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Abstract

The role of structure in the nonmetal–metal transition of Co clusters is investigated by performing calculations for different
symmetries: hexahedral, octahedral and decahedral. This transition occurs when the density of states at the Fermi level exceeds
1/kBT and the discrete energy levels begin to form a quasi-continuous band. The electronic structure is calculated including spd
orbitals and spillover effects in a Hubbard Hamiltonian solved within the unrestricted Hartree–Fock approximation. We find
that in small clusters�N # 40� the metallic behavior is strongly related to the geometrical structure of the cluster. We compare
our results with those coming out of a simple Friedel’s model.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:A. Insulators; A. Metals; A. Nanostructures

1. Introduction

Clusters of metallic elements have very interesting
chemical and physical properties that are completely differ-
ent from those of single atoms and bulk materials. Small
clusters of metallic elements are insulators due to the
discrete distribution of the electronic states. A transition
from insulating (nonmetallic) to metallic behavior with
increasing cluster size is expected [1–11]. Kubo et al. intro-
duced a first theoretical criterion to identify this transition
pointing out that it should occur when the average spacing
between electronic levels becomes smaller than kBT and the
discrete energy levels begin to form a quasi-continuous
band. In terms of the density of states (DOS) the transition
takes place when at the Fermi level DOS exceeds 1/kBT.

The distribution of energy levels depends on the geome-
trical structure of the clusters and experimental information
alone is not enough to determine it. Structure calculations

are usually restricted to clusters of relatively small size,
mainlyN # 20 and the results of different theoretical calcu-
lations often do not coincide [12–16].

In this paper, we are interested in the nonmetal–metal
transition of Co clusters. We use a self-consistent tight-bind-
ing method using spd orbitals to calculate the electronic
density of states and apply Kubo’s criterion to determine
the critical cluster size. No experimental results are reported
for small Co clusters and we are not aware of any first
principles molecular dynamics calculations for the determi-
nation of geometrical structure in the literature. We perform
then calculations for different possible geometries. Method
of calculation and results are presented in Sections 1 and 3,
respectively, and the conclusions in Section 4.

2. Method of calculation

2.1. Self-consistent calculations

A Hubbard tight-binding Hamiltonian with spd orbitals
and parameters from bulk Co are used. The electronic
structure is obtained by solving it in the unrestricted
Hartree–Fock approximation. All many-body contributions
appear in the diagonal spin dependent term1 ims with respect
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where Dhim0 is the electron occupation difference with
respect to bulk paramagnetic values, per orbital in theith
atom.mim0 is the magnetization per orbital, andD1MAD

i is
the Madelung term. Parametrization and treatment of
electron spillover at the cluster surface are done as in
Refs. [17–20].

The Hamiltonian is solved self-consistently diagonalizing
at each step the majority and minority matrices and electro-
nic occupations per orbital, spin, and atom are obtained. A
Gaussian broadening (0.02 eV) was used to get a continuous
representation of the DOS with the aim to use the Kubo’s
criterion.

The total density of states at the Fermi level,DN�EF� �P
ims Dims�EF� results also from the self-consistent calcula-

tion and we have used it to determine the nonmetal–metal
transition according to Kubo’scriterion [8],DN�EF� . 1=kBT,
for the development of metallic character.

Our one-particle Hamiltonian neglects correlation
effects beyond the mean field approximation and also the

dependence of the DOS with temperature. The previous
assumption was adequate in the case of Ni for temperatures
below 640 K [21,22] we expect that this approximation also
holds for Co since all the temperature we are going to
consider are below this value. We are not aware of any finite
temperature calculation in the case of Co bulk systems. The
changes of the DOS are expected to occur only as a conse-
quence of the finite size and geometry of the clusters. It is
also important to mention that we are assuming that there is
no structural transition along the temperature range consid-
ered here.

The simplest model for the DOS of d band systems is the
one due to Friedel, in this model sp orbitals are not consid-
ered and a rectangular shape is assumed. A second moment
approximation introduces the dependence of bandwidth on
local average coordination [21,25]. In this work, we also
include the calculation based on Friedel’s model to be
used as a reference.

Since we are interested in the general tendencies of the
nonmetal–metal transition temperature, it is important to
mention, before showing the results, that the main conclu-
sions and tendencies of this calculation are not going to
change qualitatively if some other value for the width of
the Gaussian broadening is used.

2.2. Generation of geometrical structures

The geometries studied here are: hexahedral (Hexa), octa-
hedral (Octa), and decahedral (Deca). The polyhedra or
seeds are shown in Fig. 1 and their geometrical character-
istics are given in Table 1. To build a geometrical family
starting from these seeds, we add atoms on top of the center
of each face with the restriction that they have to be equi-
distant from all atoms forming that face. We refer to these
sites as available ones. However, it is not always possible to
put atoms over all the available sites without getting bonds,
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Fig. 1. Set of basic polyhedra used in this work: (a) hexahedron; (b)
octahedron; and (c) decahedron.

Table 1
Geometrical characteristics of the clusters used in this work. The upper panel corresponds to the basic polyhedra and the lower part to the
different saturated polyhedra

Polyhedron Nv
a Nf

b Na
c Np

d Nmax
e Coordination numbers

3 4 5 6 7 8 12

Hexa 5 6 6 0 11 2 3
Octa 6 8 8 0 14 6
Deca 7 10 10 0 17 5 2
Hexam 11 18 18 6 23 6 2 3
Octam 14 24 0 0 14 8 6
Decam 17 30 30 13 34 10 5 2

a Nv: number of vertices.
b Nf: number of faces.
c Na: number of available sites.
d Np: number of prohibited sites.
e Nmax: maximum number of sites.



which are much shorter than the first-neighbor distance. In
that case, we neglect one of these sites (forbidden site). In
Table 1, we give the number of availableNa (forbiddenNp)
sites. For a particular polyhedron, at this stage of the grow-
ing process, the maximum number of atomsNmax in the
cluster is given by adding to the number of atoms of the
basic polyhedron (Nv), the number of available sites (Na) and
subtracting the number of forbidden ones (Np). The toler-
ance for the nearest-neighbor distance is in the range from
0.866 to 1.2 (in units of the bulk values). Columns 7 to 13
contain the local coordination number for each one of the
polyhedra. In this table general geometrical characteristics
of the resultant polyhedra are also given. In Table 2, we
present the coordination evolution for some clusters gener-
ated along the growth process. To get the hexahedron plus
one atom�Hexa1 1� cluster, we add one top site. There are
six possibilities for it and they are all equivalent. The same
occurs for the Octa1 1 and Deca1 1 clusters. For the
Hexa1 2 cluster there are 15 arrays, but only three of
them are nonequivalent: (i) two top sites over faces with a
common edge that joins two four-fold coordinated sites; (ii)
two top sites over faces with a common edge that joins
three-fold and a four-fold coordinated sites; (iii) two top
sites over two faces with a common four-fold coordinated
site. It is worth noting that even if atoms with different local
coordination are added, the cluster average coordination is
the same in all three cases. For the octahedral family the way
to get clusters with more than 14 atoms is by taking sites on
a fcc array. The growth process is described in detail in Refs.
[23,24].

It is important to mention that no experimental results for
the geometrical shapes of Co clusters are available in the
literature [16]. On the other hand, we are not aware of any
first principles molecular dynamics calculations for them.
Because of this we study those clusters shown in Fig. 1,
however, it is worth notice that the clusters shown in
Fig. 1 have been found to be the ground state structures
of Co clusters by doing symbiotic algorithm calculations
[27].

3. Results

In Fig. 2, the values of the density of states at the Fermi
level for the three different symmetries considered here as a
function of cluster size are shown. In (a) for the octahedral,
(b) for the hexahedral and (c) for the decahedral based like
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Table 2
Geometrical characteristics of some of the clusters grown by the
method described in the text

Polyhedron Nv Nf Coordination numbers

2 3 4 5 6 7 8 12

Hexa1 1 6 8 2 2 2
Octa1 1 7 10 1 3 3
Deca1 1 8 12 1 3 2 1 1
Deca(5) 5 – 5
DI 19 30 12 5 2
Hexa1 2 7 10 5 2
Hexa1 2 7 10 2 2 2 1
Hexa1 2 7 10 3 3 1

Fig. 2. Total density of electronic states at the Fermi level as a
function of the cluster size for the three different geometries studied
here: (a) octahedral; (b) hexahedral; and (c) decahedral. The contin-
uous line gives the results of Friedel’s rectangular d-band model.
Notice that Friedel’s model describes the general trends ofD(EF)/N
as a function of the cluster size.



clusters. We include as a reference the results of the Friedel-
like model, assuming in this last case an fcc structure for the
clusters [21,25]. The octahedral clusters (a) show an overall
decreasing tendency in theDN�EF�=N; with maxima for
closed structures, that isN � 6; 14 and 38, and minima
when half of the sites are empty in the geometrical structure,

N � 10 and 26. The hexahedral clusters (b) show again an
overall decreasing tendency with maxima for closed shell
clusters�N � 5; 11� and also for those at half-filled shells.
The decahedral case (c) once more present an overall
decreasing tendency, however in this case the closed shell
structures are those that present minima while maxima
appear at open shell structures.

This self-consistent tight-binding calculation gives
DN�EF�=N with more structure than Friedel’s model, the
differences being particularly large in the small cluster
region. Considering that Friedel’s model only takes into
account the average coordination, this means that it is the
increase of the average coordination which gives rise to the
monotonic decreasing behavior ofDN�EF�=N as a function
of N.

In Fig. 3 we show the phase diagram for the nonmetal–
metal transition calculated using Kubo’s criterion for the
three different symmetries considered here. Friedel’s
approximation is shown with a continuous line, and it
describes an average transition behavior from nonmetallic
to metallic regime in the direction of increasing tempera-
ture.

The results coming out of the quantum mechanical calcu-
lation show large deviations with respect to simple Friedel’s
model and puts in evidence the importance of considering
clusters geometry and orbital symmetry. Octahedral clusters
of closed geometrical structure,N � 6; 14 and 38, become
metallic for relatively low temperatures whereas those with
open shell structure,N � 10 and 26, require higher tempera-
ture to go through the transition. In this case the closed shell
structure favors the metallic behavior. In the hexahedral
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Fig. 3. The calculated nonmetal–metal phase diagram of the Co
clusters using Kubo’s criterion for the three different geometries
studied here: (a) octahedral; (b) hexahedral; and (c) decahedral.
The continuous line corresponds to the simple Friedel’s rectangular
d-band model.

Fig. 4. Average nonmetal–metal phase diagram of the Co clusters
studied here is shown (full circles). In this diagram, the region
below the boundary describes nonmetallic clusters while the region
above it corresponds to the metallic state. The open triangle is
derived from Ref. [28] and the square from Ref. [29]. The contin-
uous line corresponds to Friedel’s rectangular d-band model.



case (b), the metallic behavior is favored both by closed
shell structures�N � 5; 11� and by half-filled shell structure.
For the decahedral case (c), we have a completely different
behavior than in the previous cases, the metallic behavior
being reached at lower temperatures for open shell geome-
trical structures.

In Fig. 4 we also show a phase diagram after averaging
the results of the three symmetries and assuming a mixing of
them with equal probability. The results of Friedel’s model
are plotted as well and should become better with growing
cluster sizes. We are not aware of any direct experimental
measurement of nonmetal–metal transition in Co clusters,
since most of the experimental results are for other systems
[26]. However, based on measurements of Ionization Poten-
tial (IP) and its deviation from the Conducting Spherical
Droplet (CSP) model [28] one can do a first and rough
estimation of critical cluster sizes for the nonmetal–metal
transition [21,25]. We have made this estimation for two
experimental values of IP obtained by Parks [29] and
Yang [30]. The results are shown in Fig. 4 corresponding
the triangle to Parks’ experiment and the square to Yang’s.
For the latest experiment we estimate the internal cluster
temperature by considering the way in which the clusters
were prepared [30]. We obtain a good agreement between
our calculation and the experimentally derived results.

4. Conclusions

We have studied the nonmetal–metal transition of Co
clusters grown in different geometries. A self-consistent
tight-binding Halmitonian which includes spd valence elec-
trons and spillover effects solved in the Hartree–Fock
approximation has been used to calculate the electronic
density of states. Kubo’s criterion was used to calculate
the nonmetal–metal phase diagram. We find that the metal-
lic behavior of small Co clusters�N # 40� is strongly
dependent on the geometrical structure of the cluster. For
octahedral clusters metallic behavior is reached at lower
temperatures for closed shell structures than for the open
ones. Hexahedral clusters reach metallic behavior at lower
temperatures for both close and half-filled shell structures.
On the contrary decahedral clusters show metallic behavior
at lower temperatures for open shell structures. Qualitative
agreement with experimental results derived from IP
measurements is satisfactory.

Acknowledgements

We acknowledge to the Consejo Nacional de Ciencia y
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