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Abstract

Ž .We present a new finite element FE method for magnetotelluric modelling of three-dimensional conductivity structures.
Maxwell’s equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing
boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational
domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconform-
ing FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The
algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue
University. The accuracy of the numerical method is verified by checking the computed solutions with the results of
COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Numerical modelling of three-dimensional con-
ductivity structures in the earth has experienced a
rapid development during the last few years. There
are three types of methods that are mostly used,

Ž .namely integral equation IE methods, finite differ-
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.serman .

Ž . Ž .ence FD methods and finite element FE methods.
Among the contributors to the former, we can men-

Ž .tion Wannamaker 1991 , who extended the capabili-
ties of the integral method to deal with complicated

Ž .models; Xiong 1992 proposed an iterative method
with block partitioning to reduce memory and stor-

Ž .age requirements; and Zhdanov and Fang 1996
introduced a quasi-linear approximation for the inte-
gral method. The FD has been studied, for example,

Ž .in Mackie et al. 1993 who solved the integral form
of Maxwell’s equations, assigning the tangential
magnetic field as boundary condition. For the FE,

Ž .Mogi 1996 used hexahedral elements to calculate
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the secondary fields, and employed asymptotic
boundary conditions.

Ž .More recently, Zhdanov et al. 1997 presented
the results from COMMEMI where different meth-
ods of the three classes mentioned above compare
their results for standard test models; among them,

Žonly one was a FE. It is well-known Mackie et al.,
.1993 that FE can more accurately solve complicated

structures than IE but up to now it has, for the
three-dimensional case, the iron constraint of huge
memory requirement for the storage of the global
matrices needed to obtain the results.

In the present work, we introduce a hybridized
nonconforming iterative domain decomposed mixed

Ž . Žfinite element procedure DDFE Douglas et al.,
.2000 to solve Maxwell’s equations treated in the

form of a system of first-order partial differential
equations for the scattered electric and magnetic
fields. The boundary conditions employed are first-

Ž .order absorbing ones Sheen, 1997 , which allow for
a significant reduction in the size of the computa-
tional domains and are easily introduced into the
algorithm. Undesired effects generated by the artifi-
cial boundaries, such as reflections, are diminished
by these boundary conditions. Besides, because of
the domain decomposition approach, no global ma-
trices need to be constructed and only 12=12 linear
systems or block diagonal linear systems are solved
at each iteration level in each of the subdomains in
which the studied region is divided; this feature in
turn makes storage requirements smaller. Finally, we
mention that the design of the proposed procedure
leads to a very efficient parallel code, requiring a
small flow of information among processors during
the calculations.

In Section 2, we present the model and the differ-
ential problem to be solved, and afterwards, we
introduce the numerical method. Finally, we show
some results of our DDFE, comparing them with

Ž .those compiled in Zhdanov et al. 1997 and draw
the conclusions.

2. The forward differential model

Recall that if E and H denote, respectively, the
electric and magnetic fields for a given angular

Fig. 1. The 3-D model.

frequency v, then the time harmonic Maxwell’s
equations in a region free of sources state that

==Hss E , 1aŽ .
==EsyivmH , 1bŽ .
where s and m denote the electrical conductivity
and magnetic permeability, respectively and as it is
usual in magnetotellurics, displacement currents have

Ž .been neglected. Also, associated to Eqs. 1a and
Ž .1b , we have the consistency conditions imposing
the continuity of the tangential electric and magnetic
fields and the continuity of the current density and
magnetic flux normal to any interior interface. Let us

Ž . Ž .consider Eqs. 1a and 1b in the three-dimensional
domain V shown in Fig. 1. The uppermost layer of
V represents the air, while the others represent a
horizontally layered earth with any number of arbi-
trarily shaped embedded inhomogeneities. The latter
must not necessarily lie within a single layer of the
former.

According to the description of our domain, the
electrical conductivity distribution has the form:

Ž . Ž .s z in V layeredearth ,p p
Ž .s x , y , z s ½ Ž . Ž . Ž .s z qs x , y , z in V inhomogeneities .p i i

2Ž .
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ŽIn analogy with the 2D case Wannamaker et al.,
.1987; Zyserman et al., 1999 , we will formulate the

differential model in terms of scattered fields. Let the
primary electromagnetic fields E and H be physi-p p

Ž .cally meaningful solutions of Maxwell’s Eqs. 1a
Ž .and 1b for the horizontally layered model with
Ž .sss z . Then, let E sE qE and H sH qHp t p s t p s

denote the total electromagnetic fields in V with
Ž .conductivity s as in Eq. 2 induced by a plane,

monochromatic electromagnetic wave of frequency
v incident upon its top boundary. Finally, let E ands

H be the scattered electromagnetic fields due to thes

presence of the conductivity anomalies V ; theyi

satisfy the equations

s E y==H sys E syF , 3aŽ .s s i p

ivmH q==E s0. 3bŽ .s s

which are the ones we are going to deal with. In
order to minimize the effect of the artificial bound-
aries, we will use the absorbing boundary condition

Ž .introduced by Sheen, 1997 :

1y i P aE qn=H s0 on EV'G , 4Ž . Ž .t s s

Ž .1r2where as sr2vm Here, n is the unit outer
normal to G , the boundary of the domain V , and

Ž . Ž .P wswyn nPw syn= n )w . For the sake oft

simplicity, from now on we will omit the subscripts
for the secondary fields.

Let us briefly comment on the meaning of Eq.
Ž .4 . Our aim is to simulate, as close as possible, the
vanishing of the electromagnetic field at infinity, but
considering a finite domain. On choosing, e.g., a
Dirichlet boundary condition on G , one must extend
the domain until the fields are negligible, leading to
the use of large computational domains at the cost of
increasing CPU times and memory requirements. On

Ž .the other hand, by using Eq. 4 , we make a field
normally ‘arriving’ to the border G to be ‘absorbed’
by it, i.e., we make it leave our domain with no
reflections; and this can be done relatively close to
the inhomogeneities.

Next, we proceed to describe the domain decom-
position procedure. Let us consider a partition of our
original domain V into non-overlapping — not
necessarily homogeneous — parallelepipeds V ofj

volume h =h =h , js1, . . . , J. Let G be thex y z jj j j

boundary of the subdomain V , consisting of sixj
�rectangles, namely G s FFront, BBack, WW est, EEast,j

4 ŽNNorth, SS outh to avoid cumbersome notation, the
subindex j associated with each rectangle in G isj

. Ž . Ž .omitted . In each subdomain V , Eqs. 3 – 4 be-j

come:

s E y==H sy s E syF , 5aŽ . Ž .jj j i p j

ivmH q==E s0, 5bŽ .j j

and

1y i P a E qn=H s0 on B . 6Ž . Ž .t j j j j

Here B stands for the intersection of the bound-j

ary of the domain V with G . Clearly, consistencyj

conditions need to be imposed on all interior bound-
Žaries; i.e., on all rectangles building G such thatj

.their intersection with G is empty . The natural
conditions are given, as already stated, by the conti-
nuity of the tangential electric and magnetic fields on
these boundaries:

n =H syn =H on G , 7aŽ .j j k k jk

P E sP E on G . 7bŽ .t j t k jk

In the above equations G stands for the facejk

shared by the adjacent domains V and V . Ofj k

course, G sG , but care must be taken whenjk k j

considering the direction of the normal vector to the
face, i.e., G is the face as seen from V and G isjk j k j

the same face but as seen from V . For the iterativek

algorithm to be defined below, it is more convenient
Ž . Ž . Ž .Douglas et al., 1993 to replace Eqs. 7a and 7b
by the equivalent Robin-type transmission condi-
tions:

n =H syn =H yb P E yP EŽ .j j k k jk t j t k

on G ;G , 8aŽ .jk j

n =H syn =H yb P E yP EŽ .k k j j jk t k t j

on G ;G , 8bŽ .k j k

Here, b is a complex parameter defined on thejk

interfaces G with a positive real part and a nega-jk

tive imaginary part. In Appendix A, we explain how
we chose its values.

Ž .To obtain a variational formulation for Eqs. 5 –
Ž . Ž6 , we proceed as usual Douglas et al., 1997;

. Ž .Martinec, 1997 . We test Eq. 5a with real vector
Ž . Ž .functions w x, y, z such that ==w x, y, z is square

Ž .integrable; and Eq. 5b by square integrable real
Ž . Ž .vector functions c x, y, z Santos and Sheen, 1998 .



( )F.I. Zyserman, J.E. SantosrJournal of Applied Geophysics 44 2000 337–351340

Using integration by parts in the terms involving the
curl of the magnetic field, and applying the Robin

Ž . Ž .transmission boundary conditions 8a and 8b for
the interior boundaries and the absorbing boundary

Ž .condition 6 on B , we obtain the equations:j

s E wd3 xy H ==wd3 xH Hj j
V Vj j

q b P E yP E qn =HŽ .Ž .ÝH jk t j t k k k
G jkk

P wdSq 1y i P aE P wdSŽ .Ht t j t
Bj

sy F wd3 x , 9aŽ .H j
V j

ivm H c d3 xq ==E c d3 xs0. 9bŽ .H Hj j
V Vj j

The sum in the third term in the left-hand side of
the first equation runs over the rectangles G build-jk

ing the interface among V and its neighbours;j

whenever G is also part of G , the contribution ofjk

the corresponding integral is neglected. On the other
hand, the contribution of the last term on the left-hand

Ž .side of Eq. 9a is different from zero only when the
integration is done on a rectangle that is simultane-
ously part of the boundary of the computational
domain V .

The idea of the domain decomposition procedure
is to solve the posed problem separately in each

Ž .subdomain V . Taking into account that Eqs. 8aj
Ž .and 8b involves only subdomains adjacent to V ,j

we propose the following iterative algorithm:

Ž 0 0.1. Choose initial values E , H
Ž nq1 nq1.2. Compute E , H as the solution of the

equations

s E nq1wd3 xy H nq1
==wd3 xH Hj j j

V Vj j

q b P E nq1P wdSq 1y iŽ .ÝH jk t j t
G jkk

P a E nq1P wdSH t j j t
Bj

sy F wd3 xq b P E n yn =H nŽ .ÝH Hj jk t k k k
V Gj jkk

P wdS 10aŽ .t

ivm H nq1c d3 xq ==E nq1c d3 xs0,H Hj j
V Vj j

10bŽ .

n =H nq1 syn =H n
j j k k

yb P E nq1 yP E n on G .Ž .jk t j t k jk

10cŽ .
We point out that for the subdomain V , thej

Ž .right-hand side of Eq. 10a contains unknowns be-
longing to its neighbour cells, and they are one
iteration step behind, i.e., they are assumed to be
data at the current iteration level. In Section 3, we
will define the discrete procedure motivated by the
above iteration.

3. The finite element procedure

In order to simplify the description of the numeri-
cal procedure, we will assume that the domain de-

Žcomposition partition the already mentioned par-
.alellepipeds V of the domain V coincides with thej

FE partition. Later, we will briefly indicate the
changes for the case in which the subdomains consist
of strips in the x-direction.

In each cell V , we approximate the electric andj

magnetic fields, respectively, by the expressions:

2 x 2 y 2 z
a ,nq1 aE s ´ w y1, y1, y1 ,Ýj j ž /h h hx y za

2 x 2 y 2 z
h ,nq1 hH s h c y1, y1, y1 ,Ýj j ž /h h hx y zh

11Ž .
where the superscripts a and h cover all the corre-
sponding basis functions given in Table 1, and the
complex coefficients ´ a ,nq1 and hh,nq1 need to bej j

determined at the iteration level nq1. Therefore,
we use 12 basis functions for E and nine basisj

functions for H . The scaling and translation of thej
a h Ž .basis functions w and c in Eq. 11 is made in

order to keep the variables within the reference
w x3element y1,1 . In Fig. 2, the reference cube and

relation among coefficients belonging to adjacent
paralellepipeds is shown. The dependence of the
lengths h , h and h on the index j was omittedx y z

for simplicity in the notation.
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Table 1
w x3 Ž .The nonconforming FE basis functions for E and H, defined in y1,1 see Fig. 2 for details on the reference cube . Let us consider, to

clarify ideas, the first basis function for the electric field. The only nonzero component of this vector function, i.e., the x-component, takes
the value 1 on the mid-point of the WW face, and zero on the mid-points of all other faces. The other basis functions display similar
behaviour. It can also be seen that the space spanned by the functions c h is the curl of the one spanned by the functions w a, as usual
requirement for mixed methods. The selected basis functions also make it possible to obtain as estimate on the rate of convergence of the

Ž .proposed algorithm in terms of the mesh size Douglas et al., 2000
a ha w h c

2 4 2 4Ž Ž Ž . Ž Ž . .. . Ž .WW 1r4yyr2y3r8 y y 5r3 y y z y 5r3 z , 0, 0 1 1r8, 0, 0x
2 4 2 4 3Ž Ž Ž . Ž Ž . .. . Ž Ž Ž . . .EE 1r4qyr2y3r8 y y 5r3 y y z y 5r3 z , 0, 0 2 3r56 yy 10r3 y , 0, 0x
2 4 2 4 3Ž Ž Ž . Ž Ž . .. . Ž Ž Ž . . .SS 1r4yzr2q3r8 y y 5r3 y y z y 5r3 z , 0, 0 3 y3r56 zy 10r3 z , 0, 0x
2 4 2 4Ž Ž Ž . Ž Ž . .. . Ž .NN 1r4qzr2q3r8 y y 5r3 y y z y 5r3 z , 0, 0 4 0, 1r8, 0x

2 4 2 4 3Ž Ž Ž . Ž Ž . .. . Ž Ž Ž . . .BB 0, 1r4yxr2y3r8 x y 5r3 x y z y 5r3 z , 0 5 0, y3r56 xy 10r3 x , 0y
2 4 2 4 3Ž Ž Ž . Ž Ž . .. . Ž Ž Ž . . .FF 0, 1r4qxr2y3r8 x y 5r3 x y z y 5r3 z , 0 6 0, 3r56 zy 10r3 z , 0y

2 4 2 4Ž Ž Ž . Ž Ž . ... Ž .WW 0, 0, 1r4yyr2q3r8 x y 5r3 x y y y 5r3 y 7 0, 0, 1r8z
2 4 2 4 3Ž Ž Ž . Ž Ž . ... Ž Ž Ž . ..EE 0, 0, 1r4qyr2q3r8 x y 5r3 x y y y 5r3 y 8 0, 0, 3r56 xy 10r3 xz

2 4 2 4 3Ž Ž Ž . Ž Ž . .. . Ž Ž Ž . ..SS 0, 1r4yzr2q3r8 x y 5r3 x y z y 5r3 z , 0 9 0, 0, y3r56 yy 10r3 yy
2 4 2 4Ž Ž Ž . Ž Ž . .. .NN 0, 1r4qzr2q3r8 x y 5r3 x y z y 5r3 z , 0y

2 4 2 4Ž Ž Ž . Ž Ž . ...BB 0, 0, 1r4yxr2y3r8 x y 5r3 x y y y 5r3 yz
2 4 2 4Ž Ž Ž . Ž Ž . ...FF 0, 0, 1r4qxr2y3r8 x y 5r3 x y y y 5r3 yz

ŽThe next step is to hybridize Arnold and Brezzi,
.1985 the algorithm to make the algebraic problem

easier. This is achieved by eliminating the constraint
requiring the continuity of the tangential components
of the electric field on the faces G , and enforcingjk

instead the required continuity through Lagrange
multipliers defined at the interelement boundaries
G . Furthemore, as an additional simplification, in-jk

stead of applying the continuity of these tangential
components on the whole interface G , we willjk

impose it only at the mid-points m of G . Thejk jk

introduction of the Lagrange multipliers allows for a
simplification of the associated algebraic problem,
which becomes block diagonal and consequently, the
approximate electric and magnetic fields can be sep-
arately computed. Thus, for each one of the rectan-
gles building G that are not part of the boundary G ,j

we introduce a two-dimensional constant vector or
Lagrange multiplier lnq1 associated with the valuejk

of n =H nq1 at the mid-point m of the face G ,j j jk jk

i.e., we will have an additional two-dimensional
unknown vector lnq1 per each face of the domainjk

V .j
Ž .Therefore, Eq. 10c becomes:

lnq1 syln yb P E nq1 mŽ .Žjk k j jk t j jk

yP E n m on G . 12Ž . Ž ..t k jk jk

Ž .Note that as stated above, Eq. 12 imposes the
continuity of the tangential components of the elec-
tric field only at the mid-points m of the faces G .jk jk

Also, accordingly with what we just mentioned, the
expression n =H n in the last integral of the right-k k

Ž .hand side of Eq. 10a is replaced by the Lagrange
multiplier ln .k j

Ž . Ž .To get the algebraic form of Eqs. 10a – 10c , the
Ž .fields E and H as defined in Eq. 11 are replacedj j

Ž . Ž . ain Eqs. 10a and 10b . Then, the functions w and
h Ž .c scaled as in Eq. 11 are taken as test functions

Ž . Ž .in Eqs. 10a and 10b , respectively, in the order
given in Table 1. The surface integrals in Eqs.
Ž . Ž .10a – 10c were approximated by the mid-point

< < Ž . Ž .rule, i.e., we used H fgdSf A f m g m , whereA
< <A is the area of the surface A, and m is its
mid-point.

This task yields a 21=21 linear system of equa-
tions for each subdomain V , at each iteration level.j

The problem can be further simplified because the
choice of the basis functions for the magnetic field
allows to get the coefficients hh,nq1 in terms of thej

coefficients ´ a ,nq1, by using the set of linear equa-j
Ž .tions rendered by Eq. 10b . Once this simple alge-

bra is carried out, we end up with a 12=12 linear
system of the form C ´ nq1 sbn. The coefficientj j j

matrices C remain unchanged along the iterativej

process whereas the vectors bn must be recalculatedj

at each iteration; in Appendix A, the linear system is



( )F.I. Zyserman, J.E. SantosrJournal of Applied Geophysics 44 2000 337–351342

Ž . w x3Fig. 2. a Display of the reference cube y1, 1 . We associate the coefficients of the electric field with the mid-points of the faces of the
cube, where the single nonzero component of the respective basis functions takes the value 1. The degrees of the freedom of H are obtained

Ž .from momenta, therefore there is no specific position associated with them in the reference cube. b Continuity of the electric field is asked,
Ž .as stated in Eq. 12 , only in the mid-point m of the face. Displayed coefficients ´ , which are the only ones involved in this interface,jk

Ž . ´ x WW x ´ t WW zasymptotically verify this condition. Also, because of Eq. 12 , we have that the equations l syl and l syl holdj k j k

asymptotically, or equivalently, we have continuity of the tangential components of the magnetic field at the mid-point of the interface
asymptotically. Similar is the situation for the other faces.

explicitly shown. The last task is to get the discrete
Ž .version of Eq. 12 , which is easily accomplished

Ž .using Eq. 11 .
We can therefore state our iterative algorithm as

follows:

Ž a ,0 0 .1. Choose initial values ´ , l for the un-j jk

knowns in all cells V .j
2. For all domains V j

Solve the 12=12 linear system for the un-
knowns ´ a ,nq1.j

Compute lnq1.jk

3. Check for convergence. If it has not been
achieved, go to step 2.

As is usual for iterative algorithms, convergence
is reached when the relative error of the calculated
coefficients is smaller than a prescribed tolerance,
i.e., when within this tolerance the coefficients have
stopped changing. At this stage, the unknowns hh

j

can be easily calculated as indicated above.
We note that the convergence of the above itera-

tive procedure to the solution of the original differen-
Ž . Ž .tial problems 3 – 4 has been demonstrated in Dou-

Ž .glas et al. 2000 . More specifically, in the men-
tioned reference, it has been shown that the differ-

Ž . Ž .ence between the solution of 3 – 4 and the solution
of the presented iterative procedure is asymptotically
of order h1r2, where h is the mesh size. We also
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wish to point out that after the convergence of the
iterative procedure has been achieved, since the con-
tinuity of the electric field is imposed only at the
mid-points of the interfaces and not on the whole
interfaces as in the standard conforming FE methods
Ž .Nedelec, 1980, 1982; Santos and Sheen, 1998 , the
algorithm yields an approximate solution which is
nonconforming, i.e, the approximate electric field
has no square integrable curl as it is the case for the
electric field in the original differential problems
Ž . Ž .3 – 4 .

We also implemented the iterative domain decom-
position procedure for the case in which the subdo-
mains are strips in the x-direction, each of them
consisting of a number n of parallelepipeds V .x j

Ž .The representation Eq. 11 was changed so that
within a strip, there are just two coefficients of the
electric field associated to the interface back–front

Žof two adjacent parallelepipeds. We assume that the
faces FF and BB of the parallelepipeds in any strip

.are normal to the x-axis . Consequently, the result-
ing linear system for the electric field is block
diagonal — two cells share the same two coeffi-
cients — and the number of unknowns is 10n q2.x

If the original number of subdomains was, for exam-
ple, n n n , with this change we have n n linearx y z y z

systems of the order given above, still much simpler
to deal with than a unique global matrix. Of course,
the right-hand side of the linear system has to be
changed accordingly. With the strips structure, it is

Žpossible to apply a red–black procedure Douglas et
.al., 1997; Zyserman et al., 1999 , which yields a

reduction of about 50% in the number of iterations
needed to reach a given tolerance for the relative
error.

Let us now describe how the algorithm works on
a parallel computer. For the implementation of the

Žparallel code, we used the MPI standard Pacheco,
.1997 , which makes it portable to any platform. The

most efficient way to perform the calculations is to
assign to each processor, as close as possible, the

Ž .same number of unknowns Alumbaugh et al., 1996 .
In our case, that means to assign the same number of
subdomains V to each processor. If the load of thej

processors is not balanced, some will remain idle
while others are still computing, reducing the effi-
ciency of the algorithm. In order to fix ideas, let us
work with four processors. Each one runs exactly the
same copy of the program, and gets the input data
from a single data file. Local variables are converted
to global when necessary within the code; we pre-
ferred this strategy to splitting the input file in

Ž . Ž .Fig. 3. a Scheme of the division of the domain V among processors. b Flow of information among processors, the shaded areas
Ž .represent the subdomains involved in the process. Only a single column row of cells adjacent to the virtual boundary participates in the

process.
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Fig. 4. A 2-D slice of Model 1 at ys0. The anomaly measures 2
km in the y direction.

Žmultiple ones to be read by each processor Newman
.and Alumbaugh, 1997 . In Fig. 3a, the planes repre-

sent the virtual boundaries created by assigning a
portion of the domain V to each processor. Natu-
rally, it is possible to do this assignment in different
ways, we chose the displayed one. The processor
number 1 solves the DDFE only in R , and simulta-11

neously, the other processors perform their calcula-
tions in their respective regions.

The time needed to get the solution is usually
longer than one-fourth of the time with a serial code

Žon one processor assuming that processors of the
.same kind are used . This happens because on each

iteration level ‘adjacent’ processors must interchange
information, so that step 2 of the proposed algorithm

Žis adequately performed: In Fig. 3b a slice of Fig.
.3a for constant y , the shaded regions of R to the12

right of the vertical virtual boundary and of R21

below the horizontal one involve just one column
and one row, respectively of cells neighbour to
subdomains in R . Therefore, all the coefficients11

´ a ,n and ln associated with the aforementioned row
and column must be sent to processor number 1 in
order to build the corresponding right-hand side vec-

Fig. 5. Results for Model 1.
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Table 2
Performance on the IBM SPr2 for the presented models

w xCPU time s

Processors 1 4 8 16
Model 1, YX-mode, 10 Hz 1867.2 338.71 164.96 78.96

y3Model 2, YX-mode, 10 Hz 6948.71 1370.94 632.87 329.05

tors bn. Clearly, the same is valid for the other three
regions; the interchange of information among pro-
cessors is simultaneously done at the end of step 2.

We asserted that the DDFE is naturally paralleliz-
able not only because of the description given above,
but also due to the fact that the amount of data to be
transferred is not large. As sketched in Fig. 3b, the
shaded region lies on only a single subdomain width.
It is easily seen that the flow of information grows
with the number of processors. Therefore, the effi-
ciency of the algorithm reaches its peak for some
number of them, and beyond that number, it be-
comes useless to employ more. However, for the

Ž .number of processors available 16 , we did not
experience this situation in our calculations.

4. Synthetic examples

We present results of two models suggested in the
Ž .COMMEMI project Zhdanov et al., 1997 . The first

Ž .one Model 1 is displayed in Fig. 4; it consists of a
conductive block of 2 Srm embedded in a homoge-
neous Earth with conductivity 0.01 Srm. The
anomaly measures 1=2=2 km. We set the dimen-
sions of our computational domain to be 16=16=

12 km; an air layer measuring 1 km in height and
with conductivity s s10y7 Srm was included.0

The absorbing boundary condition employed makes
it unnecessary to use a thicker air layer; this asser-
tion is supported by performed numerical tests.

A 58=64=32-element inhomogeneous grid was
used for this model, the smallest elements were of
course located within and around the inhomogeneity.
Two frequencies were considered: 10 Hz to test the
algorithm in the presence of strongly damped fields,
and 0.1 Hz to check if the numerical procedure can
cope with the stationary component of the solution;
this case is also useful to study the boundary condi-
tion behaviour.

To test our algorithm, we show two principal
apparent resistivities, r and r , corresponding tox y y x

Ž . Ž . Ž .polarizations Es E,0,0 , Hs 0, H,0 XY-mode
Ž . Ž . Ž .and Es 0, E,0 , Hs H,0,0 YX-mode , respec-

tively. The results of the above-mentioned work are
presented as error bars; taking as mid-points the
means of the data after rejecting outliers, the bars
measure 2d , twice the standard deviation of the1

reduced data set.

Fig. 6. Model 2.
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Fig. 7. Apparent resistivity and impedance phase measured on the surface of the earth, slice at ys0. Agreement between both results is
very good.

The tolerance for the relative error was set to
10y4 in all cases. The number of iterations to reach

convergence strongly depends on the mode and the
frequency: 104 for the YX-mode at 10 Hz, to 457 for

Fig. 8. Same as Fig. 7, slice at ys30.



( )F.I. Zyserman, J.E. SantosrJournal of Applied Geophysics 44 2000 337–351 347

the same mode at 0.1 Hz. The results obtained are, in
general, in very good agreement with those of the
referenced paper, as can be seen in Fig. 5. The two
graphs situated on the left side of the figure show
measurements along the x-axis for ys0; the two
graphs on the right side display measurements made
along the y-axis for xs0. Finally, in Table 2, we
display the performance of our algorithm on an SP2
parallel supercomputer at Purdue University. The
results correspond to the YX-mode at 10 Hz.

Ž .The second model we solved Model 2 is shown
in Fig. 6. It consists of two blocks of 20=40=10
km with conductivities ss1.0 Srm and ss0.01
Srm immersed in a three-layered earth with depths
of 10, 20, and 27.5 km. The upper layer, where the
blocks lie, has conductivity ss0.1 Srm, i.e., the
two blocks are chosen to be conductive and resistive,
respectively, compared to their host. For the second
and third layers, the conductivity values were chosen
to be ss0.01 and 10.0 Srm, respectively. The air
layer thickness is 2.5 km, therefore, the domain as a
whole comprises 140=120=60 km. As in the for-
mer case, we chose ss10y7 Srm for the air layer
conductivity.

Contrary to Model 1 for which many results
obtained with different methods were submitted, for
Model 2 just one author sent data — obtained with
an integral method. We have already mentioned

Žother existing solutions for this model Mackie et al.,
.1993 , but we are not aware of any solution provided

by FE methods.
The results we show in Figs. 7 and 8 — 2D slices

for ys0 and 30 km, respectively — were obtained
with an inhomogeneous grid of 54=54=32 ele-
ments, and relative error tolerance of 10y4 at a
frequency of 10y3 Hz.

5. Conclusions

We have presented an iterative finite element
method for solving the forward three-dimensional
magnetotelluric problem. The method has many in-

Ž .teresting features, among them we can mention a
the nonconforming finite element basis chosen that
allows us to write the unknowns corresponding to

the magnetic field in terms of the ones of the electric
field; and minimizes the amount of information

Ž .transferred among processors; b the domain de-
composition approach that makes it possible to work
with small matrices, minimizing storage and memory

Ž .requirements; c the absorbing boundary conditions
introduced proved to perform very well, making it
possible to work with relatively small computational

Ž .domains without introducing inaccuracies; d the
method is naturally parallellizable, therefore making
the solution of large and complicated models possi-
ble.
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Appendix A

Here we show the final form of the 12=12 linear
system to be solved in each of the subdomains in
which we divide the domain V . Throughout this
appendix we assume we have n Pn Pn subdo-x y z

mains; and to clearly state the algebraic problem
associated with the iterative procedure, it is more
convenient to number the subdomains V and allj

variables with three indices rst. Therefore, the sub-
domains neighbouring to V are those with oner st

subscript increased or decreased by one.
We will also change the notation for the coeffi-

cients defined on the faces G . For example, for ther st
Ž .front face FF of V Eq. 12 becomes:r st

lFF ,nq1 syl BB ,n yb FF P E nq1 mFFŽ .Žr st ry1 st r st t r st r st

yP E n mFF .Ž . .t ry1 st r st

The coefficient matrix C is symmetric, the struc-
ture shown is obtained by replacing the test functions
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Ž .in Eq. 10a by the basis functions in the order given
in Table 1, and replacing the coefficients for the

magnetic field in term of the ones of the electric
Ž .field obtained from Eq. 10b .

° ¶c c c c c c 0 0 0 0 0 011 12 13 14 15 16

c c c c c 0 0 0 0 0 022 23 24 25 26

c c 0 0 0 0 0 0 c c33 34 3 11 3 12

c 0 0 0 0 0 0 c c44 4 11 4 12

c c 0 0 c c 0 055 56 59 5 10

c 0 0 c c 0 066 69 6 10Cs
c c c c c c77 78 79 7 10 7 11 7 12

c c c c c88 89 8 10 8 11 8 12

c c 0 099 9 10

c 0 010 10

c c11 11 11 12¢ ßc12 12

where

781 1 1036 h hx y
c s h h h s q11 x y z r st žž5040 ivm 784 hz

h h h hx z x z WWq q qh h 1yd bŽ .x z s1 r st/ /h hy y

q 1y i d h h a ,Ž . s1 x z r st

y59 1 1036 h hx y
c s h h h s q12 x y z r st žž5040 ivm 784 hz

h h h hx z x z
q y ,/ /h hy y

269 1 1036 h hx y
c s h h h s y13 x y z r st ž5040 ivm 784 hz

h hx z
q ,/h y

c sc ,14 13

1
c sy h ,15 zivm

1
c s h ,16 zivm

781 1 1036 h hx y
c s h h h s q22 x y z r st žž5040 ivm 784 hz

h h h hx z x z EEq q qh h 1yd bŽ .x z sn r sty/ /h hy y

q 1y i d h h a ,Ž . sn x z r sty

c sc ,23 13

c sc ,24 14

c sc ,25 16

c sc ,26 15

781 1 1036 h hx y
c s h h h s q33 x y z r st žž5040 ivm 784 hz

h h h hx z x y SSq q qh h 1yd bŽ .x y t1 r st/ /h hy z

q 1y i d h h a ,Ž . t1 x y r st

y59 1 1036 h hx y
c s h h h s q34 x y z r st žž5040 ivm 784 hz

h h h hx z x y
q y ,/ /h hy z
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1
c sy h ,3 11 yivm

1
c s h ,3 12 yivm

781 1 1036 h hx y
c s h h h s q44 x y z r st žž5040 ivm 784 hz

h h h hx z x y NNq q qh h 1yd bŽ .x y tn r stz/ /h hy z

q 1y i d h h a ,Ž . t n x y r stz

c sc ,4 11 3 11

c sc ,4 12 3 12

781 1 1036 h hx y
c s h h h s q55 x y z r st žž5040 ivm 784 hz

h h h hy z y z BBq q qh h 1yd bŽ .y z r1 r st/ /h hx x

q 1y i d h h a ,Ž . r1 y z r st

y59 1 1036 h hx y
c s h h h s q56 x y z r st žž5040 ivm 784 hz

h h h hy z y z
q y ,/ /h hx x

269 1 1036 h hx y
c s h h h s y59 x y z r st ž5040 ivm 784 hz

h hy z
q ,/hx

c sc ,5 10 59

781 1 1036 h hx y
c s h h h s q66 x y z r st žž5040 ivm 784 hz

h h h hy z y z FFq q qh h 1yd bŽ .y z r n r stx/ /h hx x

q 1y i d h h a ,Ž . r n y z r stx

c sc ,6 9 59

c sc ,6 10 5 10

781 1 1036 h hx z
c s h h h s q77 x y z r st žž5040 ivm 784 h y

h h h hy z x z WWq q qh h 1yd bŽ .x z s1 r st/ /h hx y

q 1y i d h h a ,Ž . s1 x z r st

y59 1 1036 h hx z
c s h h h s q78 x y z r st žž5040 ivm 784 h y

h h h hy z x z
q y ,/ /h hx y

1
c sy h ,79 xivm

1
c s h ,7 10 xivm

269 1 1036
c s h h h s y7 11 x y z r st5040 ivm 784

=
h h h hx z y z

q ,ž /h hy x

c sc ,7 12 7 11

781 1 1036 h hx z
c s h h h s q88 x y z r st žž5040 ivm 784 h y

h h h hy z x z EEq q qh h 1yd bŽ .x z sn r sty/ /h hx y

q 1y i d h h a ,Ž . sn x z r sty

c sc ,89 7 10

c sc ,8 10 7 9

c sc ,8 11 7 11

c sc ,8 12 7 12

781 1 1036 h hx y
c s h h h s q99 x y z r st žž5040 ivm 784 hz

h h h hy z x y SSq q qh h 1yd bŽ .x y t1 r st/ /h hx z

q 1y i d h h a ,Ž . t1 x y r st
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y59 1 1036 h hx y
c s h h h s q9 10 x y z r st žž5040 ivm 784 hz

h h h hy z x y
q y ,/ /h hx z

781 1 1036 h hx y
c s h h h s q10 10 x y z r st žž5040 ivm 784 hz

h h h hy z x y NNq q qh h 1yd bŽ .x y tn r stz/ /h hx z

q 1y i d h h a ,Ž . t n x y r stz

781 1 1036 h hx z
c s h h h s q11 11 x y z r st žž5040 ivm 784 h y

h h h hy z y z BBq q qh h 1yd bŽ .y z r1 r st/ /h hx x

q 1y i d h h a ,Ž . r1 y z r st

y59 1 1036 h hx z
c s h h h s q11 12 x y z r st žž5040 ivm 784 h y

h h h hy z y z
q y ,/ /h hx x

781 1 1036 h hx z
c s h h h s q12 12 x y z r st žž5040 ivm 784 h y

h h h hy z y z FFq q qh h 1yd bŽ .y z r n r stx/ /h hx x

q 1y i d h h a .Ž . r n y z r stx

Recall that the lengths h , h and h depend onx y z

the indices r, s, and t, respectively; this was not
explicitly written for the sake of simplicity. The
Kronecker deltas in the definition of the c s arei j

included to write in the same expression terms con-
tributing either on G , the border of the domain V ,
or inside it. The coefficient a that appears in ther st

Ž .former, according to its definition below, Eq. 4 , has
Ž .1r2the form a s s r2vm .r st r st

We mentioned above that b is a complex itera-
tion parameter defined on the rectangles building
G with a positive real part and a negative imagi-r st

nary part, which is a requirement for the algorithm to

guarantee uniqueness of the solution and for the
Ž .iterative algorithm to converge Douglas et al., 2000 .

We defined b to be an average of the values of the
coefficients a on both sides of any given interfacer st

Ž . Ž .times 1y i . With this choice Eq. 12 resembles
Ž .the absorbing boundary condition 6 for the interior

boundaries. It is still an open question if another
choice for b can diminish the number of iterations
for the algorithm to converge.

Finally, the 12-element vector building the right-
hand side of the linear system of equations, at the
nq1 iteration level has the following form:

° WW EEx ,n EE n ¶1yd h h b ´ ylŽ . Ž .s1 x z r st r sy1 t r sy1 t , x
nEE WW ,n WWx1yd h h b ´ ylŽ .Ž .sn x z r st r sq1 t r sq1 t , xy

nSS NN ,n NNx1yd h h b ´ ylŽ . Ž .t1 x y r st r sty1 r sty1, x

nNN SS ,n SSx1yd h h b ´ ylŽ . Ž .t n x y r st r stq1 r stq1, xz

nBB FF ,n FFy1yd h h b ´ ylŽ . Ž .r1 y z r st ry1 st ry1 st , y

nFF BB ,n BBy1yd h h b ´ ylŽ . Ž .r n y z r st rq1 st rq1 st , yxnb s nr st WW EE ,n EEz1yd h h b ´ ylŽ . Ž .s1 x z r st r sy1 t r sy1 t , z
nEE WW ,n WWz1yd h h b ´ ylŽ .Ž .sn x z r st r sq1 t r sq1 t , zy

nSS NN ,n NNy1yd h h b ´ ylŽ . Ž .l1 x y r st r sty1 r sty1, y

nNN SS ,n SSy1yd h h b ´ ylŽ . Ž .ln x y r st r stq1 r stq1, yz

nBB FF ,n FFz1yd h h b ´ ylŽ . Ž .r1 y z r st ry1 st ry1 st , z

nFF BB ,n BBz¢ ß1yd h h b ´ ylŽ . Ž .r n y z r st rq1 st rq1 st , zx

The contribution of the source term must of course
be added to the vector bn . If an XY-polarization isr st

Ž .assumed the quantity — 1r4h h h s E z —x y z r st p m

where z is the mid-point of V is added to them r st y
first, second, third, and fourth elements. In the case
of a YX-polarization, the contribution goes to the
fifth, sixth, ninth, and tenth elements.
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