

Electrochemistry Communications 2 (2000) 663-670

www.elsevier.nl/locate/elecom

Electrochemistry in supercritical trifluoromethane

Darío L. Goldfarb^{a,1}, Horacio R. Corti^{a,b,*}

^a Comisión Nacional de Energía Atómica, Unidad de Actividad Química, Av. Gral. Paz 1499 (1650) San Martín, Buenos Aires, Argentina ^b Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, Calle 78 No. 3901, (1653) Villa Ballester, Buenos Aires, Argentina

Received 20 June 2000; received in revised form 7 July 2000; accepted 10 July 2000

Abstract

The use of trifluoromethane (CHF₃) as a solvent for electrochemical studies in supercritical conditions is analyzed. The dielectric and electrical conductivity of supercritical CHF₃ was measured at 323.15 K at several densities. The solubility and electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF₆) and decamethylferrocenium hexafluorophosphate (Fe(Cp^{*})₂PF₆) in supercritical CHF₃ were measured at 323.15 K as a function of density. It was found that, in spite of the high ion pair formation of the TBAPF₆ in the supercritical solvent, this salt is a suitable supporting electrolyte, having a conductivity much higher than that reported for other electrolytes in low dielectric constant supercritical solvents. The limiting currents measured for decamethylferrocene (Fe(Cp^{*})₂) and decamethylferrocenium hexafluorophosphate (Fe(Cp^{*})₂PF₆) at a platinum microdisc in supercritical CHF₃ at several densities and 323.15 K, show the feasibility of using the proposed supercritical system as a model for electrochemical studies in variable density media. The effect of concentration of the supporting electrolyte on the limiting current at the microelectrode is qualitatively discussed in terms of a recent theory which takes into account the ion association of the supporting and electroactive electrolytes. © 2000 Published by Elsevier Science S.A.

Keywords: Supercritical trifluoromethane; Electrical conductivity; Decamethylferrocenium hexafluorophosphate; Tetrabutylammonium hexafluorophosphate; Limiting current; Microelectrodes

1. Introduction

There is an increasing interest in the study of transport processes in supercritical solvents, since these fluids exhibit high mass transfer coefficients and they are potentially useful for several industrial applications.

One of the simplest electrochemical techniques to study diffusion coefficients in fluids is linear sweep voltammetry. The voltammetric measurement of the limiting current using microelectrodes seems adequate in supercritical fluids because the low dielectric constant of these fluids severely limit the solubility of salts. The technique yields reliable results only if microelectrodes are used due to the high resistivity of the supercritical solution.

¹ Present address: Department of Chemical Engineering, University of Wisconsin, Madison, USA.

Carbon dioxide is the most commonly used supercritical solvent. Niehaus et al. [1] studied the oxidation of ferrocene using tetrahexylammonium hexafluorophosphate (THAPF₆) as supporting electrolyte. THAPF₆ reduced the ohmic distortion of the voltammograms, but its concentration was so high that liquid–liquid phase separation was observed. Only the addition of a small amount of water allowed the authors to perform reliable electrochemistry experiments. However, the mixture CO_2-H_2O is quite complex as a solvent to analyze transport properties.

More recently, Abbot and Harper [2] used a hydrophobic salt, tetradecylammonium tetraphenylborate (TDABPh₄) as supporting electrolyte in supercritical CO₂. The specific conductivity of this solution is very low in the range of pressure studied (5–30 MPa) and the voltammograms showed the typical distortion of highly resistive media. In addition, the lack of information on the solubility and aggregation state of the long chained molecules introduced some incertainity on the ability of supercritical CO₂ to truly solvate this salt without micelle formation.

Olsen and Tallman [3,4] studied the electrochemistry of ferrocene and cobaltocenium hexafluorophosphate in

^{*} Corresponding author. Tel: +54-11-4754-7174; fax: +54-11-4754-7121.

E-mail address: hrcorti@cnea.gov.ar (H.R. Corti).

chlorodifluoromethane (ClF₂CH), a solvent with critical parameters $T_c = 369.2$ K and $p_c = 4.97$ MPa, having a good solubility for tetrabutylammonium tetrafluoroborate (TBABF₄). The concentration of the solutions reached 0.012 mol dm⁻³ in the 10–24 MPa pressure range (densities between 0.81 and 1.02 g cm⁻³). The voltammograms showed almost no ohmic distortion and can be considered as the first electrochemical experiments carried out in a supercritical fluid of low dielectric constant.

Abbott et. al. [5] used 1,1,1,2-tetrafluoroethane ($\varepsilon_c = 3.5$) and difluoromethane ($\varepsilon_c = 4.9$) as solvents of higher relative permittivities at the critical point compared to ClF₂CH ($\varepsilon_c = 2.31$). With TBAClO₄ as supporting electrolyte these solvents can be used to study electrochemical process at large positive overpotentials, but no transport properties of ions have been reported in these solvents yet.

It should be noted that Bard and coworkers have studied several supercritical fluids of high dielectric constant, such as NH_3 [6,7], SO_2 [8], H_2O [9,10] and CH_3CN [11,12] obtaining diffusion coefficients of several solutes at different densities using cyclic voltammetry, cronoammperometry and cronocoulommetry.

The advantage of choosing CFCs or HFCs as solvents for electrochemical experiments with supercritical fluids rely on the conjunction of several features: mild critical parameters (P_c , T_c) when compared to H₂O and CH₃CN, which make them easier to operate experimentally; potential window larger than SO₂, NH₃ and H₂O (due to its inertness towards oxidation/reduction), thus extending the variety of solutes available for studies in such solvents, and the possibility of dissolving significant amounts of salts composed of bulky ions of low charge/radius ratio due to its non-zero dipolar moment. The most popular supercritical fluid, CO_2 , is known for its poor solvent power towards polar and ionic compounds. A polar HFC like CHF₃ appears as a valuable fluid to study transport properties of ions in variable-density solvents of low dielectric constant.

Electrochemical experiments with charged redox species in organic solvents have been traditionally performed without considering the possibility of ion association to form ion pairs in those cases where the dielectric constant of the solvent is low enough to stabilize the free ion. In this work, information of transport properties of tetrabutylammonium hexafluorophosphate (TBAPF₆, supporting electrolyte) and decamethylferrocenium hexafluorophosphate (Fe(Cp^{*})₂PF₆, electroactive species) in supercritical CHF₃ was obtained using electrical conductance and linear sweep voltammetry with microelectrodes.

2. Experimental

Trifluoromethane (K.H.Muller Laboratories, > 99%) was stored in a stainless steel cylinder (200 cm³) containing KOH in order to eliminate traces of water. After used CHF₃ was stored in a similar cylinder and it was recovered by distillation at -78° C (acetone–CO₂ mixture). The CHF₃ was received in a cylinder containing KOH, immersed in liquid nitrogen.

TBAPF₆ (Fluka, electrochemical grade) was used as received. $Fe(Cp^*)_2 PF_6$ was synthesized and purified following a literature procedure [13]. The solid was dried at 110°C during 12 h and was used without recrystallization. All solids were stored in a vacuum dessicator.

Fig. 1. Block diagram of the experimental setup for the solubility measurements (see text for the references).

Fig. 2. Block diagram of the experimental setup for dielectric constant and electrical conductivity measurements (see text for references)

The experimental setup employed to measure the solubility of TBAPF₆ and Fe(Cp *)₂PF₆ in CHF₃ is shown in Fig. 1. The sampling step is illustrated in A, where the stainless steel equilibration cell (1) containing an excess of the solid salt and the six ports valve (7) were thermostatized at 323 K. Once vacuum is made in the system, CHF₃ (2a) is filled into the cell by means of a high pressure manual pump (3). A pressure transducer (9) and a gauge manometer (10) were used to control the pressure of the system. The equilibrium is reached after several hours under stirring (4). Afterwards, water (11a) is pumped by the HPLC pump (5) through the loop (6) containing mercury, which acts as a piston to displace the content of the cell through a sampling loop connected to the six port valve. A micrometric valve (8) is used to vent the fluid at a very low flow rate (0.05 cm^3/min). The CHF₃ is condensed in the cylinder (2b) immersed in liquid nitrogen.

After a considerable volume of solution has been flushed through the sampling loop, it is insulated by switching the six port valve and the configuration of the system is changed to that indicated in B. The salt deposited on the line is removed by circulating 1,2-dichloroethane (11b) through the six port valve. This liquid is dismissed and the six port valve is switched to the original position, connecting the sampling loop to the rest of the line. The content of the sampling loop is pushed with 1,2-dichloroethane through the valve (8) and stored in a glass vessel (12) having a total volume of 10 cm³.

The analytical determination of the solubility was performed by placing the sample in contact with an aqueous solution of methylene blue. The absorbance of the reaction product at 657 nm was used to calculate the analytical concentration of the hexafluorophosphate anion in conjunction with a calibration curve

The high pressure cell used for the conductivity measurements and for the determination of the dielectric constant of CHF_3 as a function of pressure has been described elsewhere [14]. The constant of the cell (0.27457 m⁻¹) was determined by measuring its capacitance under vacuum. The experimental setup for these measurements are shown in Fig. 2. The solute dissolved in dichloroethane is charged into the cell (1) by means of a syringe using an inlet not shown in Fig. 2. The solvent is evaporated under vacuum and the cell is thermostatized at 323 K. CHF₃ in cylinder (3) is charged in the high-pressure manual pump (2) through the valve (5b) keeping valve (5a) closed. Then, valve (5a) is open and the high-pressure pump is used to increase the CHF₃ pressure to the selected value measured with the pressure transducer (4).

The electrochemical cell for measurements at high pressure is shown in Fig. 3. It was built in titanium and the upper part contains the working electrode (1), a platinum

Fig. 3. Schematic diagram of the high-pressure electrochemical cell. Top: lateral view of the upper and bottom parts. Bottom: top view of the bottom part (see text for references).

Table 1 Dielectric constant of supercritical CHF₃ at 323.15 K

$\begin{array}{c c} \rho \ (g \ cm^{-3}) & \varepsilon \\ \hline 0.2082 & 1.6_6 \\ 0.2940 & 1.9_9 \\ 0.4130 & 2.5_4 \\ 0.4932 & 2.9_7 \\ 0.5825 & 3.4_7 \\ 0.7200 & 4.3_4 \\ 0.8155 & 5.0_1 \\ 0.8697 & 5.4_2 \\ \hline \end{array}$		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m ⁻³)	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1.6 ₆
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	1.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	2.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2.97
$\begin{array}{cccc} 0.7200 & & 4.3_4 \\ 0.8155 & & 5.0_1 \\ 0.8697 & & 5.4_2 \end{array}$	5	3.47
0.8155 5.0 ₁ 0.8697 5.4 ₂)	4.34
0.8697 5.4 ₂	5	5.01
	1	5.42
<u>0.9115</u> 5.7 ₆	;	5.7 ₆

disc 25 μ m in diameter, encapsulated in soft glass 6 mm in diameter. The pressure seal is performed by PTFE chevron gasket (2) and titanium gasket (3). A compression nut (4) and a security bolt (5) complete the pressure seal of the microelectrode.

The bottom part contains two sapphire windows (7) 15 mm in diameter with PTFE o-rings (8) as pressure seals, which allow the inspection of the cell inside. A silver wire (Goodfellow) 1 mm in diameter (not shown in Fig. 3) was used as pseudo-reference electrode, wrapped around the working electrode.

The cell is filled with CHF_3 through one of the input port (11), with HPLC piping (PEEK) of 1/16'' external diameter. The cell parts are tight together by means of five stainless steel bolts (10), with a gold o-ring (6) 30 mm in diameter and 0.5 mm thick acting as pressure sealing. The cell is stirred by using a magnetic bar (9). The total volume of the electrochemical chamber is 9.26 cm³.

A Wayne Kerr 6425 Component Analyzer was used for measuring the capacitance and resistance of the fluids under study, by applying a 0.1 V sinusoidal signal in the range between 500 Hz and 10 kHz.

A potentiostat (Oxford Instruments) designed for low current applications (pA) and connected to a PC through a IEEE-488 interface was used to generate the voltage signal and measure the current.

3. Results and discussion

3.1. Properties of supercritical CHF₃

The critical parameters of the CHF₃ are $T_c = 299.3$ K, $p_c = 4.858$ MPa and $\rho_c = 0.529$ g cm⁻³. The density of

CHF₃ at 323.15 K as a function of pressure was taken from the data by Rubio et al. [15] and the viscosity was reported by Altunin *et al* [16]. The dielectric constant of CHF₃ was measured by Reuter et al. [17] above the critical temperature up to 468 K and 200 MPa. Due to the scarce experimental points reported in the range of experimental conditions of interest in this work, we measured the dielectric constant using the high-pressure stainless steel cell. The dielectric constant was obtained from the ratio between the capacitance of the fluid and the capacitance under vacuum.

Table 1 summarizes the values obtained at 323.15 K and pressures between 5 and 16 MPa. The dielectric constant can be expressed as:

$$\varepsilon = 0.9447 + 2.9343\,\rho + 2.0885\,\rho^2 + 0.5299\rho^3 \tag{1}$$

in the range of density between 0.21 and 0.91 g cm⁻³ with standard deviation, $\sigma = 0.008$.

3.2. Solubility of TBAPF₆ and $Fe(Cp^*)_2 PF_6$ in CHF₃

Table 2 shows solubility data obtained for the supporting electrolyte (TBAPF6) and the electroactive electrolyte (Fe(Cp^{*})₂PF₆). It is observed that the solubility increases exponentially with the density and for both salts it can be expressed as:

$$\log s = a + b\rho \tag{2}$$

where a = -7.06, b = 6.44 for TBAPF₆ ($\sigma = 0.012$) and a = -8.34, b = 6.56 for Fe(Cp^{*})₂PF₆, ($\sigma = 0.009$) with *s* in mol dm⁻³ and ρ in g cm⁻³.

3.3. The electrical conductivity of salts in supercritical CHF₃

We first determined the conductivity of pure supercritical CHF₃ at 323.15 K in the range of density between 0.294 and 0.915 g cm⁻³. The results for the specific conductance, κ° , summarized in Table 3 could be expressed in the polynomial form:

$$\log \kappa^{\circ} = -20.7470 + 44.1610 \rho - 81.4748 \rho^{2} + 90.7700 \rho^{3} - 40.0522 \rho^{4}$$
(3)

where κ° is in S cm⁻¹ and ρ in g cm⁻³ (standard deviation $\sigma = 0.03$).

The conductivity of TBAPF_6 in supercritical CHF_3 at 323.15 K was measured in the range of density 0.29–0.91

Table 2 Solubility of TBAPF₆ and Fe(Cp *)₂PF₆ in supercritical CHF₃ at 323.15 K

	0 · · · · · · · · · · · · · · · · · · ·				
P (bar)	$ ho ext{CHF}_3 (ext{g cm}^{-3})$	$s \text{ TBAPF}_6 \pmod{\text{dm}^{-3}}$	P (bar)	$ ho ext{ CHF}_3 (ext{g cm}^{-3})$	$s \operatorname{Fe}(\operatorname{Cp}^*)_2 \operatorname{PF}_6 \pmod{\operatorname{dm}^{-3}}$
71.1	0.415	4.15×10^{-5}	76.66	0.497	8.2×10^{-6}
89.7	0.656	1.39×10^{-3}	96.53	0.707	2.1×10^{-4}
160.9	0.913	6.68×10^{-2}	157.53	0.906	4.0×10^{-3}

Table 3 Specific conductivity of supercritical CHF₃ at 323.15 K

P (bar)	ho (g cm ⁻³)	κ° (S cm ⁻¹)	$\Delta \kappa^{\mathrm{o}} / \kappa^{\mathrm{o}}$
160.51	0.9155	8.51×10^{-8}	-0.048
139.54	0.8697	6.28×10^{-8}	0.078
119.60	0.8155	3.83×10^{-8}	0.031
98.52	0.7200	9.47×10^{-9}	-0.104
82.92	0.5825	4.29×10^{-10}	0.067
76.40	0.4932	5.26×10^{-11}	0.032
70.96	0.4130	7.04×10^{-12}	-0.054
61.34	0.2940	1.57×10^{-13}	0.013

g cm⁻³ and the results are shown in Table 4. Also shown in this table are the conductivities of $Fe(Cp^*)_2PF_6$ in supercritical CHF₃ in the range of density 0.45–0.91 g cm⁻³. The concentration of the salts were 6.511×10^{-4} mol.dm⁻³ and 6.135×10^{-5} mol dm⁻³ for TBAPF₆ and $Fe(Cp^*)_2PF_6$, respectively. In both cases the solutions become saturated at low densities and the corresponding saturation concentrations were calculated using Equation (2).

In order to avoid the effect of concentration, c, in the comparison of the conductivity, in Fig. 4 we plotted the molar conductivity ($\Lambda = \kappa/c$) of both salts in supercritical CHF₃ as a function of density. It is clear that the molar conductivity of Fe(Cp^{*})₂PF₆ is higher than that of TBAPF₆. That means that the association constant of TBAPF₆ in supercritical CHF₃ at a given density is higher than the association constant of Fe(Cp^{*})₂PF₆.

A high association of the supporting electrolyte is not wished for performing electrochemical measurements in supercritical fluids. However, it should be emphasized that

Table 4 Specific conductivity of TBAPF₆ and Fe(Cp^{*})₂PF₆ in CHF₃ at 323.15 K. $c \text{ TBAPF}_6 (\text{mol dm}^{-3})$ P (bar) ρ (g cm⁻³) κ (Scm⁻¹) 6.511×10^{-4} 158.88 0.9086 1.76×10^{-5} 1.25×10^{-5} 132.33 0.8518 117.35 0.8068 8.80×10^{-6} 5.81×10^{-6} 105.19 0.7566 3.84×10^{-6} 96.77 0.7088 91.05 2.61×10^{-6} 0.6660 1.56×10^{-6} 85.44 0.6118 (3.92×10^{-4}) 6.86×10^{-7} 81.75 0.5678 2.19×10^{-7} (1.87×10^{-4}) 78.09 0.5179 (8.06×10^{-5}) 4.62×10^{-8} 74.24 0.4612 $c \operatorname{Fe}(\operatorname{Cp}^*)_2 \operatorname{PF}_6 \pmod{\operatorname{dm}^{-3}}$ P (bar) κ (S cm⁻¹) ρ (g cm⁻³) 6.135×10^{-5} 156.31 0.9040 1.30×10^{-5} 1.04×10^{-5} 133.92 0.8559 7.83×10^{-6} 117.27 0.8065 5.48×10^{-6} 104.80 0.7547 3.80×10^{-6} 96.85 0.7094 2.44×10^{-6} 91.01 0.6657 (4.76×10^{-5}) 85.50 0.6125 1.12×10^{-6} (2.36×10^{-5}) 4.53×10^{-7} 0.5660 81.61 (1.10×10^{-5}) 1.46×10^{-7} 77.93 0.5156 (4.26×10^{-6}) 73.68 0.4528 2.74×10^{-8}

Fig. 4. Molar conductivity of $\text{TBAPF}_6(\bullet)$ and $\text{Fe}(\text{Cp}^*)_2\text{PF}_6(\blacktriangle)$ in CHF_3 as a function of density at 323.15 K.

this kind of behavior is expected for all the supercritical solvents having low dielectric constant. The corresponding state theory [18] predicts that the association constant of formation of ion pairs is proportional to the inverse of the reduced temperature, defined as:

$$b^* = \frac{|z_+ z_-|}{\varepsilon k T \sigma} e^2 \tag{4}$$

where σ is the effective diameter of the ions.

Fig. 5. Specific conductivity of salts in supercritical solvents: (O) TBAPF₆/CHF₃ at 323.15 K, $c = 6.51 \times 10^{-4}$ mol dm⁻³; (\bullet) TBABF₄/CHCIF₂ at 388 K, $c = 1 \times 10^{-2}$ mol dm⁻³ [4]; (\blacksquare) TDABPh₄/CO₂ at 323 K, $c = 1.92 \times 10^{-2}$ mol dm⁻³ [2].

Fig. 6. Linear sweep voltammograms of decamethylferrocene at a 25 μ m Pt disc microelectrode in supercritical CHF₃ at 323.15 K; (6a) with supporting electrolyte ($c_E = 4.83 \times 10^{-6}$ mol dm⁻³, $c_S = 4.8 \times 10^{-4}$ mol dm⁻³); (6b) without supporting electrolyte ($c_E = 4.83 \times 10^{-6}$ mol dm⁻³). Densities (in g cm⁻³): (a) 0.905; (b) 0.805; (c) 0.708; (d) 0.602; and (e) 0.508. Scan rate: 5 mV/s.

An estimation of the association constant of TBAPF_6 in CHF_3 at 323.15 K (assuming $\sigma = 0.79$ nm) using the cluster theory of electrolytes [19] predicts that the association constant increases from 6×10^4 to 7×10^8 when the density decreases from 0.9 to 0.5 g cm⁻³. Nevertheless, it should be noted that the specific conductivity of TBAPF_6 in CHF₃ at 323.15 K is much higher than that measured for TDABPh₄ in CO₂ at the same temperature [2] over the entire range of density and it is slightly lower than that reported by Olsen and Tallman [3] for TBAPF₆ in CHClF₂ at 388 K and concentration $c = 10^{-2}$ mol dm⁻³, as shown in Fig. 5. This result can only be explained by assuming that TBAPF₆ is much more associated in CHClF₂ than in CHF₃. The dielectric constant of CHClF₂ is lower than

Table 5

Slope of a plot of E (mV) vs. log[$(I(SR \rightarrow \infty) - I)/I$] for the oxidation of Fe(Cp^{*})₂ in supercritical CHF₃ at 323.15 K and several densities. Values in mV.

Density (g cm ⁻³)	Excess of supporting electrolyte (SR = 100)	Absence of supporting electrolyte	
0.508	_	192	
0.603	72	116	
0.708	69	92	
0.805	65	91	
0.905	66	89	

that of CHF_3 and this difference could account for the observed behavior. Thus, we have characterized a system formed by CHF_3 as supercritical solvent and $TBAPF_6$ as supporting electrolyte, which has promising features as a supercritical media for electrochemical experiments.

3.4. Steady state voltammetry in supercritical CHF₃

Steady state voltammetry experiments were carried out in supercritical CHF₃. Fig. 6 shows the current vs. voltage curves for decamethylferrocene (Fe(Cp^{*})₂) in supercritical CHF₃ at 323.15 K at several densities with and without supporting electrolyte. It is interesting to note that even in the complete absence of supporting electrolyte (Fig. 6b) the shape of the voltammogram is still preserved, and despite the large ohmic drop observed the analysis of the limiting current obtained from the curve does not lose accuracy. This fact plays an important role when it is necessary to add migrational processes to the diffusional current at microelectrodes.

Fig. 7. Linear sweep voltammograms of $Fe(Cp^*)_2PF_6$ in supercritical CHF₃ at 323.15 K and density 0.65 g.cm⁻³ at several concentrations of TBAPF₆: (a) 5.1×10^{-4} ; (b) 5.15×10^{-4} ; (c) 5.25×10^{-5} ; (d) 5.0×10^{-6} ; and (e) 5.0×10^{-7} mol dm⁻³. The concentration of $Fe(Cp^*)_2PF_6$ is 5.0×10^{-5} mol dm⁻³, except in case (a) where $c_E = 5.0 \times 10^{-6}$ mol dm⁻³. Current in curve (a) was multiplied by 10 for better comparison with other curves. Scan rate: 5 mV/s.

Table 6 Limiting current for the reduction of and $Fe(Cp^*)_2 PF_6$ in supercritical CHF₃, density 0.65 g cm⁻³, at 323.15 K.

$c_5 (\mathrm{mol}/\mathrm{dm}^3)$	$c_1 (\mathrm{mol/dm^3})$	$I_{\rm L}$ (nA)	$I_{\rm L}^{\rm norm}$ (nA mol/dm ³)	I* (experimental)	
5.1×10^{-4}	5.0×10^{-6}	0.24	4.8×10^{4}	1.00	
5.15×10^{-4}	5.0×10^{-5}	2.8	5.6×10^{4}	1.17	
5.25×10^{-5}	5.0×10^{-5}	3.3	6.6×10^{4}	1.38	
5.0×10^{-6}	5.1×10^{-5}	4.1	$8.0 imes 10^{4}$	1.67	
5.0×10^{-7}	5.0×10^{-5}	3.9	$7.8 imes 10^4$	1.63	

The extent of the ohmic drop (IR) was obtained from the slope of a plot E vs. $\log[(I(SR \rightarrow \infty) - I)/I]$. A value of 64.1 mV is predicted for the exchange of a single electron under reversible conditions at 323.15 K. As it can be seen in Table 5, the oxidation of $Fe(Cp^*)_2$ proceeds reversibly, while the low conductivity of the medium generates an ohmic drop (IR) that increases with the decrease in density. For the case of excess of supporting electrolyte, this is due to the lower dielectric constant of the solvent at lower densities, that leads to a higher degree of association and consequently less free ions from the supporting electrolyte. In the case of absence of added supporting electrolyte, impurities coming from the solvent contribute to some extent to the conductivity of the medium. The concentration of those charge carriers scale with the solvent density and are expected to be more associated at low densities for the same reasons explained above.

Fig. 7 shows the voltammetric curves for Fe(Cp^{*})₂PF₆ in CHF₃ at 323.15 K and density 0.65 g cm⁻³ at different concentrations of supporting electrolyte (the concentration of the electroactive electrolyte is: $c_E = 5 \times 10^{-6}$, curve a; $c_E = 5 \times 10^{-5}$, curves b–e).

In this case the reduction of the $Fe(Cp^*)_2^+$ cation is strongly influenced by the concentration, c_s , of supporting electrolyte. We have proved recently [20] in low dielectric constant solvents that the theory by Oldham et al. [21] (OCSB theory) is able to describe the effect of strong ionic association in systems containing variable concentration of supporting electrolyte.

The reduced current I^* , defined by:

$$I^* = \frac{I_l^{\text{norm}}(SR)}{I_l^{\text{norm}}(SR \to \infty)}$$
(5)

where $I_l^{\text{norm}} = I_l / c_E$ and $SR = c_S / c_E$ (supporting ratio), shows the qualitative behaviorpredicted by the OCSB theory. The theory describes the dependence of I^* on the diffusion coefficient of the several species present in a media with strong ion-pair formation and on the association constants of the supporting and electroactive electrolytes.

Table 6 clearly shows how the decrease in concentration of supporting electrolyte increases the limiting current, due to the increases of the migrational current. A more complete analysis of the OCSB theory in supercritical fluids is underway using the reduction of $Fe(Cp^*)_2^+$ in supercritical CHF₃ as a model system.

4. Conclusions

Trifluoromethane, a solvent with accessible critical point $(T_c = 299.3 \text{ K}, \rho_c = 0.529 \text{ g cm}^{-3})$, and a low dielectric constant ranging from 1.6 at $\rho = 0.2 \text{ g cm}^{-3}$ to 5.7 at $\rho = 0.9 \text{ g cm}^{-3}$ at 323.15 K, seems suitable for electrochemical studies under supercritical conditions.

The solubility and electrical conductivity of TBAPF_6 in supercritical CHF_3 is high enough to provide supporting ions for diffusion coefficient measurements by determining limiting currents on microelectrodes, even taking into account the strong ion association of this salt in the low density supercritical CHF_3 .

A high-pressure electrochemical cell with a platinum microdisc electrode has been used to obtain limiting currents for the oxidation of decamethylferrocene and the reduction of the Fe(Cp^{*})⁺₂ cation in supercritical CHF₃. The limiting currents are influenced by the concentration of supporting TBAPF₆ in the way predicted by the OCSB theory [21]. Thus, the reduced limiting current increases with the decreases of the supporting ratio *SR* due to the increases of the migrational current.

Acknowledgements

Work performed as part of CNEA-CAC-UAQ Project 99-Q-01-07. HRC is a member of Carrera del Investigador Científico del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Finantial support from CONICET is greatly appreciated. DLG thanks CNEA for a graduate fellowship.

References

- D. Niehaus, M. Philips, A. Michael, R.M. Wightman, J. Phys. Chem. 93 (1989) 6232.
- [2] A.P. Abbott, J.C. Harper, J. Chem. Soc. Faraday Trans. 92 (1996) 3895.

- [3] S.A. Olsen, D.E. Tallman, Anal. Chem. 66 (1994) 503.
- [4] S.A. Olsen, D.E. Tallman, Anal. Chem. 68 (1996) 2054.
- [5] A.P. Abbott, C.A. Eardley, J.C. Harper, E.G. Hop, J. Electroanal. Chem. 457 (1998) 1.
- [6] R.M. Crooks, F.-R.F. Fan, A.J. Bard, J. Am. Chem. Soc. 106 (1984) 6851.
- [7] R.M. Crooks, A.J. Bard, J. Phys. Chem. 91 (1987) 1274.
- [8] C.R. Cabrera, E. García, A.J. Bard, J. Electroanal. Chem. 260 (1989) 457.
- [9] W.M. Flarsheim, Y. Tsou, I. Tratchtenberg, K.P. Johnston, A.J. Bard, J. Phys. Chem. 90 (1986) 3857.
- [10] C. Liu, S.R. Snyder, A.J. Bard, J. Phys. Chem. B. 101 (1997) 1180.
- [11] R.M. Crooks, A.J. Bard, J. Electroanal. Chem. 243 (1988) 117.
- [12] C.R. Cabrera, A.J. Bard, J. Electroanal. Chem. 273 (1989) 147.
- [13] D.M. Duggan, D.N. Hendrickson, Inorg. Chem. 14 (1975) 955.

- [14] D.P. Fernández, A.R.H. Goodwin, J.M.H. Levelt, Sengers. Int. J. Thermophys. 16 (1995) 929.
- [15] R.G. Rubio, J.A. Zollweg, W.B. Street, Ber. Bunsenges. Phys. Chem. 93 (1989) 791.
- [16] V.V. Altunin, V.Z. Geller, E.K. Petrov, D.C. Rsskazov, G.A. Spiridinov, in: T.B. Delover Jr. (Ed.), Thermophysical Properties of Freons. Methane Series, Part 1, Hemisphere, Washington, DC, 1987.
- [17] K. Reuter, S. Rosenzweig, E.U. Franck, Phys. A 156 (1989) 294.
- [18] H.L. Friedman, B. Larsen, J. Phys. Chem. 70 (1979) 92.
- [19] H.R. Corti, R. Fernández Prini, J. Chem. Soc. Faraday Trans. 82 (1986) 921.
- [20] D.L. Goldfarb, H.R. Corti, J. Solution Chem., submitted for publication.
- [21] K.B. Oldham, T.J. Cardwell, J.H. Santos, A.M. Bond, J. Electroanal. Chem. 430 (1997) 25.