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Abstract

Kerr-lens or self-mode-locked Ti:sapphire lasers are known to display several modes of operation, depending on the

values taken by the systemÕs parameters. The basic observed modes of operation are: continuous wave, mode locking

with transform limited pulses, and mode locking with chirped pulses. These modes are naturally obtained from a

description based on an iterative or Poincar�e map of ®ve pulse variables (beam size curvature, pulse duration, chirp and

energy). The stability of these modes is obtained for an experimentally accessible range of the parameters. The theo-

retical predictions agree qualitatively with the experimental observations. For a particular bifurcation, we study the

feasibility of an approximate description of the (®ve variables) dynamics with a one-variable map, which results in the

logistic map. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Ti:sapphire Kerr-lens mode-locked (KLM)
laser has become the most widely used source of
femtosecond (fs) pulses, but many of its dynamical
properties remain poorly known. Physics of the
KLM laser is intrinsically complex, because it is
determined by a delicate balance of several spatial
and temporal e�ects. In the temporal domain the
group velocity dispersion (GVD) in all the optical
components located inside the cavity and the in-
tensity dependent self-phase modulation (SPM),

mostly in the laser rod, are balanced by the dis-
persion produced by a pair of prisms. In the spatial
domain, the relevant features are the laser cavity
con®guration and the intensity dependent self-
focusing. The ampli®cation is an additional source
of nonlinearity, through gain saturation.

The usual approach is through some version of
the master equation for passive mode locking [1].
This is, in general, an equation of the Ginzburg±
Landau type [2], which has a vast (and quite un-
explored) variety of dynamical behaviors. Partial
or full numerical approaches can provide the val-
ues of the pulse variables, but the stability of the
solutions is very di�cult to obtain analytically.

The condition of stability against the appear-
ance of satellite pulses has been computed by im-
posing conditions on the gain left after the pulse
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passage [3,4]. Analyses of more general instabili-
ties of the Ginzburg±Landau solutions (as, for
example, pulse-to-pulse oscillations in the pulse
duration) have been performed numerically [5].
Numerical approaches are powerful tools for laser
design, but they provide a limited insight into the
underlying dynamics, which is an interesting sub-
ject by itself. Besides, in obtaining the master
equation, it is assumed that the pulse is slightly
modi®ed from one round trip to the next, an
assumption that is observed to be not always
valid outside the normal mode-locking stability
range.

A standard approach to a complex nonlinear
system reduces the study of the continuous time
dynamics to the study of an associated discrete
time system, the iterative, stroboscopic or Poincar�e
map [6]. A map is a sequence of values of the
variables taken at discrete times. The description
with maps is an alternative to that with a di�er-
ential equation, and no information is gained or
lost. There are, however, some immediate advan-
tages: the dimensionality of the problem is reduced
in (at least) one and the numerical simulations are
easier and faster. However, most of the times,
writing the map equation can be as di�cult as
solving the partial di�erential equation, unless the
physical system has some ``internal clock'' that
determines the position of the adequate discrete
times. In the case of passive mode-locked lasers,
that clock is provided by the cavity round trip time
and, in fact, it is easy to obtain recursive equations
linking the pulse variables in the (n� 1)-round trip
with the values taken at the n-round trip [7]. The
stability of periodical solutions (as the mode-
locking pulse train) is determined easily.

There are additional advantages when studying
unstable behaviors i.e. there is no theoretical lim-
itation on the acceptable pulse variation from one
round trip to the next, and the observed period-
doubled solutions [8±10] are trivially described
with maps. Descriptions of the Ti:sapphire laser
using maps have been developed to obtain the
values of laser operation as well as their stability
[7,11]. One of the predictions of this approach is
the existence of instabilities that a�ect some, but
not all of the pulse variables. This prediction has
been experimentally veri®ed recently [10].

In this paper, we go deeper into the mapÕs ap-
proach to the Ti:sapphire KLM laser. We obtain
not only the stability regions, but we also compute
the unstable eigenvectors at the points where sta-
bility is lost (bifurcation points). We also try to
describe the dynamics in the unstable region. In
the Section 2 we brie¯y review the mapÕs approach.
In Section 3 we describe the di�erent stable solu-
tions obtained. The regions of stability are dis-
played, as well as the unstable eigenvectors. In the
Section 4, the comparison with the observed dy-
namics is shown. In the Section 5, a simpli®ed
(one-dimensional) model is devised to get some
intuitive insight into the dynamics close to one of
the bifurcation points.

2. Approach to Ti:sapphire Kerr-lens mode-locked

lasers using maps

At this point, we would like to warn that we do
not ask our approach to provide a quantitative
accurate prediction, but a qualitative accurate one.
This is motivated by the extreme sensitivity of the
system to noise and initial conditions, which
makes an accurate numerical comparison hope-
less. This situation is, in fact, common to practi-
cally all nonlinear systems outside the stability
range. Instead, our hope is to unveil the most
general and structurally stable [6] properties of the
system. In simpler words, we do not care if the
mode-locking operation loses stability at a GVD
value of say ÿ2000 fs2 when it is predicted to do so
at ÿ1000 fs2; instead we do care if it loses stability
in the same way, for example, by period doubling
the beamÕs spot size while the other pulse variables
remain nearly constant. In consequence, at each
step that some decision on the model is to be
taken, we prefer the simplest choice that preserves
the essential points (a presumably essential point,
for example, is the functional dependence of
the nonlinear coe�cients on the pulse variables),
rather than a more accurate, but also more com-
plex, expression. Our goal here is not to design
laser cavities, but to obtain a description that is
as simple as possible, even at the cost of a poor
quantitative agreement with experimental data, to
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try to gain some nonnumerical insight into the
KLM laser dynamics.

We start by supposing that the electric ®eld
inside the mode-locking pulse, as a function of
the distance to the optical axis r and the time t, is
given by:

E�t� � E0 exp�ÿikr2=2q�exp�ÿikt2=2p� �1�
where p, q:

1

q
� n

R
ÿ i

nk
pr2

and
1

p
� Qÿ i

nk
ps2

�2�

are functions of the pulse variables: the spot radius
r, the beam curvature radius R, the pulse duration
s and the chirp Q (there is also a ®fth pulse vari-
able, the energy U, see later). As the pulse propa-
gates through an optical element or distance, the
p and q parameters change according to:

qout � �Aqin � B�=�Cqin � D� �3�
where {A . . . D} are the elements of a 2� 2 matrix
[12]. The same holds for p [13,14]. The matrix
describing the e�ect of several elements is obtained
by multiplying the matrices of each element. In
general, the propagation is fully described by 4� 4
matrices. In this way, it is easy to obtain the matrix
that describes the e�ect of a round trip inside the
laser cavity (Fig. 1). In the case of Ti:sapphire la-
sers, the Gaussian approximation (1) is valid for
pulses longer than 10 fs [14], and, under appro-
priate design conditions [13] (which usually hold
for Ti:sapphire laser cavities) the general 4� 4
round trip matrix can be split into two diagonal
blocks of 2� 2. Therefore, the e�ect of a round
trip on the parameters p, q can be described with
a matrix of the form:

M �
A B 0 0
C D 0 0
0 0 K I
0 0 J L

0BB@
1CCA �4�

The nonlinearity arises from the fact that the
matrix elements include terms (due to the self-
focusing and SPM in the laser rod) which are
functions of the pulse variables. These terms,
named here nonlinearities have the general form:

c � cc
U
sr4

�5�

for the matrix elements ABCD, and:

b � cb
U

r2s3
�6�

for the matrix elements IKJL. The constants cc, cb

are proportional to the nonlinear index of refrac-
tion of the Ti:sapphire. The complete expression of
the nonlinearities as functions of the pulseÕs pa-
rameters is not trivial [15]. Here we use the ``map
E'' de®nition, in the nomenclature of that refer-
ence. Its distinctive feature is that the nonlinearity
is assumed to be e�ective over the Rayleigh length,
rather than the entire rodÕs length, and that the
value of the RayleighÕs length is calculated for the
continuous wave (zero nonlinearity) case. This
``map'' is the one that reproduces best the stability
regions observed.

It is convenient to de®ne new variables: S �
rÿ2, T � sÿ2, q � Rÿ1. The expressions that link

Fig. 1. Schematic of the laser and the measuring setup. M1: 10%

output coupler. M2, M3: focusing mirrors �f � 50 mm�. M4:

rear mirror. R: Ti:sapphire rod �L � 4 mm�. P1, P2: pair of

prisms for GVD adjustment. The distances are (in mm): M1±M2

variable between 550 and 873, M3±M4 � 1060, M2±R � 51:5,

M3±R � 51:5, P1±P2 � 800. B1, B2: beam splitters, G: di�rac-

tion grating (1200 mmÿ1). DU: photodiode probing the total

pulse energy. DS: photodiode probing the spot size. DT: pho-

todiode probing the spectrum. The intensity pro®les of the pulse

shape and spectrum are sketched.
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the variable values at the (n� 1)-round trip with
the ones at the n-round trip are then:

Sn�1 � Sn

�A� Bqn�2 � �BkSn�2
�7a�

qn�1 �
�A� Bqn��C � Dqn� � BD�kSn�2

�A� Bqn�2 � �BkSn�2
�7b�

Tn�1 � Tn

�K � IQn�2 � ITn
p

ÿ �2
� Tn

Lÿ IQn�1

K � IQn
�7c�

Qn�1 �
�K � IQn��J � LQn� � IL Tn

p

ÿ �2

�K � IQn�2 � ITn
p

ÿ �2
�7d�

The equation for the energy U is found by ex-
pansion of the usual equation of gain saturation
for the mean values S� and U� [15] (note that there
is a typing error in that reference):

Un�1 � Un 1

�
ÿ 2

l
U �Sn � UnS�

Ds

� �
� 4

lÿ 1

l

�
�7e�

where l is the product of the small signal gain and
the single passage feedback factor due to linear
or passive losses (mirrorÕs re¯ectivities, scattering,
etc.), and Ds � 1:22 mJ cmÿ2 is the saturation en-
ergy ¯ux (i.e., the saturation energy multiplied by
the cavity round trip) for Ti:sapphire.

The matrix elements in Eqs. (7a)±(7e) include
the nonlinearities. It is convenient to express them
as a series expansion:

A � A0 � cAc � c0A0c � c2A�2�c � c02A0�2�c

� cc0A00�2�c � � � � �8a�

the same for B, C, D, and:

K � 1� 2db0 �8b�

I � 2d �8c�

J � 2dbb0 � b� b0 �8d�

L � 1� 2db �8e�
where 2d is the value negative of the GVD per
round trip. The coe�cients of the expansions (8a)

are only functions of the geometrical parameters.
The factors c and b are the nonlinearities, as de-
®ned by Eqs. (5) and (6), when the pulse crosses
the rod from M3 to M2 (i.e., towards the output
mirror). The factors c0 and b0 are the nonlinearities
when the pulse crosses the rod from M2 to M3.

The recursive relations (7a)±(7e) and (8a)±(8e)
are the iterative map describing the laser dynamics.
The operation values of the laser are obtained by
imposing that the variables at the (n� 1)-round
trip are equal to the ones at the n-round trip. These
are the ®xed points of the map. The {A . . . L} ele-
ments include the nonlinearities which, in turn,
are functions of the pulse variables. The general
problem is intractable analytically. It can be solved
in a closed way by assuming that only the ®rst
order in the nonlinearities is relevant. This is a
good approximation for pulses longer than 10 fs, a
limit we are anyway restricted because of the
Gaussian pulse approximation (1). In this range,
the values for the ®xed points agree with those
observed satisfactorily [7].

3. Fixed points' stability

The KLM Ti:sapphire laser is known to have
three modes of operation: continuous wave (here
named P0), mode locking of transform limited
pulses (here named P1) and mode locking of
chirped pulses (here named P2). These three modes
of operation correspond to three ®xed points of
the map (7a)±(7e). They have a direct physical
description.

We follow the transformations of the pulse as it
travels inside the cavity, starting at the output
mirror M1 (see Fig. 1). The solution P1 (Fig. 2a)
corresponds to a transform limited pulse at the
output. When the pulse traverses the rod, it ac-
quires positive chirp through SPM and GVD. The
pair of prisms introduce negative GVD, so that
the pulse almost arrives unchirped to M4. A new
passage through the prisms introduces additional
negative GVD. When the pulse returns to the rod,
it almost has the same duration than when it left
the rod, but with a negative sign chirp. The GVD
and SPM at the rod compensate the negative chirp
so that the pulse is transform limited when it leaves
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the rod towards M1, and the cycle is repeated. The
calculation of the average nonlinear e�ects in the
rod is di�cult for the general case [7,15] but, from
this simple picture, we see that, at the ®xed point
P1, the nonlinear contribution when the pulse
propagates towards M1 is approximately the same
that when it comes from M1 (i.e., b � b0 and
c � c0). This observation greatly simpli®es the
calculations.

The solution P2 (Fig. 2b) corresponds to a
chirped (positive) pulse at M1. When it traverses
the laser rod, it acquires more positive chirp and
becomes longer. After two passages through the
pair of prisms, it is negatively chirped enough to
become transform limited at the center of the laser
rod. Then it acquires some positive chirp in the
remnant half of the rod, so that it arrives positively
chirped at M1, and the cycle is repeated. Note that
inside the laser rod the pulse is (on average) much
shorter when it propagates towards M1 than when
it comes from M1, hence we can consider that
the nonlinearities are signi®cant when the pulse
propagates towards the exit mirror only, i.e., we
can approximate that b� b0 � b and c� c0 � c.
Besides, the space and time foci are almost coin-
cident, what allows a further simpli®cation [16].

The ®xed points can also be deduced from the
examination of the second expressions (7c). One of
the solutions is Tn � Tn�1 � 0, which corresponds
to P0 (the continuous wave solution with s!1).
Otherwise, we have another solution with Qn �
Qn�1 � Q� � 0, what implies K � L, b � b0, i.e.,
the P1 solution (nearly equal nonlinearities in both
directions and transform limited pulses). If Q� 6� 0
instead, 2IQ� � Lÿ K and then Q� � b0 ÿ b, which
is positive, i.e., the P2 solution. Then the pulse
durations for P1 and P2 can be obtained from
Eq. (7d) after some algebra.

In general, at the plane of the output mirror the
solution P2 has higher energy and longer pulses
than P1, and its region of stability is larger. The
slope of the curve pulse duration vs. GVD (which
is nearly a straight line in the usual GVD opera-
tion values) is twice larger for P2 than for P1.

One of the main advantages of the mapÕs ap-
proach is that the stability of the operation modes
of the laser is immediately calculated, by com-
puting the eigenvalues of the Jacobian of the map

Fig. 2. Pulse chirp inside the cavity. The arrows indicate the

propagation direction. The dashed line marks the plane of

calculus. (a) mode P1, (b) mode P2.
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at the point of interest [7,15]. The ®xed point is
stable if the ®ve eigenvalues have moduli smaller
than 1. This analysis is complementary of the
analysis of stability against satellite pulses.

In the following analysis we consider the sta-
bility regions and unstable eigenvectors only for
the solution P2, because it is the working point of
the laser used in our observations. Stability plots
for P0 and P1 can be found in Ref. [15]. The sta-
bility regions of P2 are displayed in Fig. 3 as a
function of two laser parameters: the negative
GVD introduced by the intracavity pair of prisms
and the crystal±output mirror distance named x.
These parameters are chosen on account of their
facility of access. The other laser parameters (dis-
tances, gain, etc.) are kept ®xed. Their values are
given in the ®gure captions, and they correspond
to the laser used in the observations.

In the laser applications or design, we are in-
terested in the determination of the regions of
stable mode-locking operation. Here, instead, we
are interested in the boundaries between the stable
and the unstable regions. These boundaries are
determined by the condition that at least one of the
eigenvalues becomes equal to 1 (in modulus). De-
pending on the values of the parameters, the in-
stability involves di�erent eigenvalues and di�erent

associated eigenvectors (i.e., the directions in
phase space, the ®xed point becomes unstable).
The calculated types of transitions, or bifurca-
tions, are summarized in the Table 1. In the Fig. 3,
these transitions are indicated with arrows (the
dotted lines indicate the approximate position of
the borders between transitions types). Transitions
are classi®ed in ``verticals'' if the unstable region is
reached by moving only the x distance, and
``horizontals'' if the unstable region is reached by
changing only the GVD.

We found that the unstable eigenvectors have
main components along one direction (type ``A'')
or at most two (type ``B'') directions (in the ®ve-

Fig. 3. Diagram of stability regions. There are two ``islands'' of stability in a surrounding region of instability. The arrows go from the

stable to the unstable region and in each case the type of transition in indicated. The dotted lines indicate the approximate position of

the borders between the transition types. Horizontal axis: prismsÕ GVD in fs2. Vertical axis: x in cm.

Table 1

The predicted and observed types of transitions stable±unstable

®xed point P2, classi®ed according to the main unstable direc-

tion of the respective eigenvector

Transition type Eigenvalue Main unstable

variable

1A �1 U

1B �1 q, S

2A ÿ1 S

2B ÿ1 S, U

3A c.c. S

3B c.c. S, U
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dimensional phase space) parallel to the physical
variables. For example, in the bifurcation type 1B,
the normalized eigenvector has components: 0.766
in q, 0.642 in S and 10ÿ9, 10ÿ10 and 10ÿ9 in Q, T
and U respectively. The low dimension of the un-
stable manifold is unexpected and it has important
practical consequences, that is: the existence of
``hidden'' instabilities that can a�ect some of the
pulse variables and are not detectable in the av-
eraged signals (as the autocorrelation of the pulse)
customarily used to test the mode-locking stability
[10].

4. Experiments

The Ti:sapphire laser used in the observations is
the seven-element design sketched in the Fig. 1.
The output power is 300 mW for a 5W pumping
(multiline Ar� laser). The minimum pulse duration
is 66 fs, with the spectrum centered in 820 nm. In
order to detect the selective nature of the insta-
bilities, we prepare the following setup. The laser
output goes through two beam splitters. One beam
is collected by the photodiode DU controlling the
total pulse energy. This photodiode has a large
area (1 cm2), so that the whole laser spot is always
collected. In order to detect pulse-to-pulse varia-
tions in the spot size, another beam is directed
towards the photodiode DS. It has an active region
much smaller (B0.2 mm) than the spot size at that
point (B2.5±5 mm), so that any pulse-to-pulse
variation in the pump size is observable. Since
there is no instrument capable of measuring pulse-
to-pulse variations in the pulse duration or chirp in
the fs range, we have to use an indirect method to
measure the temporal variables. We assume that
any modi®cation in the pulse duration or chirp
necessarily a�ects the pulse bandwidth (as it is the
case of solitons). Therefore, the third beam is
dispersed by a di�raction grating at near graz-
ing incidence and a photodiode DT is placed near
one of the spectrumÕs edges, where the sensitivity
to bandwidth ¯uctuations is presumably larger.
We use the ®rst di�racted order and place DT

(B0.2 mm) at 790 mm from the grating. We esti-
mate that this setup has a spectral resolution of
0.25 nm.

In order to detect pulse-to-pulse variations
con®dently, the output of the photodiodes is re-
corded in the single sweep mode of a 400 MHz
storage oscilloscope. In this way, we are able to
detect variations in one of the pulse variables (for
example, the spot size) even if the other pulse
variables (for example, the energy) remain con-
stant.

Starting from a regime of stable mode locking,
we enter an unstable region by increasing (de-
creasing the absolute value) the (negative) prisms'
GVD for a ®xed value of x. This is done by dis-
placement of the pair of prisms (Fig. 1) along their
axis of symmetry. We detect the unstable variables
by inspection of the three photodiodes' traces. We
repeat the procedure for di�erent values of x, and
di�erent types of instabilities, each of them in-
volving di�erent variables, are observed. We ob-
served that the type of instability is the same inside
a relatively small (see Fig. 3) range of values of x.

We study in detail the four horizontal transi-
tions. The vertical transitions access results unre-
liable because, when the x parameter is varied (i.e.:
when the output mirror is displaced, even if it is
mounted on a translation stage) the mode locking
extinguishes. Some realignment is then required,
altering so much the conditions that they become
di�cult to control. The number, relative position
and type of all the observed transitions coincide
with the predicted ones. In the following, we detail
some selected illustrative examples.

With the output mirror in the farthest posi-
tion we are able to obtain stable mode locking
�x � 86:5 cm�, the model predicts the 2A type
transition as the GVD is increased, which should
be observed as a period-doubling signal in the spot
size, with negligible change in the other variables.
This is precisely what is observed in Fig. 4a (period
doubling in the spot size) and Fig. 4b (stable mode
locking in the spectrum and hence in the pulse
duration and the energy). We scan DT through
the spectrum, and at all positions the mode lock-
ing is constant, while DS shows a stable period-
doubled behavior. This observation is a striking
con®rmation of the predictions of the mapÕs ap-
proach. Going deeper into the unstable region,
Fig. 4c shows a tangent-like bifurcation. Note the
small piece of almost stable mode locking at the
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beginning of the trace, and the nonperiodical
wandering of the pulse height.

Then we reduce the value of x. After a region
where no stable mode locking can be obtained (in
agreement with Fig. 3), a transition 1A is expected
for x � 72 cm. The instability here involves only
the energy. A period three in the energy appears
(Fig. 4d) while the other variables show stable
mode locking. Going farther into the unstable re-
gion is observed a possibly chaotic output (period
seven or more) in the energy (Fig. 4e) while the
other variables still remain stable. It is worth
mentioning that chaotic outputs are rare and dif-
®cult to record, for they destabilize to Q-switching
(Fig. 4f) easily.

For x � 61 cm the transition is predicted to be
1B, with the unstable direction having main com-
ponents in the spot size and curvature variables.
In agreement with this prediction, we ®nd period
doubling in the spot size (no change in the other
probed variables). Since in this case the eigen-
values cross �1 in two variables, it is not obvious
what behavior would be found. Numerical simu-
lations of the complete (®ve variables) map show
period-doubling behavior in the spot size, in
agreement with the observations.

A word of warning is necessary in connection
with the observations. It is assumed that the
transversal laser mode is TEM00, what must be
carefully controlled at each step. Otherwise, one

Fig. 4. Single-sweep traces showing: (a) the period doubling in spot size at x � 86:5 cm, (b) stable mode locking in the spectrum si-

multaneous with Fig. 3a, (c) a apparent tangent bifurcation in the spot size at x � 86:5 cm, (d) period three in the spot size at x � 72

cm, (e) period seven or chaos in the energy at x � 72 cm, (f) mode-locking and Q-switch near the position of 3e, Fig. 4a±d reproduced

from Ref. [10].
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may be confused by similar in appearance, but
dynamically di�erent spatio-temporal e�ects [8,9].
In order to ensure TEM00 operation, it is necessary
to adjust the matching between the pumping laser
beam and the Ti:sapphire oscillating mode. As the
Ar� pumping laser mode presents thermal drifts,
the matching must be periodically corrected by
adjusting the position of the focusing lens. A too
loosely focused beam allows the oscillation of
transversal modes and it is observed to favor the
appearance of satellite pulses. On the other hand, a
too tight focusing inhibits the instabilities involv-
ing the spot size variable. In any case, a tight fo-
cusing makes our approximation of neglecting
apertures untenable. We have taken care that each
series of measurements has been performed with
TEM00 mode and without the necessity of adjust-
ing the focusing lens.

In summary, the theoretical predictions are
veri®ed, in the qualitative mode the approach is
intended for. There are two experimental obser-
vations that deserve a special comment here. One
is the existence of Q-switching instabilities in the
close neighborhood of the chaotic regions. The
other one is the well-known satellite pulse insta-
bilities. Both phenomena can be included in the
mapÕs description by enlarging the map. In fact,
the map (7a)±(7e) involves only the pulse variables,
not the active medium variables. In particular, the
saturated gain is not considered a dynamical
variable, what is a strong simpli®cation. This is
done in order to obtain a description as simple as
possible but, in view of the observed dynamics, it
seems advisable to review that decision. On the
other hand, adding another dimension implies
calculating 36 partial derivatives and solving a
sixth order polynomial for each point in the sta-
ble±unstable boundary. Fortunately, the experi-
ments also indicate that the temporal variables
play a secondary role i.e., they do not become
unstable alone (see the Table 1) at least for the
pulse duration range observed. So, to consider the
pulse duration and chirp as slave variables results
in a feasible simpli®cation. In this way, a four-
dimensional description (including the energy, the
spatial variables and the gain) appears as a good
way to try to improve the description without
complicating the calculations.

5. One-dimensional map for the bifurcation 2A

Despite the many simpli®cations made, the de-
scription is so complex that it still heavily relies on
numerical results. At a transition, however, only
one or two variables are signi®cant. We study the
2A transition at x � 86:5 cm in more detail. We
choose this transition because it is the only one (in
the Table 1) that involves one single physical
variable and an eigenvalue of ÿ1, which is the case
known to be advantageously described with maps.
Due to the dominant role playing by the S variable
(the unstable eigenvector is practically collinear
with S), we build a one-variable map to attempt a
simpler description of the dynamics at this point.

The other variables remain almost stable but
they cannot be ignored. The variables U and q are
the most relevant ones, so that we replace their
values in the map by their expressions as functions
of S. The variables Q and T, which variations are
predicted to be even smaller, are replaced by their
values at the ®xed point. In this way (see the Ap-
pendix A) we obtain a one-variable map:

yn�1 � yn

�y2
nab� c�2 � �ynd � y3

nae�2 �9�

where yn � Sn=S�. This map provides the value of
the (inverse) beam area after one round trip, given
the initial value of the beam area, the cavity design
and the self-focusing parameter.

A nontrivial result is that the function (9) has a
(single) extremum, i.e., there is one value of the
beam area so that, in the next round trip, the area
is minimal. As a consequence of the existence of an
extremum, the map (11) is not invertible: there are,
in general, two values of beam area that converge
at the same value in the next round trip. This can
be understood in the following way. A given value
A of beam area can be reached, from the previous
round trip, in two di�erent ways. First, by ``nor-
mal'' propagation starting with some area Al.
Second, starting with a smaller area Anl, that in-
duces an intensity-dependent lens. For su�cient
nonlinear strength, there is always some value Anl

that reaches A in the next round trip. It is not
surprising that the extremum becomes more acute
as the nonlinearity increases. Note that in the
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absence of nonlinearity the beam area evolution is
invertible (because the optical paths are invertible).
The ``non invertible'' feature is at the basis of the
existence of chaotic dynamics [17].

The stability of the ®xed point is determined by
the slope of the map at the ®xed point (unstable if
the derivative is larger than 1 in modulus). We
insert the geometrical values of our laser and use
the value of the net GVD (which determines the
pulse duration) as a free parameter. As the GVD
approaches to zero the pulse duration decreases
and the nonlinearity increases. The slope at the
®xed point at ®rst increases almost up to the value
�1 (but without reaching it), and then it decreases
abruptly, crossing the value ÿ1. This implies a
period-doubling bifurcation, in agreement with the
observation. This is easier to see by expanding Eq.
(9) up to ®rst order in the nonlinearity:

yn�1 � 4Byn
10ade� 3d2

8ade� 2d2

�
ÿ yn

�
�10�

where:

B � 4ade� d2

2�2ade� d2� �11�

The Eq. (10) is the logistic map for the variable y
and the parameter B (which is a function of the net
GVD per round trip). It is well known [17] that the
logistic map exhibits a road to chaos via period
doubling. An inverse cascade of period doublings,
a period three stable window inside the chaotic
region, and tangent bifurcations are also charac-
teristic of this map (and are observed in our setup,
see the Fig. 4). In particular, letting Bm the values
of the parameter B at which the bifurcation from
the 2m to the 2m�1 cycle occurs, the bifurcations
accumulate in such a way that:

dm � Bm ÿ Bmÿ1

Bm�1 ÿ Bm
�12�

converges, at the limit m!1, to dm � 4:6692:::, a
value which is called the FeigenbaumÕs constant
(note: do not confuse dm with the net GVD per
round trip parameter d). This value is the same for
all maps with quadratic extrema, regardless of their
general shape. It is said then that all maps with a
quadratic extremum belong to the same univer-

sality class [18]. The value of the limit (12) was
found to be a function of the power degree of the
extremum [19]. If a map of unknown features is
given, the evaluation of the limit (12) is a good
indicator that the unknown map belongs to the
logistic mapÕs universality class. In the case that we
are studying here, the map (10) is obtained after a
series of simpli®cations. The most uncertain one is
the way the reduction of the dimensionality is
performed. In order to estimate the error made, we
calculate the bifurcationsÕ diagram of the simpli®ed
map (10) (Fig. 5a) and of the complete ®ve vari-
ables map (7a)±(7e) and (8a)±(8e), for the variable

Fig. 5. (a) Diagram of bifurcations for the S variable (nor-

malized with the ®xed point value) calculated with the ap-

proximate one-dimensional map (10). (b) The same as (a),

calculated with the complete (®ve-dimensional) map.
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S (Fig. 5b) as a function of the net GVD in the
cavity.

The diagram of Fig. 5a is, of course, the one of
a logistic map (note the characteristic period three
stable window near ±5100 fs2). The complete ®ve
variables map also displays a road to chaos via
period doubling. The bifurcation points are
slightly displaced (what is unimportant) and the
period three stable window is absent. It is con-
ceivable that the variations of the values of the
other four variables, even if they are small, are
capable to blur the period three stable window,
without further consequences. But, what is more
serious, the limit (12) converges at 4.980..., what
indicates that the complete map does not belong to
the logistic mapÕs universality class. In other
words, the simpli®ed map (10) is a good approxi-
mation of the complete map only for the ®rst few
bifurcations. Well inside the chaotic region, the
maps are essentially di�erent. The simpli®ed map
(10) cannot be used con®dently to describe the
dynamics in the chaotic region. Anyway, as it was
discussed before, it is presumable that the chaotic
region cannot be described con®dently even by the
complete ®ve variables map, for it is experimen-
tally observed that chaotic signals tend to desta-
bilize to Q-switching (what requires considering
the gain as a sixth variable).

6. Summary

In this paper we have studied the KLM
Ti:sapphire laser, not as a tool for observing ul-
trafast phenomena, but as an object of dynamical
interest in itself. We have presented the results of
an approach using a ®ve variables iterative map. In
this way, we have continued the research on this
line initiated some time ago [7,15] and we have also
detailed the way some theoretical predictions have
been obtained, which have been experimentally
con®rmed recently [10]. The mapÕs approach al-
lows to explain the existence of the three observed
operation modes of the Ti:sapphire laser easily.
Not only the stability boundaries in parameterÕs
space, but also the unstable eigenvectors, which
give the main unstable directions in phase space,
have been calculated and experimentally con-

®rmed in a qualitative way. The resultant diagram
results in a simple and qualitatively accurate pic-
ture of how the system becomes unstable, and is
useful to detect hidden instabilities producing un-
desirable e�ects on almost any application.

Finally, we have studied in detail the instability
named 2A. We have tried to obtain a simpler de-
scription, by building an approximate one-dimen-
sional map for the only observed unstable variable
S (the inverse of the spot area). The obtained map
has resulted in the logistic map. This reduction of
variables has allowed the intuitive understanding
of the physics of the period-doubling destabiliza-
tion mechanism and the approximate calculation
of the ®rst bifurcations. However, we have found
that the complete and the reduced maps belong
to di�erent universality classes, and therefore, that
the reduced map not necessarily provides an ac-
ceptable description of the dynamics in the chaotic
region.

In conclusion, we have veri®ed that the mapÕs
approach provides a satisfactory qualitative de-
scription of the Ti:sapphire laser at the instability
points. Future steps on this line are: the addition
of the population inversion as a dynamical vari-
able in order to include the analysis of stability
against satellite pulses and to describe the dy-
namics in the chaotic region (some of this has been
done, from a di�erent point of view, in Ref. [20]);
and go deeper in the theoretical and experimental
search of the reason of the ``inessential'' role
played by the temporal variables observed (for
pulses not shorter than 30 fs at least).
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Appendix A. Map equation for the variable S

We replace:

A � A0 � cAc �A:1�

B � B0 � cBc �A:2�
in the expression (7a) and we substitute the ®xed
point for the energy variable in the expression of
the nonlinearity (5) with the expression:

U � � F
S0

�1ÿ H� �A:3�

where S0 is the value in the ®xed point P0. We
de®ne:

F � Ds�Ck1=2 ÿ 1� �A:4�

H � F 2cccbScp2

d� pp2cbF
�A:5�

where Sc is an algebraic function of the geometri-
cal parameters of the cavity and p is a corrective
factor that takes into account the ®nite ampli®erÕs
bandwidth [7]. The equation for the variable S
takes the form:

Sn�1 � Sn

�a0b0S2
n � c0�2 � �d 0Sn � a0e0S3

n �2
�A:6�

where:

a0 � Cc
F
S�

d
pCbF � p

�A:7�

b0 � Ac � Bcn q0

�
� q0

Sc

H
S�

�
�A:8�

c0 � A0 � B0n q0

�
� q0

Sc

H
S�

�
�A:9�

d 0 � B0n
k
p

�A:10�

e0 � Bcn
k
p

�A:11�
q0 and qc are algebraic functions of the geometri-
cal parameters of the cavity, n is the refraction
index of the rod. We scale Eq. (A.6) with the ex-
pression of the S variable at the ®xed point:

yn�1 � Sn�1

S�
; a � a0S�2; etc: �A:12�

and the map (9) is obtained. The parameter a de-
pends of the GVD value d, while the others pa-
rameters are only functions of the geometric
distances. The slope of the map as a function of a
is:

y0n�1 �
D�yn� ÿ ynD0�yn�
�D�yn��2

�A:13�

where D�yn� is the denominator in Eq. (9). In the
®xed point yn � 1 and D�yn� � 1 so that:

y0n�1 � 1ÿ D0�1� �A:14�
Inserting now the values of the geometrical pa-
rameters, we see that as the parameter a grows, the
slope of the map decreases being y0n�1 � ÿ1 for
a � 0:7156.
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