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Dispersion Estimates for Spherical
Schrödinger Equations

Aleksey Kostenko, Gerald Teschl and Julio H. Toloza

Abstract. We derive a dispersion estimate for one-dimensional perturbed
radial Schrödinger operators. We also derive several new estimates for
solutions of the underlying differential equation and investigate the be-
havior of the Jost function near the edge of the continuous spectrum.

1. Introduction

We are concerned with the one-dimensional Schrödinger equation

iψ̇(t, x) = Hψ(t, x), H := − d2

dx2
+

l(l + 1)
x2

+ q(x), (t, x) ∈ R × R+, (1.1)

with real integrable potential q and with the angular momentum l > − 1
2 . We

will use τ to describe the formal Sturm–Liouville differential expression and
H the self-adjoint operator acting in L2(R+) and given by τ together with the
usual boundary condition at x = 0:

lim
x→0

xl((l + 1)f(x) − xf ′(x)) = 0, l ∈
(

− 1
2
,
1
2

)
. (1.2)

More specifically, our goal is to provide dispersive decay estimates for
these equations. To this end we recall (e.g., [27, Sect. 9.7]) that for

∫∞
0

x|q(x)|dx
< ∞ the operator H has a purely absolutely continuous spectrum on (0,∞)
plus a finite number of eigenvalues in (−∞, 0]. At the edge of the continuous
spectrum there could be a resonance (or an eigenvalue if l > 1

2 ). Various equiv-
alent definitions of what is meant by a resonance in this setting will be given
in Lemma 2.15. Then our main result read as follows:
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Theorem 1.1. Assume that∫ 1

0

|q(x)|dx < ∞ and
∫ ∞

1

xmax(2,l+1)|q(x)|dx < ∞, (1.3)

and suppose there is neither a resonance nor an eigenvalue at 0. Then the
following decay holds∥∥e−itHPc(H)

∥∥
L1(R+)→L∞(R+)

= O(|t|−1/2), t → ∞. (1.4)

Here Pc(H) is the orthogonal projection in L2(R+) onto the continuous spec-
trum of H.

This result will follow from the corresponding low energy result Theo-
rem 3.2 (see also Theorem 3.1) with the high energy result Theorem 3.3. We
also remark that the decay rate is optimal (see below).

On the whole line such results have a long tradition and we refer to Weder
[29], Goldberg and Schlag [14], Egorova et al. [10] (for the discrete case see [9])
as well as the reviews [17,25]. On the half line the case l = 0 was treated by
Weder [30]. The case of general l but without potential was recently considered
in Kovař́ık and Truc [22] (see also [12,13] for related results). While our overall
strategy looks quite similar to the classical case l = 0, the details are much
more delicate at several points: the first problem stems from the fact that
only one solution will be bounded near x = 0 while the other one will have
a singularity if l > 0. In particular, in this case the Jost solutions will have
a singularity near x = 0 and the expression of the regular solution (which is
in the domain of our operator near x = 0) in terms of the Jost solutions (i.e.,
the scattering relations) can no longer be used to obtain useful estimates. The
second problem is that the simple group structure of the exponential functions
breaks down for Bessel functions which requires novel strategies to handle the
Born series expansion of the resolvent. And of course one has to work much
harder to get some estimates, which are trivial for trigonometric functions, for
Bessel functions. In particular, our present paper should also be understood as
a contribution to understanding the properties of solutions of the underlying
spectral problem. In this respect we would like to emphasize that the behavior
of the Jost function near the bottom of the essential spectrum is still not
understood satisfactorily, and for this very reason the resonant case had to be
excluded from our main theorem. This is definitely a gap which should be filled.

As already mentioned, we have restricted ourselves to the boundary con-
dition (1.2) corresponding to the Friedrichs extension for − 1

2 < l < 1
2 . We

will investigate the effect of other boundary conditions (including the case of
(1.1)–(1.2) with l ∈ (− 3

2 ,− 1
2 ), considered in [2]) in a forthcoming work [15].

For the remaining missing case l = − 1
2 on the other hand we do expect Theo-

rem 1.1 hold true but, due to the logarithmic part of the second solution of the
Bessel equation, proofs would be significantly more involved so the treatment
of this case has been omitted.

Finally, we mention that one of the motivation to study (1.1) is the
fact that it arises naturally when discussing the n-dimensional Schrödinger
equation
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iΨ̇(t,x) = HnΨ(t,x), Hn := −Δ + V (x), (t,x) ∈ R × R
n, n ≥ 2. (1.5)

However, it is important to emphasize that this is not the only motivation since
operators of the type in (1.1) are the prototypical example of strongly singular
Schrödinger operators which have attracted considerable interest recently (see
e.g. [18–21] and the references therein) or as examples in other physical and
mathematical models (see e.g. [2,7]). Nevertheless, and since a lot is known
about dispersive estimates for (1.5) (see the reviews [17,25] already mentioned
above), it seems worth while to discuss what these estimates imply for (1.1).

To this end recall (see e.g. Example 1.5 in [31]) that if V (x) = q(x), x =
|x|, is radially symmetric, then Hn will be reduced by the spherical harmonics
(cf. [23])

Y m
l : Sn−1 → C, l ∈ N0, m = 1, . . . , N(n, l),

which are an orthonormal basis of eigenfunctions of the Laplace–Beltrami op-
erator ΔSn−1 ,

−ΔSn−1Y m
l = l(l + n − 2)Y m

l ,

on L2(Sn−1).1 Then the subspaces

Hl,m =
{

Ψ(x) = x
n−1
2 ψ(x)Y m

l

(x
x

)∣∣ x = |x|, ψ ∈ L2(R+)
}

⊆ L2(Rn)

span L2(Rn) =
⊕

l,m Hl,m and give rise to the decomposition

Hn =
⊕
l,m

U−1
n Hn,lUn, Un : Hl,m → L2(R+), x

n−1
2 ψ(x)Y m

l

(x
x

)
�→ ψ(x),

where

Hn,l = − d2

dx2
+

l(l + n − 2) + (n−1)(n−3)
4

x2
+ q(x).

In particular, an estimate of the type∥∥e−itHnPc(Hn)
∥∥

L1(Rn)→L∞(Rn)
= O(|t|−n/2), (1.6)

implies ∥∥e−itHn,lPc(Hn,l)
∥∥

L1(R+;x
n−1
2 )→L∞(R+;x− n−1

2 )
= O(|t|−n/2).

Here L2(R+;xα), α ∈ R denotes the standard L2 space with the weight xα. In
the special case l = 0 we get

Hn,0 = − d2

dx2
+

s(s − 1)
4x2

+ q(x), s =
n − 1

2
,

and hence∥∥e−itHn,0Pc(Hn,0)
∥∥

L1(R+;xs)→L∞(R+;x−s)
= O(|t|−s−1/2),

which generalizes Theorem 2.4 from [22] where the case without potential and
with the weight (1+x)s was established. For conditions on V for (1.6) to hold
we refer again to the above-mentioned survey articles [17,25]. At this point we

1 The l used here is different from the l in (1.1) and the rest of the paper unless n = 3.
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only note that it of course holds in the case without potential where the time
evolution is given by

(
eiΔtΨ0

)
(x) =

1
(4πit)n/2

∫

Rn

ei |x−y|2
4t Ψ0(y)dy.

Moreover, the time evolution of Hn,l can be obtained by projecting eiΔt to
the corresponding spherical harmonics. For example, in three dimensions one
obtains

[e−itH3,l ](x, y) =
xy Y 0

l (0, 0)−1

(4πit)3/2

∫ π

0

∫ 2π

0

ei x2−2xy cos(θ)+y2

4t Y 0
l (θ, ϕ) sin(θ)dθ dϕ

=
2πxy

(4πit)3/2
ei x2+y2

4t

∫ 1

−1

e−i xy
2t rPl(r)dr

=
i−l−1/2

2it
ei x2+y2

4t
√

xyJl+1/2

(xy

2t

)
,

where we have chosen m = 0, x = (0, 0, x) and used

Y 0
l (θ, ϕ) =

√
2l + 1

4π
Pl(cos(θ)), Pl(ξ) =

1
2ll!

dl

dξl
(ξ2 − 1)l,

as well as [24, (18.17.19)] for the last integral. Here Jν is the Bessel function of
order ν and Pl are the Legendre polynomials. This should again be compared
with [20, Eq. (3.23)]. In particular, for l = 0 we have ‖[e−itH3,0 ](x, y)‖∞ =

1√
π|t|1/2 (while ‖(xy)−1[e−itH3,0 ](x, y)‖∞ = 1

2
√

π|t|3/2 ), which shows that the
decay in our main Theorem 1.1 is optimal. Of course a potential of the type
V (x) = a

|x|2 with a > − (n−2)2

4 could be included in this discussion as it can
be absorbed in the definition of s [3,4].

2. Properties of Solutions

In this section we will collect some properties of the solutions of the underlying
differential equation required for our main results.

2.1. The Regular Solution

Suppose that l > − 1
2 and

q ∈ L1
loc(R+) and

∫ 1

0

x|q(x)|dx < ∞. (2.1)

Then the ordinary differential equation

τf = zf, τ := − d2

dx2
+

l(l + 1)
x2

+ q(x),

has a system of solutions φ(z, x) and θ(z, x) which is real entire with respect
to z such that

φ(z, x) = Clx
l+1φ̃(z, x), θ(z, x) =

x−l

(2l + 1)Cl
θ̃(z, x), Cl =

√
π

Γ(l + 3
2 )2l+1

,

(2.2)

http://dlmf.nist.gov/18.17.19


Dispersion Estimates for Spherical Schrödinger Equations

where φ̃(z, ·), θ̃(z, ·) ∈ W 1,1[0, 1] and φ̃(z, 0) = θ̃(z, 0) = 1. For a detailed
construction of these solutions we refer to, e.g., [20].

We start with two lemmas containing estimates for the Green’s function
of the unperturbed equation

Gl(z, x, y) = φl(z, x)θl(z, y) − φl(z, y)θl(z, x)

and the regular solution φ(z, x) (see, e.g., [18, Lemmas 2.2, A.1, and A.2]).
Here

φl(z, x) = z− 2l+1
4

√
πx

2
Jl+ 1

2
(
√

zx),

and

θl(z, x) = z
2l+1

4

√
πx

2

⎧
⎨
⎩

1
sin((l+1

2 )π)
J−l− 1

2
(
√

zx), l+ 1
2 ∈ R+\N0,

1
π log(z)Jl+ 1

2
(
√

zx) − Yl+ 1
2
(
√

zx), l+ 1
2 ∈ N0,

where Jν and Yν are the usual Bessel and Neumann functions (see
Appendix B). All branch cuts are chosen along the negative real axis unless
explicitly stated otherwise.

Lemma 2.1. [18] For l > − 1
2 the following estimates hold:

∣∣φl(k2, x)
∣∣ ≤ C

(
x

1 + |k|x
)l+1

e|Im k|x, (2.3)

and
∣∣Gl(k2, x, y)

∣∣ ≤ C

(
x

1 + |k|x
)l+1(1 + |k| y

y

)l

e|Im k|(x−y), y ≤ x. (2.4)

Lemma 2.2. [18] Assume (2.1). Then φ(z, x) satisfies the integral equation

φ(z, x) = φl(z, x) +
∫ x

0

Gl(z, x, y)q(y)φ(z, y)dy.

Moreover, φ is entire in z for every x > 0 and satisfies the estimate

∣∣φ(k2, x) − φl(k2, x)
∣∣ ≤ C

(
x

1 + |k|x
)l+1

e|Im k|x
∫ x

0

y |q(y)|
1 + |k| ydy. (2.5)

We also need the following estimates.

Lemma 2.3. For l > − 1
2 the following estimates hold

|∂kφl(k2, x)| ≤ C|k|x
(

x

1 + |k|x
)l+2

e|Im k|x (2.6)

and
∣∣∂kGl(k2, x, y)

∣∣ ≤ C|k|x
(

x

1 + |k|x
)l+2(1 + |k|y

y

)l

e|Im k|(x−y), y ≤ x.

(2.7)
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Proof. The first inequality follows from the identity [see (B.8)]

∂kφl(k2, x) = −kxφl+1(k2, x)

along with the bound (2.3).
Before proving (2.7), let us mention that

Gl(k2, x, y) = −π

2
√

xy
[
Jl+ 1

2
(kx)Yl+ 1

2
(ky) − Jl+ 1

2
(ky)Yl+ 1

2
(kx)
]
,

= − iπ
4

√
xy
[
H

(1)

l+ 1
2
(kx)H(2)

l+ 1
2
(ky) − H

(1)

l+ 1
2
(ky)H(2)

l+ 1
2
(kx)
]
,

where H
(1)
ν and H

(2)
ν are the usual Hankel functions (see Appendix B). Hence

we obtain

∂kGl(k2, x, y) =
π

2
√

xy
[
xJl+ 3

2
(kx)Yl+ 1

2
(ky) − yJl+ 3

2
(ky)Yl+ 1

2
(kx)
]

− π

2
√

xy
[
yJl+ 1

2
(kx)Yl− 1

2
(ky) − xJl+ 1

2
(ky)Yl− 1

2
(kx)
]
,

=
iπ
4

√
xy
[
xH

(1)

l+ 3
2
(kx)H(2)

l+ 1
2
(ky) − yH

(1)

l+ 3
2
(ky)H(2)

l+ 1
2
(kx)
]

− iπ
4

√
xy
[
yH

(1)

l+ 1
2
(kx)H(2)

l− 1
2
(ky) − xH

(1)

l+ 1
2
(ky)H(2)

l− 1
2
(kx)
]
.

(2.8)

Consider the function

Gl(η, ξ) :=
π

2
[
ηJl+ 3

2
(η)Yl+ 1

2
(ξ) − ξJl+ 3

2
(ξ)Yl+ 1

2
(η)

− ξJl+ 1
2
(η)Yl− 1

2
(ξ) + ηJl+ 1

2
(ξ)Yl− 1

2
(η)
]

=
iπ
4

[
ηH

(1)

l+ 3
2
(η)H(2)

l+ 1
2
(ξ) − ξH

(1)

l+ 3
2
(ξ)H(2)

l+ 1
2
(η)

− ξH
(1)

l+ 1
2
(η)H(2)

l− 1
2
(ξ) + ηH

(1)

l+ 1
2
(ξ)H(2)

l− 1
2
(η)
]
.

Step 1 |ξ| ≤ |η| ≤ 1. Let us estimate the function

ηJl+ 3
2
(η)Yl+ 1

2
(ξ) − ξJl+ 3

2
(ξ)Yl+ 1

2
(η).

Employing [24, (10.2.2)] and the monotonicity of x �→ x
1+x on R+, we get

∣∣∣ηJl+ 3
2
(η)Yl+ 1

2
(ξ) − ξJl+ 3

2
(ξ)Yl+ 1

2
(η)
∣∣∣

≤ C

[
|η|
( |η|

1 + |η|
)l+ 3

2
(

1 + |ξ|
|ξ|

)l+ 1
2

+ |ξ|
( |ξ|

1 + |ξ|
)l+ 3

2
(

1 + |η|
|η|

)l+ 1
2
]

≤ C|η|
( |η|

1 + |η|
)l+ 3

2
(

1 + |ξ|
|ξ|

)l+ 1
2

≤ C

( |η|
1 + |η|

)l+ 3
2
(

1 + |ξ|
|ξ|

)l+ 1
2

.

http://dlmf.nist.gov/10.2.2
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Similarly, if l > 1/2, then
∣∣∣ξJl+ 1

2
(η)Yl− 1

2
(ξ) − ηJl+ 1

2
(ξ)Yl− 1

2
(η)
∣∣∣

≤ C

[
|ξ|
( |η|

1 + |η|
)l+ 1

2
(

1 + |ξ|
|ξ|

)l− 1
2

+ |η|
( |ξ|

1 + |ξ|
)l+ 1

2
(

1 + |η|
|η|

)l− 1
2
]

≤ C|η|
( |η|

1 + |η|
)l+ 1

2
(

1 + |ξ|
|ξ|

)l− 1
2

≤ C|η|
( |η|

1 + |η|
)l+ 3

2
(

1 + |ξ|
|ξ|

)l+ 1
2

.

If |l| < 1/2, then using (B.1) and (B.2) we obtain
∣∣∣ξJl+ 1

2
(η)Yl− 1

2
(ξ) − ηJl+ 1

2
(ξ)Yl− 1

2
(η)
∣∣∣

≤ C

[
|ξ|
( |η|

1 + |η|
)l+ 1

2
( |ξ|

1 + |ξ|
) 1

2−l

+ |η|
( |ξ|

1 + |ξ|
)l+ 1

2
( |η|

1 + |η|
) 1

2−l
]

≤ C|η|
( |η|

1 + |η|
)l+ 3

2
(

1 + |ξ|
|ξ|

)l+ 1
2

.

Finally, for l = 1/2 we get

|ξJ1(η)Y0(ξ) − ηJ1(ξ)Y0(η)| ≤ C
|η|

1 + |η|
|ξ|

1 + |ξ| log
( |η|

|ξ|
)

≤ C|η|
( |η|

1 + |η|
)2(1 + |ξ|

|ξ|
)

.

Summarizing the above, we find that the function Gl admits the following
estimate

|Gl(η, ξ)| ≤ C|η|
( |η|

1 + |η|
)l+ 3

2
(

1 + |ξ|
|ξ|

)l+ 1
2

if 0 < |ξ| ≤ |η| ≤ 1 and l > −1/2.

Step 2 |ξ| ≤ 1 ≤ |η|. First, we get

∣∣∣ηJl+ 3
2
(η)Yl+ 1

2
(ξ) − ξJl+ 3

2
(ξ)Yl+ 1

2
(η)
∣∣∣ ≤ C

√
|η|
(

1 + |ξ|
|ξ|

)l+ 1
2

e|Im η|

as implied by (B.4) and (B.5). If l > 1/2, we get

∣∣∣ξJl+ 1
2
(η)Yl− 1

2
(ξ) − ηJl+ 1

2
(ξ)Yl− 1

2
(η)
∣∣∣ ≤ C

√
|η|
(

1 + |ξ|
|ξ|

)l+ 1
2

e|Im η|.

For |l| < 1/2 we obtain

∣∣∣ξJl+ 1
2
(η)Yl− 1

2
(ξ) − ηJl+ 1

2
(ξ)Yl− 1

2
(η)
∣∣∣ ≤ C

√
|η|
( |ξ|

1 + |ξ|
)l+ 1

2

e|Im η|.
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And finally, for l = 1/2, we get

|ξJ1(η)Y0(ξ) − ηJ1(ξ)Y0(η)| ≤ C
√

|η| |ξ|
1 + |ξ| log

(
1 + |ξ|

|ξ|
)

e|Im η|

≤ C
√

|η|1 + |ξ|
|ξ| e|Im η|.

Summarizing the above, we find that the function Gl admits the following
estimate

|Gl(η, ξ)| ≤ C
√

|η|
(

1 + |ξ|
|ξ|

)l+ 1
2

e|Im η|

if 0 < |ξ| ≤ 1 ≤ |η| and l > −1/2.

Step 3 1 ≤ |ξ| ≤ |η|. To deal with the remaining case we shall use the second
equality in (2.8) and the asymptotic expansions of Hankel functions (B.6)–
(B.7):

|Gl(η, ξ)| ∼ 2 cos(η − ξ)

(√
η

ξ
−
√

ξ

η

)
(2.9)

as |η|, |ξ| → ∞. Therefore, we get

|Gl(η, ξ)| ≤ C

√
|η|
|ξ| e

|Im(η−ξ)|

if 1 ≤ |ξ| ≤ |η| and l > −1/2.
Combining all these estimates for the function Gl with the equality

Gl(k2, x, y) =
√

xy

k
Gl(kx, ky),

after straightforward calculations we arrive at (2.7). �

Lemma 2.4. Assume (2.1). Then ∂kφ(k2, x) is a solution to the integral equa-
tion

∂kφ(k2, x) = ∂kφl(k2, x) +
∫ x

0

[∂kGl(k2, x, y)]φ(k2, y)

+ Gl(k2, x, y)∂kφ(k2, y)]q(y)dy (2.10)

and satisfies the estimate

|∂kφ(k2, x) − ∂kφl(k2, x)| ≤ C|k|x
(

x

1 + |k|x
)l+2

e|Im k|x
∫ x

0

y |q(y)|
1 + |k| ydy.

(2.11)

Proof. The proof is based on the successive iteration procedure (see, e.g., [5,
Chapter I.5]). As in the proof of Lemma 2.2 in [18], set

φ =
∞∑

n=0

φn, φ0 := φl, φn(k2, x) :=
∫ x

0

Gl(k2, x, y)φn−1(k2, y)q(y)dy
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for all n ∈ N. The series is absolutely convergent since

∣∣φn(k2, x)
∣∣ ≤ Cn+1

n!

(
x

1 + |k|x
)l+1

e|Im k|x
(∫ x

0

y |q(y)|
1 + |k|ydy

)n

. (2.12)

Similarly, let us show that ∂kφ(k2, x) given by

∂kφ =
∞∑

n=0

βn, β0(k, x) := ∂kφl(k2, x), (2.13)

βn(k, x) :=
∫ x

0

∂kGl(k2, x, y)φn−1(k2, y)q(y)dy

+
∫ x

0

Gl(k2, x, y)βn−1(k, y)q(y)dy, n ∈ N, (2.14)

satisfies (2.10). Using (2.12) and (2.6), we can bound the first summand in
(2.14) as follows

|1st term|

≤ Cn+1

(n − 1)!
|k|x
(

x

1 + |k|x
)l+2

e|Im k|x
∫ x

0

y |q(y)|
1 + |k|y

(∫ y

0

t |q(t)|
1 + |k|tdt

)n−1

dy

≤ Cn+1

n!
|k|x
(

x

1 + |k|x
)l+2

e|Im k|x
(∫ x

0

y|q(y)|
1 + |k|ydy

)n

.

Next, using induction, one can show that the second summand admits a similar
bound and hence we finally get

|βn(k, x)| ≤ Cn+1

n!
|k|x
(

x

1 + |k|x
)l+2

e|Im k|x
(∫ x

0

y|q(y)|
1 + |k|ydy

)n

.

This immediately implies the convergence of (2.13) and, moreover, the estimate

|∂kφ(k2, x) − ∂kφl(k2, x)| ≤
∞∑

n=1

|βn(k, x)| ,

from which (2.11) follows under the assumption (2.1). �

Furthermore, by [6,11], the regular solution φ admits a representation
by means of transformation operators preserving the behavior of solutions at
x = 0 (see also [5, Chap. III] for further details and historical remarks).

Lemma 2.5. [6] Suppose q ∈ L1
loc([0,∞)). Then

φ(z, x) = φl(z, x) +
∫ x

0

B(x, y)φl(z, y)dy =: (I + B)φl(z, x), (2.15)

where the so-called Gelfand–Levitan kernel B : R2
+ → R satisfies the estimate

|B(x, y)| ≤ 1
2
σ0

(
x + y

2

)
eσ1(x), σj(x) :=

∫ x

0

yj |q(y)|dy, (2.16)

for all 0 < y < x and j ∈ {0, 1}.
In particular, this lemma immediately implies the following useful result.



A. Kostenko et al. Ann. Henri Poincaré

Corollary 2.6. Suppose q ∈ L1((0, 1)). Then B is a bounded operator on
L∞((0, 1)).

Proof. If f ∈ L∞(R+), then using the estimate (2.16) we get

|(Bf)(x)| =
∣∣∣
∫ x

0

B(x, y)f(y)dy
∣∣∣ ≤ ‖f‖∞

∫ x

0

|B(x, y)|dy

≤ 1
2
‖f‖∞eσ1(1)

∫ x

0

σ0

(x + y

2

)
dy ≤ 1

2
‖f‖∞eσ1(1)σ0(1),

which proves the claim. �

Remark 2.7. Note that B is a bounded operator on L2((0, a)) for all a > 0.
However, the estimate (2.16) allows to show that its norm behaves like O(a)
as a → ∞ and hence B might not be bounded on L2(R+).

2.2. The Singular Weyl Function

The singular Weyl function m : C\R → C is defined such that

ψ(z, x) = θ(z, x) + m(z)φ(z, x), z ∈ C\R, (2.17)

belongs to L2((1,∞)). Note that, while the first solution φ(z, x) is unique
under the normalization (2.2), the second solution θ(z, x) is not, since for any
real entire function E the new solution θ̃(z, x) = θ(z, x) − E(z)φ(z, x) also
satisfies (2.2). Note that the corresponding singular m-function m̃ is given by

m̃(z) = m(z) + E(z)

in this case. Moreover, it was shown in [19,20] that the singular m-function
(2.17) admits the following integral representation

m(z) = Ẽ(z) + (1 + z2)κl

∫

R

( 1
λ − z

− λ

1 + λ2

) dρ(λ)
(1 + λ2)κl

, z /∈ R.

(2.18)

Here κl := � l
2 + 3

4 (with �. the usual floor function), the function Ẽ is real
entire, and ρ : R → R is a nondecreasing function satisfying

ρ(λ) =
ρ(λ+) + ρ(λ−)

2
, ρ(0) = 0,

∫

R

dρ(λ)
(1 + λ2)κl+1

< ∞.

The operator H is unitarily equivalent to multiplication by the independent
variable in L2(R, dρ) and thus ρ is called the spectral function and dρ is the
spectral measure. Indeed, one has F : L2(R+) → L2(R, dρ) defined via

ϕ(x) �→ ϕ̂(λ) := l.i.m.
c→∞

∫ c

0

φ(λ, x)ϕ(x)dx,

and its inverse mapping F−1 : L2(R, dρ) → L2(R+) given by

ϕ̂(λ) �→ ϕ(x) := l.i.m.
r→∞

∫ r

−r

φ(λ, x)ϕ̂(λ)ρ(dλ).

Here “l.i.m.” denotes the limit in the corresponding L2-norm. Then, for any
Borel function f , one has Ff(H)F−1 equal to multiplication by f(λ).
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We also remark that the value of κl in (2.18) is the best possible one as
the following extension of Marchenko’s asymptotic formula shows.

Theorem 2.8. [21] Suppose that q satisfies (2.1) and m is the singular m-
function (2.17). Then there is a real entire function E such that in any nonreal
sector,

m(z) − E(z) = ml(z)(1 + o(1)), |z| → +∞,

where

ml(z) =

⎧
⎨
⎩

−1
sin((l+ 1

2 )π)
(−z)l+ 1

2 , l + 1
2 ∈ R+\N0,

−1
π zl+ 1

2 log(−z), l + 1
2 ∈ N0.

(2.19)

Moreover, the spectral function satisfies

ρ(λ) = ρl(λ)(1 + o(1)), λ → +∞, (2.20)

where

ρl(λ) =
1

π(l + 3
2 )

1[0,∞)(λ)λl+ 3
2 , l ≥ −1

2
.

Note that the formula (2.20) was first announced in [16]. For extensions
of Theorem 2.8 to the case when q is a distribution in H−1

loc we refer to [8].

2.3. The Jost Solution

In this subsection, we assume that the potential q belongs to the Marchenko
class, i.e., in addition to (2.1), q also satisfies

∫ ∞

1

x|q(x)|dx < ∞. (2.21)

Recall that under these assumptions on q the spectrum of H is purely ab-
solutely continuous on (0,∞) with an at most finite number of eigenvalues
λn ∈ (−∞, 0].

Next we need some estimates for the Weyl solution ψ defined by (2.17).
We begin with some basic properties of the unperturbed Bessel equation in
which case the Weyl solution is given by

ψl(k2, x) = ikl+ 1
2

√
πx

2
H

(1)

l+ 1
2
(kx),

which is analytic in Im k > 0 and continuous in Im k ≥ 0. Here H
(1)
ν is the

Hankel function of the first kind (see Appendix B). Its derivative is given by
(cf. (B.8))

∂kψl(k2, x) = ikl+ 1
2 x

√
πx

2
H

(1)

l− 1
2
(kx).

The analog of Lemma 2.1 reads:
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Lemma 2.9. If l > −1/2, then for every x > 0

∣∣ψl(k2, x)
∣∣ ≤ C

(
x

1 + |k|x
)−l

e−|Im k|x (2.22)

and

∣∣∂kψl(k2, x)
∣∣ ≤ Ce−|Im k|x

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

|k|x
(

1 + |k|x
x

)l−1

, l ≥ 1
2
,

|k|lx
( |k|x

1 + |k| x
)l

, |l| <
1
2
.

(2.23)

A solution f(k, ·) to τy = k2y satisfying the following asymptotic nor-
malization

f(k, x) = eikx(1 + o(1)), f ′(k, x) = ikeikx(1 + o(1)) (2.24)

as x → ∞, is called the Jost solution. In the case q = 0 we have [cf. (B.6)]

fl(k, x) =
ei πl

2

kl
ψl(k2, x) = iei πl

2

√
πxk

2
H

(1)

l+ 1
2
(kx).

Lemma 2.10. Assume (2.21). Then f(k, x) satisfies the integral equation

f(k, x) = fl(k, x) −
∫ ∞

x

Gl(k2, x, y)q(y)f(k, y)dy.

If l > −1/2, then for all x > 0, f(·, x) is analytic in the upper half plane and
can be continuously extended to the real axis away from k = 0 and

|f(k, x) − fl(k, x)| ≤ C

( |k|x
1 + |k|x

)−l

e−|Im k| x

∫ ∞

x

yq(y)
1 + |k| ydy. (2.25)

Moreover, the function h(k, x) := e−ikxf(k, x) satisfies the estimates

|∂khl(k, x)| ≤ C

x |k|2
(

1 + |k|x
|k|x

)l−1

, (2.26)

and

|∂kh(k, x) − ∂khl(k, x)| ≤ C

|k|
(

1 + |k|x
|k| x

)l ∫ ∞

x

y|q(y)|dy. (2.27)

Proof. The proof is based on the successive iteration procedure. Set

f =
∞∑

n=0

fn, f0 := fl, fn(k, x) := −
∫ ∞

x

Gl(k2, x, y)fn−1(k, y)q(y)dy

for all n ∈ N. The series is absolutely convergent since

|fn(k, x)| ≤ Cn+1

n!

(
1 + |k|x

|k|x
)l

e|Im k|x
(∫ ∞

x

y |q(y)|
1 + |k|ydy

)n

. (2.28)

The latter also proves (2.5).



Dispersion Estimates for Spherical Schrödinger Equations

The proof of (2.26) is given in Appendix B. It remains to prove (2.27).
First, notice that h solves the following equation

h(k, x) = hl(k, x) −
∫ ∞

x

G̃l(k, x, y)q(y)h(k, y)dy,

G̃l(k, x, y) := Gl(k2, x, y)ei(y−x).

Then setting

∂kh =
∞∑

n=0

gn, g0(k, x) := ∂khl(k, x), (2.29)

gn(k, x) :=
∫ ∞

x

∂kG̃l(k, x, y)hn−1(k, y)q(y)dy

+
∫ ∞

x

G̃l(k, x, y)gn−1(k, y)q(y)dy, n ∈ N, (2.30)

we need to show that it satisfies the integral equation

∂kh(k, x) = ∂khl(k, x) −
∫ ∞

x

[∂kG̃l(k, x, y)]h(k, y)

+ G̃l(k, x, y)∂kh(k, y)]q(y)dy. (2.31)

It easily follows from (2.7) that
∣∣∣∂kG̃l(k, x, y)

∣∣∣ ≤ C|k|y
( |k|y

1 + |k|y
)l+2(1 + |k|x

|k|x
)l

, 0 < x ≤ y.

Therefore, using (2.28), we can bound the first summand in (2.30) as follows

|1st term| ≤ Cn+1

(n − 1)!

(
1 + |k|x

|k|x
)l ∫ ∞

x

|k|y3 |q(y)|
(1 + |k|y)2

(∫ ∞

y

t |q(t)|
1 + |k|tdt

)n−1

dy

≤ Cn+1

n!
1
|k|
(

1 + |k|x
|k|x

)l (∫ ∞

x

y|q(y)|dy

)n

.

Next, using induction, one can show that the second summand admits a similar
bound and hence we finally get

|gn(k, x)| ≤ Cn+1

n!
1
k

(
1 + |k|x

|k|x
)l(∫ ∞

x

y|q(y)|dy

)n

.

This immediately implies the convergence of (2.29) and, moreover, the estimate

|∂kh(k, x) − ∂khl(k, x)| ≤
∞∑

n=1

|gn(k, x)| ,

from which (2.27) follows under the assumption (2.21). �

Furthermore, by [6,11], the Jost solution f admits a representation by
means of transformation operators preserving the behavior of solutions at in-
finity (see also [5, Chap. V] for further details and historical remarks).
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Lemma 2.11 [6]. Suppose
∫∞
1

(x + xl)|q(x)|dx < ∞. Then

f(k, x) = fl(k, x) +
∫ ∞

x

K(x, y)fl(k, y)dy =: (I + K)fl(k, x), (2.32)

where the so-called Marchenko kernel K : R2 → R satisfies the estimate

|K(x, y)| ≤ 1
2

(
2
x

)l

σ̃l

(
x + y

2

)
eσ̃1(x), σ̃j(x) :=

∫ ∞

x

yj |q(y)|dy, (2.33)

for all x < y < ∞ and j ∈ {1, l}.
In particular, this lemma immediately implies the following useful result.

Corollary 2.12. Suppose
∫∞
1

(x + xl+1)|q(x)|dx < ∞. Then K is a bounded
operator on L∞((1,∞)).

Proof. If f ∈ L∞(R+), then using the estimate (2.33) we get

|(Kf)(x)| =
∣∣∣
∫ ∞

x

K(x, y)f(y)dy
∣∣∣ ≤ ‖f‖∞

∫ ∞

x

|K(x, y)|dy

≤ 1
2
‖f‖∞eσ̃1(1)

(
2
x

)l ∫ ∞

x

σ̃l

(x + y

2

)
dy

≤ 2l−1‖f‖∞eσ̃1(1)

∫ ∞

1

∫ ∞

(1+y)/2

tl|q(t)|dt dy

= 2l−1‖f‖∞eσ̃1(1)

∫ ∞

1

∫ 2t−1

1

tl|q(t)|dy dt ≤ 2l‖f‖∞σ̃l+1(1)eσ̃1(1),

which proves the claim. �

2.4. The Jost Function

By Lemma 2.10, the Jost solution is analytic in the upper half plane and can
be continuously extended to the real axis away from k = 0. We can extend it to
the lower half plane by setting f(k, x) = f(−k, x) = f(k∗, x)∗ for Im(k) < 0.
For k ∈ R\{0} we obtain two solutions f(k, x) and f(−k, x) = f(k, x)∗ of the
same equation whose Wronskian is given by [cf. (2.24)]

W (f(−k, .), f(k, .)) = 2ik. (2.34)

The Jost function is defined as

f(k) = W (f(k, .), φ(k2, .)) (2.35)

and we also set

g(k) = W (f(k, .), θ(k2, .))

such that

f(k, x) = f(k)θ(k2, x) − g(k)φ(k2, x) = f(k)ψ(k2, x). (2.36)

In particular, the Weyl m-function (2.17) is given by

m(k2) = − g(k)
f(k)

, k ∈ C+.
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Note that both f(k) and g(k) are analytic in the upper half plane and f(k)
has simple zeros at iκn =

√
λn ∈ C+.

Since f(k, x)∗ = f(−k, x) for k ∈ R\{0}, we obtain f(k)∗ = f(−k) and
g(k)∗ = g(−k). Moreover, (2.34) shows

φ(k2, x) =
f(−k)

2ik
f(k, x) − f(k)

2ik
f(−k, x), k ∈ R\{0}, (2.37)

and by (2.36) we get

2i Im(f(k)g(k)∗) = f(k)g(k)∗ − f(k)∗g(k) = W (f(−k, ·), f(k, ·)) = 2ik.

Hence

Im m(k2) = − Im
(
f(k)∗g(k)

)
|f(k)|2 =

k

|f(k)|2 , k ∈ R\{0}, (2.38)

implying

dρ(λ) = 1(0,∞)(λ)

√
λ

π|f(
√

λ)|2 dλ +
∑

n

γndθ(λ − λn), (2.39)

where γ−1
n = ‖φ(λn, ·)‖2

L(R+)
are the usual norming constants. Since −γn

equals the residue of m(z) at λn we obtain

ḟ(iκn) = −2iκn
g(iκn)

γn
, f(iκn, x) = g(iκn)φ(λn, x).

Note that

fl(k) := W (fl(k, .), φl(k2, .)) = k−lei πl
2 , 0 ≤ arg(k) < π.

Thus, by Theorem 2.8 and (2.39),

|f(k)| = |fl(k)|(1 + o(1)) = |k|−l(1 + o(1)), k → ∞. (2.40)

Finally, consider the following function

F (k) := e−i πl
2 klf(k) =

f(k)
fl(k)

= e−i πl
2 klW (f(k, .), φ(k2, .)), Im k ≥ 0.

(2.41)

Note that if we use

ψ̃(k, x) =
f(k, x)
fl(k)

= e−i πl
2 klf(k, x) (2.42)

instead of f(k, x), then ψ̃(·, x) is analytic in the upper half plane and can be
continuously extended to the whole real axis and (2.25) now reads

|ψ̃(k, x) − ψl(k, x)| ≤ C

(
x

1 + |k|x
)−l

e−|Im k| x

∫ ∞

x

yq(y)
1 + |k| ydy. (2.43)
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Lemma 2.13 [21]. Assume (2.1) and (2.21). Then the function F admits the
following integral representation

F (k) = 1 +
∫ ∞

0

ψl(k2, x)φ(k2, x)q(x)dx,

= 1 + e−i πl
2 kl

∫ ∞

0

f(k, x)φl(k2, x)q(x)dx. (2.44)

If l > −1/2, then F is analytic in C+, continuous and bounded on Im k ≥ 0
and

F (k) = 1 + o(1) (2.45)

as |k| → ∞ in Im k ≥ 0.

Remark 2.14. Note that φ(k2, x) and φl(k2, x) have the same leading asymp-
totics as |k| → ∞. Also,

2k ψl(k2, x)φl(k2, x) → 1, |k| → ∞.

Since
∣∣k ψl(k2, x)φ(k2, x)

∣∣ ≤ C, dominated convergence implies that

F (k) = 1 +
i

2k

∫ ∞

0

q(x)dx + o(k−1) (2.46)

as |k| → ∞ provided that q ∈ L1(0,∞).

We also will need the behavior of F and F ′ near zero. The next lemma
is well known and we give its proof for the sake of completeness.

Lemma 2.15. Let l > −1/2 and assume (2.1) and (2.21). The following con-
ditions are equivalent:

1. F (0) = 0,
2. φ(0, .) and ψ̃(0, .) are linearly dependent,
3. φ(0, x) ∼ Cx−l as x → ∞,
4. There is either a resonance (if l ∈ (−1/2, 1/2]) or an eigenvalue (if l >

1/2).

Proof. By (2.41) and (2.42), F (0) = W (ψ̃(0, .), φ(0, .)) which proves the equiv-
alence (1) ⇔ (3). Moreover, the latter is further equivalent to (3) since ψ̃(0, x) ∼
Cx−l as x → ∞ in view of (2.43).

Finally, the kernel of the resolvent RH(k2) = (H − k2)−1 is given by

[RH(k2 + i0)](y, x) =
φ(k2, x)f(k, y)

f(k)
=

φ(k2, x)ψ̃(k, y)
F (k)

, x ≤ y, (2.47)

and hence we see that there is a resonance or an eigenvalue, i.e. a singularity of
this kernel at k = 0 if and only if F (0) = 0. Moreover, this is also equivalent to
existence of a solution which, is bounded if l ≥ 0 and which is square integrable
(i.e. an eigenfunction) if l > 1

2 . �

Lemma 2.16. Assume (2.1) and (2.21). Then F (k) �= 0 for k ∈ R\{0} and

|F (k)|−1 ≤ O(|k|− min(l+3/2,2)), k → 0.
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Proof. Since f(k, x) can only be a multiple of φ(k2, x) if k = 0, their Wronskian
f(k) can only vanish at 0. Moreover, the singular Weyl function must satisfy

|m(z)| ≤ Cλ

|z − λ|
near every λ ∈ R, which follows from its integral representation (2.18). Hence
we obtain from (2.41) and (2.38)

1
|F (k)| =

1
|k|l |f(k)| =

1
|k|l+ 1

2

√
Im m(k2) ≤ C

|k|l+ 3
2

as claimed.
To obtain the second bound we use that fact that the diagonal of the

Green’s function RH(·)(x, x) is a Herglotz–Nevanlinna function and hence sat-
isfies

∣∣RH(z)(x, x)
∣∣ ≤ Cλ,x

|z − λ|
near every λ ∈ R. Choosing x > 0 such that φ(0, x)ψ̃(0, x) �= 0 and using
(2.47) we prove the claim. �
Lemma 2.17. Assume (2.1) and (2.21). Then F is differentiable for all k �= 0
and

|F ′(k)| ≤ C

1 + |k|
for all |k| large enough. If in addition∫ ∞

1

x2|q(x)|dx < ∞. (2.48)

then

|F ′(k)| = O(|k|min(0,2l)), |k| → 0.

Proof. Using (2.44), we get

F ′(k) =
∫ ∞

0

(
∂kψl(k2, x)φ(k2, x) + ψl(k2, x)∂kφ(k2, x)

)
q(x)dx.

The integral converges absolutely for all k �= 0. Indeed, by (2.22) and (2.11),
we obtain∣∣∣∣

∫ ∞

0

ψl(k2, x)∂kφ(k2, x)q(x)dx

∣∣∣∣ ≤ C

∫ ∞

0

x2

1 + |k|x |q(x)|dx

Using (2.5) and (2.23), we get the following estimates for the first summand:∣∣∣∣
∫ ∞

0

∂kψl(k2, x)φ(k2, x)q(x)dx

∣∣∣∣

≤ C

⎧
⎪⎪⎨
⎪⎪⎩

∫ ∞

0

x2

1 + |k|x |q(x)|dx, l ≥ 0,

|k|2l

∫ ∞

0

x2+2l

(1 + |k|x)1+2l
|q(x)|dx, l ∈ (− 1

2 , 0).
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Now the claim follows. �

3. Dispersive Decay

In this section we prove the dispersive decay estimate (1.4) for the Schrödinger
equation (1.1). In order to do this, we divide the analysis into a low and high
energy regimes. In the analysis of both regimes we make use of variants of
the van der Corput Lemma (see Appendix A), combined with a Born series
approach for the high energy regime.

3.1. The Low Energy Part

For the low energy regime, it is convenient to use the following well-known
representation of the integral kernel of e−itHPc(H),

[e−itHPc(H)](x, y) =
2
π

∫ ∞

−∞
e−itk2

φ(k2, x)φ(k2, y) Im m(k2)k dk

=
2
π

∫ ∞

−∞
e−itk2 φ(k2, x)φ(k2, y)k2

|f(k)|2 dk

=
2
π

∫ ∞

−∞
e−itk2 φ(k2, x)φ(k2, y)|k|2(l+1)

|F (k)|2 dk

=
2
π

∫ ∞

−∞
e−itk2 φ̃(k, x)φ̃(k, y)

|F (k)|2 dk, (3.1)

where the integral is to be understood as an improper integral. In fact, adding
an additional energy cut-off (which is all we will need below) the formula is
immediate from the spectral transformation [19, Sect. 3] and the general case
can then be established taking limits using the bounds on this kernel to be
established below. In the last equality we have used

φ̃(k, x) := |k|l+1φ(k2, x), k ∈ R. (3.2)

Note that

|φ̃(k, x)| ≤ C

( |k|x
1 + |k|x

)l+1

e| Im k|x, (3.3)

|∂kφ̃(k, x)| ≤ Cx

( |k|x
1 + |k|x

)l

e| Im k|x, (3.4)

which follows from (2.3), (2.5) and

∂kφ̃(k, x) = (l + 1)sgn(k)|k|lφ(k2, x) + |k|l+1∂kφ(k2, x)

together with (2.6), (2.11).
We begin with the following estimate.

Theorem 3.1. Assume (2.1) and (2.48). Let also χ ∈ C∞
c (R) with supp(χ) ⊂

(−k0, k0) and suppose there is neither a resonance nor an eigenvalue at 0, that
is F (0) �= 0. Then
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∣∣[e−itHχ(H)Pc(H)](x, y)
∣∣ ≤ C

|t|1/2
max(x, y). (3.5)

Proof. We want to apply the van der Corput Lemma A.1 with c = 0 and

A(k) = χ(k2)A0(k), A0(k) =
φ(k2, x)φ(k2, y) |k|2(l+1)

|F (k)|2 =
φ̃(k, x)φ̃(k, y)

|F (k)|2 .

Note that

‖A‖∞ ≤ ‖χ‖∞‖A0‖∞, ‖A′‖1 ≤ ‖χ′‖1‖A0‖∞ + ‖χ‖∞‖A′
0‖1.

Our assumption F (0) �= 0 together with Lemma 2.16 imply F (k) �= 0 for
all k ∈ R and hence ‖1/F‖∞ < ∞ in view of Lemma 2.13. Using (3.3) we infer

sup
k2≤k0

|A0(k)| ≤ C ‖1/F‖2
∞
(
min(1, k0xy)

)l+1
< ∞, (3.6)

which holds for all x and y with some uniform constant C > 0. Moreover,

A′
0(k) =

∂kφ̃(k, x)φ̃(k, y) + φ̃(k, x)∂kφ̃(k, y)
|F (k)|2 − A0(k)Re

F ′(k)
F (k)

and it suffices to bound the two terms from above on compact sets. In fact, it
suffices to consider the first term since the second one follows from (3.6) and
Lemma 2.17.

The estimate for the first term follows from (3.3) and (3.4) since
∣∣∣∂kφ̃(k, x)φ̃(k, y) + φ̃(k, x)∂kφ̃(k, y)

∣∣∣

≤ C

( |k|x
1 + |k|x

)l+1( |k|y
1 + |k|y

)l+1(1 + |k|x
|k| +

1 + |k|y
|k|

)

≤ C
√

xy

( |k|x
1 + |k|x

)l+1/2( |k|y
1 + |k|y

)l+1/2 1 + |k|x + 1 + |k|y√
(1 + |k|x)(1 + |k|y)

≤ C
√

xy

(√
1 + |k|x
1 + |k|y +

√
1 + |k|y
1 + |k|x

)
≤ C max(x, y).

It remains to apply the van der Corput Lemma. �

To get rid of the dependence of x and y in (3.5) we make use of the
transformation operators (2.15) and (2.32).

Theorem 3.2. Assume
∫ 1

0

|q(x)|dx < ∞ and
∫ ∞

1

xmax(2,l+1)|q(x)|dx < ∞. (3.7)

Let also χ ∈ C∞
c (R) with supp(χ) ⊂ (−k0, k0) and suppose there is neither a

resonance nor an eigenvalue at 0, that is F (0) �= 0. Then
∣∣[e−itHχ(H)Pc(H)](x, y)

∣∣ ≤ C

|t|1/2
, max(x, y) ≥ 1. (3.8)
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Proof. Assume that 0 < x ≤ 1 ≤ y. We proceed as in the previous proof but
use Lemmas 2.5 and 2.11 to write

A(k) = χ(k2)
(I + Bx)φ̃l(k, x) · (I + Ky)φ̃l(k, y)

|F (k)|2 , k �= 0.

Indeed, for all k ∈ R\{0}, φ(k, ·) is bounded at infinity and admits the repre-
sentation (2.37) by means of Jost solution f(k, ·) and f(−k, ·). Therefore, by
Lemma 2.11, φ̃(k, y) = (I + Ky)φ̃l(k, y) for all k ∈ R\{0}.

By symmetry A(k) = A(−k) and hence our integral reads

I(t, x, y) =
4
π

∫ ∞

0

e−itk2
A(k)dk.

Our aim is to use Lemma A.2 (plus the remarks after this lemma) and hence we
need to show that the individual parts of A(k) coincide with a function which
is the Fourier transform of a finite measure. In particular, we can redefine A(k)
for k < 0. To this end note that φ̃l(k2, x) = J(|k|x), where

J(r) =
√

r Jl+ 1
2
(r) =

rl+1

2l+1/2

∞∑
n=0

(−r2/4)n

n!Γ(ν + n + 1)
, r ≥ 0.

Note that J(r) ∼ rl+1 as r → 0 and J(r) =
√

2
π sin(r−πl

2 )+O(r−1) as r → +∞
[see (B.4)]. Moreover, J ′(r) ∼ rl as r → 0 and J ′(r) =

√
2
π cos(r− πl

2 )+O(r−1)

as r → +∞ [see (B.9)]. In particular, J̃(r) := J(r) −
√

2
π sin(r − πl

2 ) is in
H1(R+). Moreover, we can define J(r) for r < 0 such that it is locally in

H1 and J(r) =
√

2
π sin(r − πl

2 ) for r < −1. By construction we then have

J̃ ∈ H1(R) and thus J̃ is the Fourier transform of an integrable function.
Moreover, sin(r − πl

2 ) is the Fourier transform of the sum of two Dirac delta
measures and so J is the Fourier transform of a finite measure. By scaling,
the total variation of the measures corresponding to J(kx) is independent of
x. Since the same is true for χ(k2)|F (k)|−2 by Lemma 2.17, an application of
Lemma A.2 shows

|Ĩ(t, x, y)| ≤ C√
t
, Ĩ(t, x, y) =

4
π

∫ ∞

0

e−itk2
χ(k2)

φ̃l(k, x)φ̃l(k, y)
|F (k)|2 dk.

But by Fubini we have I(t, x, y) = (1 + Bx)(1 + Ky)Ĩ(t, x, y) and the claim
follows since both B : L∞((0, 1)) → L∞((0, 1)) and K : L∞((1,∞)) →
L∞((1,∞)) are bounded in view of Corollaries 2.6 and 2.12, respectively.

By symmetry, we immediately obtain the same estimate if 0 < y ≤ 1 ≤ x.
The case min(x, y) ≥ 1 can be proved analogously, we only need to write

A(k) = χ(k2)
(I + Kx)φ̃l(k, x) · (I + Ky)φ̃l(k, y)

|F (k)|2 , k �= 0. �
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3.2. The High Energy Part

For the analysis of the high energy regime we use the following—also well
known—alternative representation:

e−itHPc(H) =
1

2πi

∫ ∞

0

e−itω [RH(ω + i0) − RH(ω − i0)] dω

=
1
πi

∫ ∞

−∞
e−itk2RH(k2 + i0) k dk, (3.9)

where RH(ω) = (H −ω)−1 is the resolvent of the Schrödinger operator H and
the limit is understood in the strong sense [27]. We recall that the Green’s
function is given by

[RH(k2 ± i0)](x, y) = [RH(k2 ± i0)](y, x) = φ(k2, x)ψ(k2 ± i0, y), x ≤ y.

Note also that

ψ(k2 ± i0, x) =
f(±k, x)
f(±k)

, k ∈ R\{0}.

Fix k0 > 0 and let χ : R → [0,∞) be a C∞ function such that

χ(k2) =

{
0, |k| < 2k0,

1, |k| > 3k0.
(3.10)

The purpose of this section is to prove the following estimate.

Theorem 3.3. Suppose q ∈ L1(R+). Then
∣∣[e−itHχ(H)Pc(H)](x, y)

∣∣ ≤ C

|t|1/2
.

Our starting point is the fact that the resolvent RH of H can be expanded
into the Born series

RH(k2 ± i0) =
∞∑

n=0

Rl(k2 ± i0)(−q Rl(k2 ± i0))n, (3.11)

where Rl stands for the resolvent of the unperturbed radial Schrödinger oper-
ator.

To this end we begin by collecting some facts about Rl. Its kernel is given

Rl(k2 ± i0, x, y) =
1
k

rl(±k, x, y),

where

rl(k;x, y) = rl(k; y, x) := k
√

xy Jl+ 1
2
(kx)H(1)

l+ 1
2
(ky), x ≤ y.

Lemma 3.4. The function rl(k, x, y), l > − 1
2 , can be written as

rl(k, x, y) = χ(−∞,0](k)
∫

R

eikpdρl,x,y(p) + χ[0,∞)(k)
∫

R

e−ikpdρ∗
l,x,y(p)

with a measure whose total variation satisfies

‖ρl,x,y‖ ≤ C(l).

Here ρ∗ is the complex conjugated measure.
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Proof. Let x ≤ y and k ≥ 0. Write

rl(k, x, y) =
χl(kx)
χl(ky)

J(kx)H(ky),

where

J(r) = χl(r)−1
√

r Jl+ 1
2
(r),

H(r) = χl(r)
√

r H
(1)

l+ 1
2
(r),

χl(r) =
(

r2

1 + r2

)(l+1)/2

.

We continue J(r), H(r) to the region r < 0 such that they are continuously
differentiable and satisfy

J(r) =

√
2
π

sin
(

r − πl

2

)
, H(r) =

√
2
π

ei(r− π(l+1)
2 ),

for r < −1. Then J̃(r) := J(r) −
√

2
π sin(r − πl

2 ) and H̃(r) := H(r) −√
2
π ei(r− π(l+1)

2 ) are in H1(R). In fact, they are continuously differentiable and
hence it suffices to look at their asymptotic behavior. For r < −1 they are
zero and for r > 1 they are O(r−1) and their derivative is O(r−1) as can be
seen from the asymptotic behavior of the Bessel and Hankel functions (see
Appendix B). Hence both J and H are Fourier transforms of finite measures.
By scaling the total variation of the measures corresponding to J(kx), H(ky)
are independent of x, y, respectively.

Hence it remains to consider the Fourier transform

Fx,y(p) :=

√
2
π

∫ ∞

0

(
1 − χl(kx)

χl(ky)

)
cos(kp)dk.

First observe that

Fx,y(p) =
1
x

F1,y/x(p/x).

for all x ≤ y. Therefore, ‖Fx,y‖L1 = ‖F1,y/x‖L1 . Hence it suffices to consider
the Fourier transform of

hη,l(k) := 1 −
(

η + k2

1 + k2

)(l+1)/2

, η :=
x2

y2
∈ (0, 1].

First, note that

h′
η,l(k) = (l + 1)(η − 1)

(
η + k2

1 + k2

)(l−1)/2
k

(1 + k2)2
, k ∈ R.

Therefore,

hη,l(k) =
(l + 1)(1 − η)

2k2
(1 + o(k)), h′

η,l(k) =
(l + 1)(η − 1)

k3
(1 + o(k))
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as k → ∞. This implies that hη,l ∈ H1(R) and hence ĥη,l ∈ L1(R). According
to (A.1), it remains to show that the family hη,l is uniformly bounded in H1(R)
with respect to η ∈ (0, 1]. Clearly,

|hη,l(k)| ≤ |h0,l(k)|
for all k ∈ R and hence ‖hη,l‖L2 ≤ ‖h0,l‖L2 . Noting that

(
η + k2

1 + k2

) l−1
2

≤
⎧
⎨
⎩

1, l ≥ 1(
1+k2

k2

) 1−l
2

, l ∈ (− 1
2 , 1),

, k > 0,

for all l > − 1
2 , we get

|h′
η,l(k)| ≤ (l + 1)

|k|
(1 + k2)2

⎧
⎨
⎩

1, l ≥ 1,(
1+k2

k2

) 1−l
2

, l ∈ (− 1
2 , 1).

The latter implies that ‖h′
η,l‖L2 are uniformly bounded. �

Remark 3.5. 1. For l ∈ N0 the situation is somewhat simpler and we can
write

rl(k, x, y) =
∫

R

eikpdρl,x,y(p), l ∈ N0,

with

ρl,x,y(p) =

√
2
π

(
δ(p − x + y) − (−1)lδ(p + x + y)

)

+
sign(p − x + y) − sign(p + x + y)√

2π
Pl,x,y(p)

where Pl,x,y(p) is a polynomial of degree 2l − 1 which is symmetric in x
and y. Explicitly,

P0,x,y(p) = 0, P1,x,y(p) = − p

xy
, P2,x,y(p) =

3p
(
p2 − x2 − y2

)
2x2y2

P3,x,y(p) = −
3p
(
5
(
p2 − x2

)2 + 2y2
(
3x2 − 5p2

)
+ 5y4

)

8x3y3

and one can verify the claim explicitly.
2. We have the following recursion

rl+1(k, x, y) = rl−1(k, x, y) − 2l + 1
kxy

(
d
dk

− 1
k

)
rl(k, x, y).

Now we are in position to finish the proof of the main result.

Proof of Theorem 3.3. As a consequence of Lemma 3.4 we note

|Rl(k2 ± i0, x, y)| ≤ C(l)
|k|
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and hence the operator q Rl(k2 ± i0) is bounded on L1 with

‖q Rl(k2 ± i0)‖L1 ≤ C(l)
|k| ‖q‖L1 .

Thus we get
∣∣〈Rl(k2 ± i0)(−q Rl(k2 ± i0))nf, g

〉∣∣
=
∣∣〈−q Rl(k2 ± i0))nf,Rl(k2 ∓ i0)g

〉∣∣
≤ ∥∥(−q Rl(k2 ± i0))nf

∥∥
L1

∥∥Rl(k2 ∓ i0)g
∥∥

L∞

≤ C(l)n+1‖q‖n
L1

|k|n+1
‖f‖L1 ‖g‖L1 .

This estimate holds for all L1 functions f and g and hence the series (3.11)
weakly converges whenever |k| > k0 := C(l)‖q‖L1 . Namely, for all L1 functions
f and g we have

〈RH(k2 ± i0)f, g
〉

=
∞∑

n=0

〈Rl(k2 ± i0)(−q Rl(k2 ± i0))nf, g
〉
. (3.12)

Using the estimates (2.5), (2.25), (2.41), and (2.45) for the Green’s function
of the perturbed operator, one can see that

RH(k2 ± i0) g ∈ L∞

whenever g ∈ L1 and |k| > 0. Therefore, we get
∣∣〈RH(k2 ± i0)(−q Rl(k2 ± i0))nf, g

〉∣∣
=
∣∣〈(−q Rl(k2 ± i0))nf,RH(k2 ∓ i0)g

〉∣∣
≤ ∥∥(−q Rl(k2 ± i0))nf

∥∥
L1

∥∥RH(k2 ∓ i0)g
∥∥

L∞

≤
(

C(l) ‖q‖L1

k

)n ∥∥RH(k2 ∓ i0)g
∥∥

L∞ ,

which means that RH(k2 ± i0)(−q Rl(k2 ± i0))n weakly tends to 0 whenever
|k| > k0.

Let us consider again a function χ as in (3.10) with k0 := C(l)‖q‖1. Since
eitHχ(H)Pc = eitHχ(H), we get from (3.9)

〈
e−itHχ(H)f, g

〉
=

1
πi

∫ ∞

−∞
e−itk2

χ(k2)k
〈RH(k2 + i0)f, g

〉
dk.

Using (3.12) and noting that we can exchange summation and integration, we
get

〈
e−itHχ(H)f, g

〉

=
1
πi

∞∑
n=0

∫ ∞

−∞
e−itk2

χ(k2)k
〈Rl(k2 + i0)(−q Rl(k2 + i0))nf, g

〉
dk.
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The kernel of the operator Rl(k2 + i0)(−q Rl(k2 + i0))n is given by

1
kn+1

∫

R
n
+

rl(k;x, y1)
n∏

i=1

q(yi)
n−1∏
i=1

rl(k; yi, yi+1)rl(k; yn, y)dy1 · · · dyn.

Applying Fubini’s theorem, we can integrate in k first and hence we need to
obtain a uniform estimate of the oscillatory integral

In(t;u0, . . . , un+1) :=
∫

R

e−itk2
χ(k2)

(
k

2k0

)−n n∏
i=0

rl(k;ui, ui+1) dk

since, recalling that k0 = C(l)‖q‖L1 , one obtains

∣∣〈e−itHχ(H)f, g
〉∣∣ ≤ 1

π

∞∑
n=0

1
(2C(l))n

sup
{ui}n+1

i=0

|In(t;u0, . . . , un+1)| ‖f‖L1 ‖g‖L1 .

Consider the function fn(k) = χ(k2)
(

k
2k0

)−n

. Clearly, f0 is the Fourier trans-

form of a measure ν0 satisfying ‖ν0‖ ≤ C. For n ≥ 1, fn is H1 with ‖fn‖H1 ≤
π−1/2C(1 + n). Hence by Lemmas A.2 and 3.4 we obtain

|In(t;u0, . . . , un+1)| ≤ 2CvC√
t

(1 + n)C(l)n+1

implying

∣∣〈e−itHχ(H)f, g
〉∣∣ ≤ 2CvC C(l)√

t
‖f‖L1 ‖g‖L1

∞∑
n=0

1 + n

2n
.

This proves Theorem 3.3. �
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Appendix A. The van der Corput Lemma

We will need the classical van der Corput lemma (see e.g. [26, p. 334]):

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. Consider the oscillatory integral

I(t) =
∫ b

a

eitk2+ickA(k)dk.

If A ∈ AC(a, b), then

|I(t)| ≤ C2 |t|−1/2 (‖A‖∞ + ‖A′‖1), |t| ≥ 1,

where C2 ≤ 28/3 is a universal constant.

Note that we can apply the above result with (a, b) = (−∞,∞) by con-
sidering the limit (−a, a) → (−∞,∞).

Our proof will be based on the following variant of the van der Corput
lemma which can be shown as in [9, Lemma 5.1].

Lemma A.2. Let (a, b) ⊆ R and consider the oscillatory integral

I(t) =
∫ b

a

eitk2
A(k)dk.

If A is the Fourier transform of a signed measure

A(k) =
∫

R

eikpdα(p),

then the above integral exists as an improper integral and satisfies

|I(t)| ≤ C2 |t|−1/2 ‖α‖ , |t| > 0.

where ‖α‖ = |α| (R) denotes the total variation of α and C2 is the constant
from the van der Corput lemma.

In this respect we note that if Aj are two such functions then (cf. p. 208
in [1])

(A1A2)(k) =
1

(2π)2

∫

R

eikpd(α1 ∗ α2)(p)

is associated with the convolution

α1 ∗ α2(Ω) =
∫∫

1Ω(x + y)dα1(x)dα2(y),

where 1Ω is the indicator function of a set Ω. Note that

‖α1 ∗ α2‖ ≤ ‖α1‖‖α2‖.

We also need the following simple fact due to Beurling: If f ∈ H1(R), then f
is in the Wiener algebra A and

‖f‖A := ‖f̂‖L1(R) ≤ √
π‖f‖H1(R). (A.1)
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Appendix B. Bessel Functions

Here we collect basic formulas and information on Bessel and Hankel functions
(see, e.g., [24,28]). We start with the definitions:

Jν(z) =
(z

2

)ν ∞∑
n=0

(−z2/4)n

n!Γ(ν + n + 1)
, (B.1)

Yν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
, (B.2)

H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z) − iYν(z). (B.3)

Note that the right-hand side in equation (B.2) should be replaced by its
limiting value if ν ∈ Z. Their asymptotic behavior as |z| → ∞ is given by

Jν(z) =

√
2
πz

(
cos(z − νπ/2 − π/4) + e| Im z|O (|z|−1

))
, | arg z| < π,

(B.4)

Yν(z) =

√
2
πz

(
sin(z − νπ/2 − π/4) + e| Im z|O (|z|−1

))
, |arg z| < π,

(B.5)

H(1)
ν (z) =

√
2
πz

ei(z− 1
2νπ− 1

4π)
(
1 + O (|z|−1

))
, −π < arg z < 2π, (B.6)

H(2)
ν (z) =

√
2
πz

e−i(z− 1
2νπ− 1

4π)
(
1 + O (|z|−1

))
, −2π < arg z < π. (B.7)

Denote the reminder in (B.4), (B.5) and (B.6) by jl(z), yl(z) and hl(z), re-
spectively. Noting that

Y ′
ν(z) = −Yν+1(z) +

ν

z
Yν(z) = Yν−1(z) − ν

z
Yν(z), (B.8)

one can show that the derivative of the reminder satisfies(√
πz

2
Jν(z) − cos(z − 1

2
νπ − 1

4
π)
)′

= e| Im z|O (|z|−1
)
, (B.9)

as |z| → ∞. The same is true for Yν , H
(1)
ν and H

(2)
ν .

According to [28, formula (VI.12.3)], for real non-zero k

H
(1)

l+ 1
2
(k) =

√
2
πk

ei(k−π(l+1)/2)

Γ(l + 1)

∫ ∞

0

e−ttl
(

1 +
it
2k

)l

dt, l > −1
2
.

Therefore, the Jost solution of the unperturbed Bessel equation admits the
representation

hl(k, x) = e−ikxfl(k, x) =
1

Γ(l + 1)

∫ ∞

0

e−ttl
(

1 +
it

2kx

)l

dt

and

∂khl(k, x) =
−il

2Γ(l + 1)
1

k2x

∫ ∞

0

e−ttl+1

(
1 +

it
2kx

)l−1

dt.
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The last integral converges absolutely whenever kx �= 0. Indeed, since

(a2 + t2)
l−1
2 ≤ Cl(al−1 + tl−1), Cl =

{
2(l−1)/2, l ≥ 1,

1, l ∈ (−1/2, 1)
,

for all a, t > 0, we get∣∣∣∣∣
∫ ∞

0

e−ttl+1

(
1 +

it
2kx

)l−1

dt

∣∣∣∣∣

≤ 1
(2|k|x)l−1

∫ ∞

0

e−ttl+1(4|k|2x2 + t2)
l−1
2 dt

≤ Cl

(2|k|x)l−1

(
Γ(l + 2)(2|k|x)l−1 + Γ(2l + 1)

)
.

Therefore, we end up with the following estimate

|∂khl(k, x)| ≤ C

x|k|2
(

1 + |k|x
|k|x

)l−1

, (B.10)

for all x > 0 and k �= 0.

Remark B.1. The estimate (B.10) is the best possible. Indeed, if l ∈ N, then

hl(k, x) =
1

Γ(N + 1)

l∑
j=0

(
l

j

)
ijΓ(l + j + 1)

(2x)jkj
,

and

∂khl(k, x) =
−1

Γ(l + 1)

l∑
j=1

(
l

j

)
ijjΓ(l + j + 1)

(2x)jk(j+1)
.
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[22] Kovař́ık, H., Truc, F.: Schrödinger operators on a half-line with inverse square
potentials. Math. Model. Nat. Phenom. 9(5), 170–176 (2014)

[23] Müller, C.: Spherical harmonics. Lecture Notes in Mathematics, vol.
17. Springer, Berlin (1966)

[24] Olver, F.W.J. et al.: NIST handbook of mathematical functions. Cambridge
University Press, Cambridge (2010)

[25] Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Math-
ematical aspects of nonlinear dispersive equations, Ann. Math. Stud. vol. 163,
pp. 255–285. Princeton Univ. Press, Princeton (2007)

[26] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals. Princeton Math. Series, vol. 43, Princeton University Press,
Princeton (1993)

http://dx.doi.org/10.1515/crelle-2015-0034
http://arxiv.org/abs/1411.0021
http://arxiv.org/abs/1601.01638


A. Kostenko et al. Ann. Henri Poincaré
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