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The geometric representation at a fixed frequency of the wave vector (or dispersion) surface ��k� for lossless,
homogeneous, dielectric–magnetic uniaxial materials is explored for the case when the elements of the relative
permittivity and permeability tensors of the material can have any sign. Electromagnetic plane waves propa-
gating inside the material can exhibit dispersion surfaces in the form of ellipsoids of revolution, hyperboloids
of one sheet, or hyperboloids of two sheets. Furthermore, depending on the relative orientation of the optic
axis, the intersections of these surfaces with fixed planes of propagation can be circles, ellipses, hyperbolas, or
straight lines. The understanding obtained is used to study the reflection and refraction of electromagnetic
plane waves due to a planar interface with an isotropic medium. © 2006 Optical Society of America
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. INTRODUCTION
ecent developments in mesoscopic (i.e., structured but
ffectively homogeneous) materials have significantly
roadened the range of available electromagnetic consti-
utive properties, thereby allowing the realization of solu-
ions to Maxwell’s equations that could have been re-
arded previously as mere academic exercises. Materials
aving effectively negative real permittivity and perme-
bility have been constructed1–3 from arrays of conduct-
ng wires4 and arrays of split-ring resonators.5 Such com-
osite materials—often called metamaterials—exhibit
egative refraction in certain frequency regimes.6 Under
hese conditions, the phase-velocity vector is in the oppo-
ite direction to the energy flux, for which reason they
ave been called negative-phase-velocity (NPV)
aterials.7,8

NPV metamaterials synthesized thus far are actually
nisotropic in nature, and any hypothesis about their iso-
ropic behavior holds only under some restrictions on
ropagation direction and polarization state. In aniso-
ropic NPV materials, the directions of power flow and
hase velocity are not necessarily antiparallel but, more
enerally, have a negative projection of one on the other.9

ince the use of anisotropic NPV materials offers flexibil-
ty in design and ease of fabrication, attention has begun
o be drawn to such materials.10–13

Natural crystals are characterized by permittivity and
ermeability tensors with the real part of all their
lements positive, a fact that leads to dispersion equa-
ions in the form of closed surfaces. On the other
1084-7529/06/040949-7/$15.00 © 2
and, a relevant characteristic of NPV metamaterials
s that the real parts of the elements of their permit-
ivity and permeability tensors can have different signs in
ifferent frequency ranges. As an example, Parazzoli
t al.2 demonstrated negative refraction using s-polarized
icrowaves and samples for which the permittivity and

ermeability tensors have certain eigenvalues that are
egative real. Under such circumstances, dispersion
quations are topologically similar to open surfaces.14

onsequently, the intersection of a dispersion surface and
fixed plane of propagation may be a curve of an unusual

hape, compared with its analogs for natural crystals. For
xample, extraordinary plane waves in a simple dielectric
nonmagnetic) uniaxial medium can exhibit dispersion
urves that are hyperbolic, instead of the usual elliptic
urves characteristic of natural uniaxial crystals.14,15 In
ecent studies of the characteristics of anisotropic
aterials with hyperbolic dispersion curves, new phe-
omena have been identified, such as omnidirectional
eflection—either from a single boundary10 or from
ultilayers16—and the possibility of an infinite number of

efraction channels due to a periodically corrugated
urface.17,18

In this paper, we are interested in studying the condi-
ions under which the combination of permittivity and
ermeability tensors with the real parts of their elements
f arbitrary sign leads to closed or open dispersion sur-
aces for a homogeneous, dielectric–magnetic, uniaxial
aterial. To characterize this kind of material, four con-

titutive scalars are needed:
006 Optical Society of America
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�� and ��, which are the respective elements of the rela-
ive permittivity and relative permeability tensors along
he optic axis; and

�� and ��, which are the elements of the two tensors in
he plane perpendicular to the optic axis.

hese scalars have positive real parts for natural crystals,
ut their real parts can have any sign for artificial (but
till effectively homogeneous) materials. The dispersion
quation for plane waves in such a material can be fac-
ored into two terms, leading to the conclusion that the
aterial supports the propagation of two different types

f linearly polarized waves, called magnetic and electric
odes.19,20

The relative permittivity and permeability tensors, �̃
nd �̃, are real symmetric when dissipation can be ig-
ored. Then, each tensor can be classified as:21 (i) positive
efinite, if all eigenvalues are positive; (ii) negative defi-
ite, if all eigenvalues are negative; and (iii) indefinite, if

t has both negative and positive eigenvalues. Thus, the
elative permittivity tensor is positive definite if ���0
nd �� �0, it is negative definite if ���0 and �� �0, and it
s indefinite if ���� �0. In the present context, we exclude
onstitutive tensors with null eigenvalues. A similar clas-
ification applies to the relative permeability tensor. If
oth �̃ and �̃ are positive definite, the material is of the
ositive-phase-velocity (PPV) kind.
The plan of this paper is as follows. Considering the dif-

erent possible combinations of �̃ and �̃, we show in Sec-
ion 2 that magnetic and electric propagating modes can
xhibit dispersion surfaces that are (a) ellipsoids of revo-
ution, (b) hyperboloids of one sheet, or (c) hyperboloids of
wo sheets.

As a byproduct of our analysis, we also obtain different
ossible combinations of �̃ and �̃ that preclude the propa-
ation of a mode—electric, magnetic, or both—inside the
aterial. In Section 3 we study the intersection between

he dispersion surfaces and a fixed plane of propagation
hat is arbitrarily oriented with respect to the optic axis.
e show that, depending on the relative orientation of the

ptic axis, different dispersion curves, in the form of
ircles, ellipses, hyperbolas, or even straight lines, can be
btained. Previous studies of dielectric–magnetic materi-
ls with indefinite constitutive tensors considered only
lanes of propagation coinciding with coordinate planes,
hus failing to identify the singular case of linear disper-
ion equations. These results are used in Section 4 to dis-
uss the reflection and refraction of electromagnetic plane
aves due to a planar interface between a dielectric–
agnetic, uniaxial material and an isotropic medium. Il-

ustrative numerical results are also presented in that
ection. Concluding remarks are provided in Section 5. An
xp�−i�t� time dependence is implicit, with � as angular
requency, t as time, and i=�−1.

. DISPERSION SURFACES
he relative permeability and permittivity tensors of the
nisotropic medium share the same optic axis denoted by
he unit vector ĉ, and their four eigenvalues are denoted
y � and � . In dyadic notation22
�,� �,�
�̃ = ��Ĩ + ��� − ���ĉĉ, �̃ = ��Ĩ + ��� − ���ĉĉ, �1�

ith Ĩ the identity dyadic. In this medium, two distinct
lane waves can propagate in any given direction: (i) elec-
ric modes, with dispersion equation

k · �̃ · k = k0
2������, �2�

nd (ii) magnetic modes, with dispersion equation

k · �̃ · k = k0
2������. �3�

ere k is the wave vector and k0 denotes the free-space
avenumber.
We decompose the wave vector k=k�+k� into its com-

onents parallel k� and perpendicular k� to the optic
xis. After taking into account that

k · �̃ · k = ���k � ĉ�2 + ���k · ĉ�2, �4�

q. (2) for electric modes can be rewritten as

k�
2

��

+
k�

2

��

= k0
2��. �5�

nalogously, Eq. (3) for magnetic modes can be expressed
s

k�
2

��

+
k�

2

��

= k0
2��. �6�

quations (5) and (6) both have the quadric form

k�
2

A
+

k�
2

B
= 1, �7�

hich displays symmetry of revolution about the k� axis
n three-dimensional k-space. The parameters A and B
epend on the kind of mode (electric or magnetic) and
heir values determine the propagating or evanescent
haracter of each mode and the geometric nature of the
ispersion surface for propagating modes.
One of the following conditions applies for a specific
ode:

(i) A�0 and B�0: the dispersion surface is an ellip-
oid of revolution;

(ii) A�0 and B�0: the dispersion surface is a hyper-
oloid of one sheet [Fig. 1(a)];

ig. 1. Geometrical representations of Eq. (7): (a) A�0 and B
0, hyperboloid of one sheet; (b) A�0 and B�0, hyperboloid of

wo sheets.
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(iii) A�0 and B�0: the dispersion surface is a hyper-
oloid of two sheets [Fig. 1(b)];
(iv) A�0 and B�0: the mode is evanescent.

epending on the particular combination of �̃ and �̃, we
btain from these conditions different dispersion surfaces.
or example, the dispersion equations for electric and
agnetic modes in natural crystals are both represented

y Eq. (7) with A�0 and B�0, a fact that leads to the
nown result that electric and magnetic modes have dis-
ersion surfaces in the form of either prolate or oblate el-
ipsoids of revolution. The same result is obtained for

etamaterials with both constitutive tensors negative
efinite. When the analysis is repeated for all possible
ombinations among the four constitutive scalars ��, ��,
�, and ��, the results summarized in Table 1 are ob-

ained.

. INTERSECTION WITH A FIXED PLANE
F PROPAGATION

n Section 2, by considering plane-wave propagation in an
nbounded medium, we found the various geometric

orms of the dispersion surfaces. At a specularly flat inter-
ace between two half-spaces filled with linear homoge-
eous materials, the tangential components of the wave
ectors of the incident, transmitted, and reflected plane
aves must all be equal, and consequently, they all must

ie in the same plane that is orthogonal to the interface.
his plane is the plane of propagation. Let us now inves-
igate the kinds of dispersion curves obtained when dis-
ersion surfaces of the kind identified in Section 2 inter-
ect a specific plane of propagation that is arbitrarily
riented with respect to the optic axis ĉ.

Without loss of generality, let the xy plane be the fixed
lane of propagation in a cartesian coordinate system;
urthermore, let ĉ=cxx̂+cyŷ+czẑ and k=kxx̂+kyŷ. The dis-
ersion Eq. (2), for electric modes, can then be rewritten
s the quadratic equation

Table 1. Types of Possible Dispersion Surfaces for
Different Combinations among the Eigenvalues
��, �¸, ��, and �¸ of the Real Symmetric Tensors

�̃ and �̃a

Permittivity Eigenvalues

���0
�� �0

���0
�� �0

���0
�� �0

���0
�� �0

���0 Ee Eh2 Eh1 En
�� �0 Me Me Mn Mn
���0 Ee Eh2 Eh1 En
�� �0 Mh2 Mh2 Mh1 Mh1

���0 En Eh1 Eh2 Ee
�� �0 Mh1 Mh1 Mh2 Mh2

���0 En Eh1 Eh2 Ee
�� �0 Mn Mn Me Me

aThe first symbol indicates the mode: E �electric� or M �magnetic�. The second
ymbol indicates the geometrical form of the dispersion surface: e �ellipsoids of revo-
ution�, h1 �hyperboloid of one sheet�, h2 �hyperboloid of two sheets�. The symbol n
ndicates that the corresponding mode is of the evanescent �i.e., nonpropagating�
ind.
M11kx
2 + 2M12kxky + M22ky

2 = F, �8�

here

M11 = �� + ��� − ���cx
2

M12 = ��� − ���cxcy

M22 = �� + ��� − ���cy
2

F = k0
2������ �9�

he dispersion Eq. (3) for magnetic modes also has the
ame quadratic form, but now the coefficients M11, M12,

22, and F are obtained by the interchange
��↔�� ,��↔��� in Eq. (9).

The symmetric matrix

M̃ = �M11 M12

M12 M22
� �10�

orresponding to the quadratic Eq. (8) is defined by its
hree elements. This matrix can be diagonalized by rotat-
ng the xy plane about the z axis by a certain angle,
hereby eliminating the kxky term in Eq. (8). With v̂1 and

ˆ2 denoting the orthonormalized eigenvectors of the ma-
rix M̄, we can write k=k1v̂1+k2v̂2. Likewise, with

�1 = �� + ��� − ����cx
2 + cy

2�,

�2 = ��, �11�

enoting the eigenvalues of M̃, we get the dispersion
urve

�1k1
2 + �2k2

2 = F �12�

n the plane of propagation.
The dispersion curves for the mode represented by Eq.

12) can be classified by analyzing the signs of �1, �2, and
. In particular:

(i) if �1, �2, and F all have the same sign, then the dis-
ersion curve in the fixed plane of propagation is an el-
ipse, with semiaxes along the directions v̂1 and v̂2;

(ii) if �1 and �2 both have the same sign, but F has the
pposite sign, then the mode represented by Eq. (12) is of
he evanescent kind;

(iii) if �1 and �2 have opposite signs, then the disper-
ion curve is a hyperbola, with semiaxes along the direc-
ions v̂1 and v̂2;

(iv) if one eigenvalue is equal to zero and the other
nonzero) eigenvalue has the same sign as F, then the dis-
ersion curve is a straight line parallel to the eigenvector
ssociated with the null eigenvalue.

. ILLUSTRATIVE NUMERICAL RESULTS
ND DISCUSSION

o illustrate the different possibilities for the dispersion
urves, let us present numerical results for the following
wo cases:
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Case I: ��=−2.1, ��=1.9, ��=1.3, and ��=−1.6;

Case II: ��=2.1, ��=−1.9, ��=−1.3, and ��=1.6.

oth constitutive tensors thus are chosen to be indefinite.
ccording to Table 1, the electric and magnetic modes for
oth Case I and Case II have dispersion surfaces in the
orm of one-sheet hyperboloids of revolution, whose inter-
ections with fixed planes of propagation are circles, el-
ipses, hyperbolas, or straight lines, depending on the ori-
ntation of ĉ.

Furthermore, to show the usefulness of our analysis in
isualizing dispersion curves for boundary-value prob-
ems, let us now consider that the anisotropic medium is
lluminated by a plane wave from a vacuous half-space,
he plane of incidence being the xy plane. In terms of (a)
he angle �c between the optic axis and the y axis and (b)
he angle 	c between the x axis and the projection of the
ptic axis onto the xz plane, the optic axis can be stated as

ĉ = x̂ sin �c cos 	c + ŷ cos �c + ẑ sin �c sin 	c, �13�

nd the eigenvalues �j
E corresponding to electric modes

an be written as

�1
E = �� + ��� − ����1 − sin2 �c sin2 	c�,

�2
E = ��. �14�

For Case I, FE�0, �2
E=���0, whereas the sign of �1

E

epends on the orientation of the optic axis. From Eqs.
14) we conclude for the electric modes as follows:

�1
E�0 if

sin2 �c sin2 	c �
��

�� − ��

, �15�

nd the dispersion curves are hyperbolas with semiaxes
long the directions v̂1

E and v̂2
E;

�1
E=0 if

sin2 �c sin2 	c =
��

�� − ��

, �16�

nd the dispersion curves are straight lines parallel to the
irection associated with the eigenvector v̂1

E; and

�1
E�0 if

sin2 �c sin2 	c �
��

�� − ��

, �17�

nd the dispersion curves are ellipses with semiaxes
long the directions of the eigenvectors v̂1

E and v̂2
E.

he same conclusions hold for electric modes in Case II.
Analogously, the eigenvalues �j

M corresponding to mag-
etic modes are as follows:

�1
M = �� + ��� − ����1 − sin2 �c sin2 	c�,

�2
M = ��. �18�

or Case I, FM�0 and �2
M=���0. From Eq. (18) we de-

uce that
�1
M�0 if

sin2 �c sin2 	c �
��

�� − ��

, �19�

nd the dispersion curves are hyperbolas with semiaxes
long the directions v̂1

M and v̂2
M;

�1
M=0 if

sin2 �c sin2 	c =
��

�� − ��

, �20�

nd the dispersion curves are straight lines parallel to the
irection associated with the eigenvector v̂1

M; and

�1
M�0 if

sin2 �c sin2 	c �
��

�� − ��

, �21�

nd the dispersion curves are ellipses with semiaxes
long the directions of the eigenvectors v̂1

M and v̂2
M.

he same conclusions hold for magnetic modes in Case II.
Let 	c�0° so that the optic axis is not wholly contained

n the plane of incidence. There exist critical values of �c
t which the dispersion curve changes from hyperbolic/
lliptic to elliptic/hyperbolic. By virtue of Eq. (16), the
ritical value for electric modes is given by

sin �c
E = � ��

��� − ���sin2 	c
�1/2

. �22�

ikewise, the critical value

sin �c
M = � ��

��� − ���sin2 	c
�1/2

�23�

or magnetic modes emerges from Eq. (20). Expressions
22) and (23) are valid for both Cases I and II. At a critical
alue of �c, the dispersion curve for the corresponding
ode is a straight line.
Suppose 	c=60°, so that �c

E=52.73° and �c
M=59.06°.

hen, for �c=�c
E the dispersion curves in the plane of in-

idence are straight lines (electric modes) and hyperbolas
magnetic modes), whereas for �c=�c

M, the dispersion
urves are ellipses (electric modes) and straight lines
magnetic modes).

In Fig. 2, the reciprocal space maps are shown for four
ifferent orientations of the optic axis as follows:

�c=20° (both dispersion curves hyperbolic),
�c=�c

E=52.73° (electric type linear and magnetic type
yperbolic),

�c=55° (electric type elliptic and magnetic type hyper-
olic), and

�c=�c
M=59.06° (electric type elliptic and magnetic type

inear).

or �c��c
M=59.06°, modes of both electric and magnetic

ypes have elliptic dispersion curves, just as for a natural
rystal (not shown). The light gray circle in Fig. 2 repre-
ents the dispersion equation for plane waves in vacuum
the medium of incidence).

For �c=20°, Fig. 2(a) indicates the nonexistence of real-
alued ky in the refracting anisotropic medium for either
he electric or the magnetic modes, the specific k being
x
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ndicated by a dashed vertical line in the figure. This is
rue for both Cases I and II, for any angle of incidence
with respect to the y axis), and for any incident polariza-
ion state; hence, the chosen anisotropic medium behaves
s an omnidirectional total reflector.10 As the present-day
onstruction of NPV metamaterials is such that the
oundary is periodically stepped,23 it is worth noting that
he introduction of a periodic modulation along the sur-
ace would subvert the omnidirectional reflector effect,
ince a periodic modulation allows for the presence of spa-
ial harmonics with tangential components of their wave
ectors that can now satisfy the required matching condi-
ion. Gratings of this kind, contrary to what happens for
ll gratings made of conventional materials, have been re-
ently shown to support an infinite number of refracted
hannels.17,18

When �c=�c
E=52.73° the dispersion equation for re-

racted modes of the electric type is linear. It is possible to
nd two wave vectors with real-valued components that
atisfy the phase-matching condition (the so-called Snell’s
aw) at the interface, one belonging to the upper straight
ine and the other to the lower straight line in Fig. 2(b).
s the direction of the time-averaged Poynting vector as-
ociated with electric modes is given by20

S =
���

8
��

�k � ĉ�2�̃ · k, �24�

ig. 2. Reciprocal space maps for Cases I and II, when 	c=60°. �
he dispersion equation for plane waves in the medium of incide
e conclude that the refracted wave vectors on the upper
traight line do not satisfy the radiation condition for
ase I, whereas wave vectors on the lower straight line do
ot satisfy the radiation condition for Case II.
The direction of S given by Eq. (24) for modes of the

lectric type is normal to the dispersion curves and points
oward y�0, as required by the radiation condition. Ray
irections coincide with the direction of S. As for the pa-
ameters considered in our examples, the z component of
he time-averaged Poynting vector does not vanish; the
ay directions are not contained in the plane of incidence.
he projections of the refracted rays onto the xy plane (in-
icated by small arrows in the figures) are perpendicular
o the straight lines and independent of the angle of inci-
ence.
For refracted modes of the magnetic type and for the

ngle of incidence �=sin−1kx /ko� shown in Fig. 2(b), it is
lso posible to find two refracted wave vectors with real-
alued components satisfying the phase-matching condi-
ion at the interface, one belonging to the upper hyperbola
not shown) and the other to the lower hyperbola. The
ime-averaged Poynting vector associated with the mag-
etic modes is given by

S =
�

8
k0
2

�k � ĉ�2

����

�̃ · k. �25�

20°, (b) 52.73°, (c) 55°, (d) 59.06°. The light gray circle represents
c= �a�
nce.
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herefore, we conclude that wave vectors on the upper
yperbola do not satisfy the radiation condition for Case
I, whereas those on the lower hyperbola do not satisfy
he radiation condition for Case I. Ray directions coincide
ith the direction of S given by Eq. (25), which again has
nonzero component in the z direction. Ray projections

nto the xy plane (indicated by small arrows in the fig-
res) are perpendicular to the hyperbolas.
The interface for both Cases I and II acts as a positively

efracting interface for modes of both types, in the sense
hat the refracted rays never emerge on the same side of
he normal as the incident ray.24

When the angle �c is increased to 55° [Fig. 2(c)], the dis-
ersion equation for the refracted modes of the magnetic
ype is still hyperbolic, but the dispersion equation for the
lectric type is elliptic. Again, for both electric and mag-
etic modes, it is possible to find two wave vectors with
cceptable real-valued components. From Eq. (24), we
onclude that refracted electric modes on the upper part
f the ellipse correspond to Case II, whereas electric wave
ectors on the lower part of the ellipse correspond to Case
. On the other hand, wave vectors for the refracted mag-
etic modes on the upper hyperbola do not satisfy the ra-
iation condition for Case II, whereas wave vectors on the
ower hyperbola do not satisfy the radiation condition for
ase I, as can be deduced from Eq. (25).
Ray projections onto the xy plane corresponding to the
agnetic modes alone are shown in the figure, for the

ake of clarity. For both Cases I and II and for refracted
odes of the electric and magnetic types, the refracted

ays never emerge on the same side of the y axis as the
ncident ray, just as for positively refracting interfaces.

When �c=�c
M=59.06° [Fig. 2(d)], the dispersion curves

or the refracted modes of the electric type continue to be
llipses, but now the dispersion curves for the modes of
he magnetic type become straight lines. For the electric
odes, the selection of the wave vectors is identical to

hat in Fig. 2(c). For the refracted magnetic modes, wave
ectors on the upper straight line do not satisfy the radia-
ion condition for Case II, whereas those on the lower
traight line do not satisfy the radiation condition for
ase I.
Ray projections onto the xy plane for the refracted mag-

etic modes are also drawn in the figure. Again, for both
ases I and II the surface acts as a positively refracting

nterface for modes of both types.

. CONCLUDING REMARKS
his work focused on the geometric representation at a
xed frequency of the dispersion surface ��k� for lossless,
omogeneous, dielectric–magnetic uniaxial materials. To
ncompass both natural crystals and the artificial com-
osites used to demonstrate negative refraction (metama-
erials), we assumed that the elements of the permittivity
nd permeability tensors characterizing the material can
ave any sign. We showed that, depending on a particular
ombination of the elements of these tensors, the propa-
ating electromagnetic modes supported by the material
an exhibit dispersion surfaces in the form of ellipsoids of
evolution, hyperboloids of one sheet, or hyperboloids of
wo sheets. Intersections of these surfaces with fixed
lanes of propagation lead to circles, ellipses, hyperbolas,
r straight lines, depending on the relative orientation of
he optic axis. This analysis was used to discuss the re-
ection and refraction of electromagnetic plane waves due
o a planar interface with vacuum (or any linear, homoge-
eous, isotropic dielectric–magnetic medium).
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