to the permeability
of the fracture material, the corresponding analysis for the
components of the stiffness matrix of the effective medium
was missing. The verification of the dependence of the FF-
WIFF transition frequency on the mechanical properties of
the background and fracture material and on the fracture
length proposed in this paper will be the subject of future
work.

Furthermore, since the dry samples are characterised by
anelliptical anisotropy, it is interesting to explore how the
theory accurately predicts the anisotropy parameters of the
saturated samples at different frequencies. To do so, we com-
pute anisotropy parameters δ(3) and ε(3) using both the results
of the numerical simulations and those obtained from the
theoretical framework. Figure 6 shows that there is very good
agreement between the anisotropy parameters provided by the
two approaches. The largest discrepancies occur for param-
eter δ(3) in the case of the sample with intersecting fractures
and in the high-frequency limit. This is primarily caused by
the discrepancies between the values of C12 and C66 obtained
from the numerical simulations and from the theoretical
predictions.
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5 C ONCLUSIONS

In this work, we have developed a theoretical framework to
quantify the effects of intersecting fractures on the frequency-
dependent elastic properties of saturated porous rocks. The
dry fracture compliance values were computed using an in-
version method. Then, the effective stiffness coefficients of
the saturated samples were obtained in the low- and high-
frequency limits and for an intermediate frequency range for
which there is no fluid communication between fractures and
the background while fluid pressure within intersecting frac-
tures is at equilibrium. In addition, the characteristic frequen-
cies for FB-WIFF and FF-WIFF, which separate the three fre-
quency regimes, were rigorously determined. We observed
very good agreement between the theoretical predictions of
stiffness coefficients, Thomsen-style anisotropic parameters,
and characteristic frequencies and the values obtained from
corresponding numerical simulations. The proposed theoret-
ical framework is easy to apply, is applicable not only to
2D but also to 3D fracture systems, and could thus be em-
ployed in inversion schemes designed to characterise fractured
environments.
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Guéguen Y. and Sarout J. 2009. Crack-induced anisotropy in crustal
rocks: predicted dry and fluid-saturated Thomsen’s parameters.
Physics of the Earth and Planetary Interiors 172, 116–124.

Gurevich B. 2003. Elastic properties of saturated porous rocks
with aligned fractures. Journal of Applied Geophysics 54, 203–
218.

Gurevich B., Brajanovski M., Galvin R.J., Müller T.M. and Toms-
Stewart J. 2009. P-wave dispersion and attenuation in fractured and
porous reservoirs—poroelasticity approach. Geophysical Prospect-
ing 57, 225–237.

Hudson J.A. 1981. Wave speeds and attenuation of elastic waves
in material containing cracks. Geophysical Journal of the Royal
Astronomical Society 64, 133–150.

Jakobsen M. 2004. The interacting inclusion model of wave-induced
fluid flow. Geophysical Journal International 158, 1168–1176.

Jones T.D. 1986. Pore fluids and frequency-dependent wave propa-
gation in rocks. Geophysics 51(10), 1939–1953.

Kachanov M. and Sevostianov I. 2005. On quantitative character-
ization of microstructures and effective properties. International
Journal of Solids and Structures 42, 309–336.

Karay G. and Hajnal G. 2015. Modelling of groundwater flow in
fractured rocks. Procedia Environmental Sciences 25, 142–149.

Lisjak A., Figi D. and Grasselli G. 2014. Fracture development around
deep underground excavations: insights from FDEM modelling.
Journal of Rock Mechanics and Geotechnical Engineering 6(6),
493–505.

Luo Z. and Bryant S. 2014. Impacts of injection induced frac-
tures propagation in CO2 geological sequestration—Is fracturing
good or bad for CO2 sequestration. Energy Procedia 63, 5394–
5407.

Mavko G., Mukerji T. and Dvorkin J. 2009. The Rock Physics Hand-
book: Tools for Seismic Analysis of Porous Media. Cambridge Uni-
versity Press. ISBN: 978-0-521-86136-6.

Nakagawa S. and Schoenberg M.A. 2007. Poroelastic modeling of
seismic boundary conditions across a fracture. The Journal of the
Acoustical Society of America 122, 831–847.

Neuzil C.E. 2013. Can shale safely host U.S. nuclear waste? EOS,
Transactions, American Geophysical Union 94(30), 261–268.

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 65, 1264–1276



1276 J. Guo et al.

O’Connell R.J. and Budiansky B. 1977. Viscoelastic properties of
fluid-saturated cracked solids. Journal of Geophysical Research
82(36), 5719–5735.

Rubino J.G., Guarracino L., Müller T.M. and Holliger K. 2013. Do
seismic waves sense fracture connectivity? Geophysical Research
Letters 40, 692–696.

Rubino J.G., Müller T.M., Guarracino L., Milani M. and Holliger K.
2014. Seismoacoustic signatures of fractures connectivity. Journal
of Geophysical Research: Solid Earth 119, 2252–2271.

Rubino J.G., Caspari E., Milani M., Müller T.M. and Holliger K.
2015. Seismic anisotropy in fractured low-permeability formations:
the effects of hydraulic connectivity. 85th SEG annual interna-
tional meeting, New Orleans, USA, Expanded Abstracts, 3219–
3223.

Rubino J.G., Caspari E., Müller T.M., Milani M., Barbosa N.D.
and Holliger K. 2016. Numerical upscaling in 2D heterogeneous
poroelastic rocks: Anisotropic attenuation and dispersion of seismic
waves. Journal of Geophysical Research: Solid Earth 121, 6698–
6721.

Sarout J. 2012. Impact of pore space topology on permeability, cut-off
frequencies and validity of wave propagation theories. Geophysical
Journal International 189, 481–492.

Schoenberg M. and Douma J. 1988. Elastic-wave propagation in
media with parallel fractures and aligned cracks. Geophysical
Prospecting 36, 571–590.

Schoenberg M. and Sayers C.M. 1995. Seismic anisotropy of fractured
rock. Geophysics 60(1), 204–211.

Tsvankin I. 1997. Anisotropic parameters and P-wave velocity for
orthorhombic media. Geophysics 62(4), 1292–1309.

Vinci C., Renner J. and Steeb H. 2014. On attenuation of seismic
waves associated with flow in fractures. Geophysical Research Let-
ters 41, 7515–7523.

Witherspoon P.A., Wang J.S.Y., Iwai K. and Gale J.E. 1980. Validity
of cubic law for fluid flow in a deformable rock fracture. Water
Resources Research 16(6), 1016–1024.

Yousef B.M. and Angus D.A. 2016. When do fractured media become
seismically anisotropic? Some implications on quantifying fracture
properties. Earth and Planetary Science Letters 444, 150–159.

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 65, 1264–1276


