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Abstract

We develop the WKB expansion to relate quantum �eld theory variables with those describ-
ing macroscopical matter. We �nd that, up to the �rst quantum correction, free scalar �elds
correspond to perfect uids with pressure. We also �nd the law of motion for the associated
particles which takes into account deviations from the classical trajectories, showing that they
do not follow unaccelerated straight line trajectories. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The aim of this article is to �nd the macroscopical expression of the energy–
momentum tensor of a free scalar �eld derived from quantum �eld theory (QFT)
up to the �rst quantum order in the WKB expansion, and to study its macroscopi-
cal behavior. In the previous works we established the relation among QFT variables
— amplitudes and phases — with macroscopic uid variables — proper energy and
four-velocity — but considering only the lowest order in ˝ in the scheme of general
curved space-times, in Riemannian and non-Riemannian geometries. In both cases, free
scalar matter corresponds to perfect uids without pressure following geodesics [1,2].
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In fact, this statement also holds for at Minkowski space-time where geodesics must
be understood as straight non-accelerated trajectories (inertial principle). In the present
article we prove that up to the following order, free scalar �elds correspond to perfect
uids with pressure. We also �nd the corresponding law of motion which shows dis-
persions from inertial motion. Up to our knowledge, these are new results which give
a deeper insight in the relation between second quantization and standard description
of macroscopical matter. We believe that these results contribute to place QFT as the
ultimate description of matter structure.
The paper is organized as follows: in Section 2 we expand the energy–momentum

tensor of the free scalar �eld. In Section 3, we �nd the relation between microscopical
and macroscopical variables and prove that free scalar matter must be represented
by a perfect uid with pressure when quantum corrections are taken into account. In
Section 4 we �nd the equation which relates the WKB amplitudes that are involved in
the corresponding de�nitions of proper energy densities and pressures; this section is
also devoted to �nd the �rst quantum correction to the classical equations of motion.
Finally, in Section 5, we make a summary of our results.

2. The WKB expansion of the energy–momentum tensor

In order to study the relationship between quantum and classical dynamics, we start
considering the complex wave function 	 in terms of the path integral formalism. In
the �rst quantization scheme, the wave function of the particle may be expressed as

	(x0; xf) = N
∫
eiScl[x]=˝Dx ; (1)

where Scl[x] is the classical action which is a functional of the trajectory x(t) depending
on the initial and �nal �xed data (x0; xf) and N is a normalization factor. If Scl is
the action of a non-relativistic particle, then 	 corresponds to a wave function which
satis�es the Schroedinger equation [3]. On the other hand, when we work in the scheme
of second quantization, 	 must be taken to be a �eld satisfying the relativistic �eld
equation obtained for the corresponding representation of the Lorentz group. Field
equations arise minimizing action S[	] with respect to the �eld:

�S[	]
�	

= 0 : (2)

The expansion of Eq. (1) in powers of ˝ reads

	 = NeiScl[xcl]=˝
∫
e
∫
1=2 �Scl[x]=�x1�x2Dx1Dx2+···Dx =

∑
n=0

(−i˝)n	neiScl=˝ (3)

with xcl the classical trajectory. This expression is known as the WKB expansion. For
any group representation, this expansion means that:

S[	] = Scl[x] + O(˝) : (4)
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So, the ˝= 0 limit of S[	] in a �rst quantization scheme leads to Scl[x], in the same
way as the ˝=0 limit of the e�ective action conduces, in a second quantization scheme,
to S[	].
We are interested in analyzing the case of a complex scalar �eld �. Its action reads

S[	] =
∫

L(�; @�) d4x =
∫
1
2
(@��@��∗ +

m2

˝2 ��
∗) d4x : (5)

The corresponding energy-momentum tensor is

T�� ≡ @L
@@��

@��+
@L
@@��∗ @

��∗ −L��� ; (6)

which conduces to

T�� = @(��@�)�∗ − 1
2
���@��@��∗ − 1

2
���
m2

˝2 ��
∗ : (7)

The WKB expansion (3) for the scalar �eld reads

�=
∑
n=0

(−i˝)n’neiScl =˝ : (8)

Now, using expansion (8) in expression (7), and after a straightforward computation,
we �nd that up to order 1=˝, the energy momentum tensor can be written as

T�� =
1
˝2 @

�S@�S’0’∗
0 +

1
˝{@

�S Im(’0@�’∗
0)− 2@�S@�S Im(’0’∗

1)

+ ���[(@�S@�S) Im(’0’∗
1) + (@

�S) Im(’0@�’∗
0) + m

2 Im(’0’∗
1)]} ; (9)

where Scl = S, and Im means “imaginary part”. It is easy to verify that this symmetric
quantity is conserved, i.e., satis�es

@�T�� = 0 : (10)

3. The scalar �eld as a perfect uid

Let us analyze the ˝−2 order (the �rst term) of expression (9). We may write the
corresponding term as

T (1=˝
2)�� = �̂u�u� ; (11)

where

�̂=
m2

˝2 ’0’
∗
0 ; (12)

is the proper energy and u� is the time-like vector orthogonal to the hypersurface of
constant phase S, where @�S=P� and S is understood as the Hamilton principal func-
tion. In the free case, canonical momentum P� coincides with the ordinary momentum
p�, i.e.,

P� = p� = mu� : (13)
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Four-velocity u� satis�es u�u� = −1. Relation (11) shows that T (1=˝2)�� is nothing
but the energy-momentum tensor of a dust.
Using (13) in (9) we are able to write the energy–momentum tensor showing ex-

plicitly the four-velocity components:

T�� =
m2

˝2 ’0’
∗
0u
�u� − 2m˝ u

(�Im(’0@�)’∗
0)− 2

m2

˝ u
�u�Im(’0’∗

1)

− m˝ u
�Im(@�’0 · ’∗

0)�
�� : (14)

From (14) we can see that at a point where the observer is at rest (proper observer),
i.e.: ũ � = (−1; 0; 0; 0), the components of T��; which we denote as T̃ ��, are

T̃
00
=
m2

˝2 ’0’
∗
0 −

m
˝ [2m Im(’0’

∗
1) + Im(’0’̇

∗
0)] ; (15)

T̃
0i
= 0 ; (16)

T̃
ij
=
m
˝ Im(’0’̇

∗
0)�

ij : (17)

(with i; j; : : : ;=1; 2; 3). This will be useful in order to �nd the general expression in
any Lorentzian frame.
Once we have written the components of T��, we see that it is possible to de�ne

�=
m2

˝2 ’0’
∗
0 −

m
˝ [2m Im(’0’

∗
1) + Im(’0’̇

∗
0)] ≡ �̂− �� ; (18)

p=
m
˝ Im(’0’̇

∗
0) ; (19)

which are the proper energy density and the pressure, respectively. Here · ≡ d=d�, �
being the proper time, �̂ is given by (12) while �� is ��=m=˝[2m Im(’0’∗

1)+Im(’0’̇
∗
0)].

So, the components of T̃
��
read

T̃
00
= � ; (20)

T̃
0i
= 0 ; (21)

T̃
ij
= p�ij ; (22)

Expressions (20)–(22) represent the uid that a proper observer would describe as
isotropic, i.e., a perfect uid.
Now we want to generalize expressions (20)–(22) from this system to any Lorentz

frame. To do this we analyze how T�� may be ‘measured ’ in a reference frame at
rest in the laboratory supposing that the uid appears to be moving at each space-time
point with velocity vi. This velocity is related to the spatial components of the four
velocity ui of the uid via

vi = −1 · ui;
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where = (1− �v2=c2)−1=2 is the boost that transforms Lorentz reference frames among
them. Applying this boost to components (20)–(22) of T��, we obtain

T 00 = (�+ p �v2)2 ; (23)

T 0i = (�+ p)vi2 ; (24)

T ij = p�ij + (�+ p)vivj2 (25)

with � and p given by (18) and (19), respectively.
Combining (23)–(25), we see that in any Lorentz frame, expression (14) reads

T�� = �u�u� + p(��� + u�u�) ; (26)

i.e.: a perfect uid. In conclusion: expression (9) for T�� which is given by QFT, cor-
responds to a perfect uid that can be written only in terms of macroscopical variables.
In order to connect proper energy density and pressure we would only need an

equation of state. The structure of this equation depends on the properties of the system.
In the particular case in which temperature is an independent variable, pressure is a
function of �0 and �:

p= p(�0; �) ; (27)

where

�= �0(1 +�) ; (28)

�0 being the proper mass density and the product �0:�, the internal energy density.

4. Relation between the WKB amplitudes and equations of motion

In QFT, �eld equations are obtained minimizing the e�ective action with respect to
the �eld (Eq. (2)). For the scalar representation �, this conduces to the Klein–Gordon
equation:

�+
m2

˝2 �= 0 ; (29)

which in terms of the WKB expansion of the �eld, reads∑
n

[˝2 �n + i˝(2@��n@�S + �n S)− �n@�S@�S)(−i˝)n]

=−
∑
n

m2�n(−i˝)n : (30)

Assuming that (30) must be satis�ed order by order in ˝, we obtain the di�erential
equations which are needed to describe the perfect uid via Eqs. (18) and (19):

n= 0; @�S@�S + m2 = 0 ; (31)

n= 1; 2i@��0@�S + i�0 S + �1( S + m2) = 0 : (32)
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Eq. (31) provides no new information: it is trivially satis�ed because @�S=P�=mu�

and u�u� =−1. Eq. (32) may be written as
2u�@��0 + (�0 − i�1)@�u� − im�1 = 0 (33)

and relates the �rst two amplitudes of the WKB expansion of the �eld.
In order to �nd the equations of motion corresponding to scalar particles, we compute

Eq. (10) using (19) and obtain

@�P + @�[(�+ P)u�u�] = 0 : (34)

Keeping only those equations corresponding to the spatial components of the velocity
�v, we �nd the following vectorial equation:

(�+ P) ·
[
@ �v
@t
+ ( �v · �∇) �v

]
=−−2

[
�∇P + �v

@P
@t

]
; (35)

where we have used the fact that ui = vi · u0. In Eq. (35), di�erent orders in 1=˝n are
involved due to the corresponding expressions of � and P (see (18) and (19)). So, for
the �rst two orders, we obtain two equalities. Up to the 1=˝2 (main) contribution we
have

@ �v
@t
+ ( �v · �∇) �v= 0 : (36)

Taking into account the 1=˝ correction, Eq. (36) becomes

(�̂− ��+ P) ·
[
@ �v
@t
+ ( �v · �∇) �v

]
=−−2

[
�∇P + �v

@P
@t

]
: (37)

The �rst equation tells us that, at the highest order in the WKB expansion, the
free massive scalar �eld is represented by particles with null acceleration, i.e., their
trajectories are straight lines. This is the classical limit of the approach and represents
the inertial principle. But we can see from Eq. (37) that quantum corrections to the
straight line appear at the next order. That is to say: free matter follows trajectories
that deviate from straight lines and from non-accelerated uniform motion.
We want to recall that Eq. (37) may be considered the relativistic second law of

Newton: F� = m du�=d�, where quantum corrections to � and the appearance of P
(expressions (18) and (19), respectively), are responsible for deviations from straight
lines with no need of external forces nor of quantum potentials (as, for example, in
the Bohm’s scheme; see Ref. [4]). Eq. (37) reveals the nature of the internal structure
of matter and how it acts in order to produce quantum e�ects.

5. Summary

We have developed the WKB expansion of the scalar �eld up to the �rst quantum
correction and studied the relations between QFT description of matter and macroscopic
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uids. Our aim was to �nd the behaviour of this matter in a macroscopical picture,
asumming quantum corrections. Our main results are the following:
• at the �rst quantum approximation, free scalar �elds correspond to perfect uids with
pressure,

• the corresponding law of motion implies deviations from straight unaccelerated
motion.
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