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(which would be squared in the three-dimensional (3-D) case, [4]–[6]),
there is a very satisfactory agreement.

III. CONCLUSION

The minimum number of bistatic near field measurements required
to evaluate the monostatic RCS of an arbitrary scatterer has been
rigorously determined with reference to a 2-D geometry and TM
polarization, and an efficient procedure for the evaluation of the
monostatic RCS from near-field bistatic RCS measurements has been
presented. In particular, it is shown that the evaluation of the mono-
static RCS requires the measurement of the near-field bistatic RCS
only in a limited angular region, whose extension depends on the
dimension of the scattering object and on the distance of the mea-
surement surface from the object. This result allows to reduce both the
measurement time and the computational effort to evaluate the mono-
static RCS from near-field measurements. Furthermore, the adoption
of a numerically effective algorithm for the near-field far-field trans-
formation based on the FFT allows a fast and efficient computation
of the monostatic RCS.

In this paper a 2-D geometry has been considered. However, the
method can be extended to the 3-D case by following a similar ap-
proach developed for 3-D near-field measurements by scanning on a
sphere about the object under test, expanding the field in spherical har-
monics, and exploiting a covolutional product for the azimuth portion
of the transformation [6]. This extension will be the subject of a forth-
coming paper.

REFERENCES

[1] M. Dinallo, “Extension of plane-wave scattering matrix theory of an-
tenna-antenna interaction to three antennas: A near-field radar cross sec-
tion concept,” in Proc. AMTA, Oct. 1984.

[2] D. G. Falconer, “Extrapolation of near-field RCS measurements to
the far zone,” IEEE Trans. Antennas Propag., vol. AP-36, no. 6, pp.
822–829, Jun. 1988.

[3] B. J. Cown and C. E. Ryan Jr., “Near-field scattering measurements for
determining complex target RCS,” IEEE Trans. Antennas Propag., vol.
AP-37, no. 5, pp. 576–585, May 1989.

[4] J. W. Burns and I. J. LaHaie, “Investigation of the minimum sample
region required to predict RCS from planar scan near field data,” inURSI
Radio Science Meeting Dig., Syracuse, NY, 1988, p. 330.

[5] , “Algorithm for determing waterline rcs of a high aspect target
using SNFFT,” inURSI Radio Science Meeting Dig., Seattle, WA, 1994,
p. 106.

[6] M. A. Ricoy, “Convolutional form for predicting far zone bistatic RCS
from spherical near field measurements,” in PIERS Seattle, WA, 1995,
p. 577.

[7] D. S. Jones, The Theory of Electromagnetism. New York: Pergamon
Press, 1964.

[8] O. M. Bucci and G. Franceschetti, “On the spatial bandwidth of scat-
tered fields,” IEEETrans. Antennas Propag., vol. AP-35, pp. 1445–1455,
1987.

[9] O.M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retriev-
able information and measurement strategies,” Radio Sci., vol. 32, no. 4,
pp. 2123–2137, Nov.–Dec. 1997.

[10] Handbook of Mathematical Functions, Dover, New York, 1970. M.
Abramovitz, I. Stegun.

Plane-Wave Diffraction at a Periodically Corrugated
Interface Between an Isotropic Medium and a

Gyroelectromagnetic Uniaxial Medium

Miriam L. Gigli, Marina E. Inchaussandague, and Ricardo A. Depine

Abstract—A formulation of the Rayleighmethod formodeling unidimen-
sional periodically corrugated gyroelectromagnetic uniaxial gratings with
shallow grooves is presented. The orientation of the preferred axis of the
anisotropic medium is arbitrary and incidences from both media are con-
sidered. We show that the present method gives reliable results for groove
height to period ratio up to 0.3. Numerical examples for sinusoidal gratings
in classical and conical mountings are provided.

Index Terms—Anisotropy, gratings, gyroelectromagneticmedia, uniaxial
crystals.

I. INTRODUCTION

At present, different anisotropic materials are widely used in optics
and engineering devices, whether as substrates, films or material fill-
ings [1]–[3]. The interest in surface-relief gratings made of anisotropic
materials has grown in the last decade, mainly due to both a natural
progression of the electromagnetic theory of gratings and real-world
application requirements [4]. However, most of the investigations on
anisotropic surface- relief gratings have been limited to media with di-
electric anisotropy, that is, media for which the magnetic permeability
can be assumed to be that of the vacuum everywhere.
In this paper we investigate the diffraction of electromagnetic waves

from gratings made of materials that have uniaxial dielectric and mag-
netic properties. The preferred axis, the same for both the permeability
and the permittivity tensors, is arbitrarily oriented with respect to the
grating surface. To the authors knowledge, gyroelectromagnetic uni-
axial gratings have been previously analyzed in two particular cases.
One, using the T-matrix formalism, when the preferred axis of the
anisotropic medium is parallel to the mean surface of the periodic inter-
face and the incident electromagnetic wave in a direction perpendicular
to the grating grooves [5]. The other, using a Rayleigh method, for a
perfectly matched layer with a shallow corrugation [6]. The primary
contribution of this paper is to reformulate and extend previous work
[5], [6] to the general case in which: a) the plane of incidence is not per-
pendicular to the grating grooves (conical diffraction) and b) the optical
axis of the general uniaxial material has an arbitrary orientation. To do
so, we develop a Rayleighmethod to calculate the diffracted fields. This
method is based on the assumption that the electromagnetic fields in the
region between the grooves can be written as plane-wave expansions
[7]. Although not rigorous, Rayleigh methods have proven to give very
good results for corrugated isotropic [8], and dielectric anisotropic [9],
[10] gratings, even for groove height-to-period ratios greater than 0.14,
the limit of validity of the hypothesis for perfect conductors with sinu-
soidal corrugation.
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II. THEORY

We consider a periodically corrugated boundary between an
isotropic medium and a gyroelectromagnetic uniaxial material. In a
rectangular coordinate system (x; y; z) the one-dimensional corru-
gated boundary is given by the periodic function y = g(x) = g(x+d)
(d the period). The grooves of the grating are along the z axis and
the y axis is perpendicular to mean surface of the grating, pointing
toward the isotropic medium. The plane of incidence forms an angle
' with the main section of the grating (x � y plane). Harmonic time
dependence exp (�i ! t) is assumed throughout the paper; in what
follows this factor will be omitted.

A. Isotropic Medium

As it is well known, the fields outside the grooves (y > max g(x))
can be rigorously represented by means of Rayleigh expansions
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where superscript+(�) corresponds to the incident (diffracted) fields,
~r = xx̂ + yŷ + zẑ; k0 is the wave number in free space, R�n and
S�n are complex amplitudes and ~k�in = �nx̂ � �nŷ + kiz ẑ; �n =
�0 + 2�n=d; �n = (k20�1�1 � �2n � ki2z )1=2, and � = k20�1�1 � ki2z .

In the expressions above, �1 and �1 are the permittivity and the per-
meability of the dielectric medium, respectively. �0 and kiz depend on
how the grating is illuminated. For a single plane wave incident onto
the grating, we have �0 = �sin � cos'; kiz = �sin � sin', where �
is the angle between the incident wave vector and the y axis. � is given
by � = k0(�1�1)

1=2, for a wave incident from the isotropic side. On
the other hand, when the grating is illuminated from the gyroelectro-
magnetic medium, the value of � is determined from the dispersion
equation. In this case, there are two possible values of �, which corre-
spond to an incident wave of the electric or magnetic type, respectively.

B. Gyroelectromagnetic Uniaxial Medium

The medium below the interface is a gyroelectromagnetic uniaxial
dielectric characterized by permittivity and permeability tensors ~� =
�? ~I + (�k � �?)ĉĉ and ~� = �? ~I + (�k � �?)ĉĉ respectively, with
ĉ = (cx; cy; cz) the optic axis.

In the gyroelectromagnetic uniaxial medium, the total fields in the re-
gion below the grating grooves (y < min g(x)) can also be rigorously
represented by Rayleigh expansions, now in terms of electric type (sub-
script 1) and magnetic type (subscript 2) plane waves
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In the expressions above, the superscript +(�) corresponds to the in-
cident (diffracted) fields. ~k�jn = �nx̂ + �jnŷ + kiz ẑ(j = 1; 2) are the
wavenumbers associated with the electric and magnetic waves; they are

solutions of the dispersion equations: ~k�1n � ~� � ~k
�
1n = k20�?�?�k and

~k�2n � ~� �
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�
jn(j = 1; 2) are normalized electric field

vectors that specify the polarization of the electric (j = 1) and mag-
netic (j = 2) waves and ~h�jn(j = 1; 2) are related to ~e�jn(j = 1; 2)

according to Maxwell equations [11]. C�1n and C�2n are the unknown
complex amplitudes of the fields diffracted into the crystal.

C. Determination of the Fields Using Rayleigh Hypothesis

The boundary conditions require the continuity of the tangential
components of ~E and ~H at y = g(x). At this stage we invoke the
Rayleigh hypothesis, that is, we assume that expansions (1) and (2),
strictly valid outside the grooves, can be replaced into the boundary
conditions. Doing so, and then projecting into the Rayleigh basis
exp(i�mx)

+1
m=�1, we obtain a system of linear equations, with

the amplitudes C�1n; C
�
2n; R

�
n , and S�n as unknowns [9], [10]. The

amplitudes denoted with superscript + are known and specify the po-
larization of the incident fields. For incident waves from the isotropic
side, R+

n and S+n are the amplitudes of the z components of the
incident electric and magnetic field respectively. These amplitudes can
be expressed in terms of the s and p polarization amplitudes of the
incident electric field.
When the incidence is from the anisotropic side, we have C+

1n =
�n;0, and C+

2n = 0 for an incident wave of the electric type or C+
2n =

�n;0, andC+
1n = 0when the incident wave is of the magnetic type. The

system of equations can be written in matrix form as
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replacing subscript 1 by 2.
Once we have determined the unknown amplitudes, the efficiencies

of the diffracted orders can be calculated. The efficiency of the nth
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Fig. 1. Efficiency of the zeroth transmitted order of the electric (t ) and of
the magnetic type (t ) as a function of the angle of incidence. The polarization
of the incident wave is TE, � = 1:2; � = 1:05; �=d = 0:5; ' = 40 , and
� = 90 . Case (A): � = 2:5; � = 1:8; case (B): � = 1:8; � = 2:5.

diffracted order in the isotropic (gyroelectromagnetic) medium is de-
noted by rnlj(t

n
lj), where the first (second) subscript refers to the inci-

dent (diffracted) polarization. Subscript s(p) is used to denote TE (TM)
polarization, whereas subscript 1 (2) is used for waves in the gyroelec-
tromagnetic medium of the electric (magnetic) type.

III. RESULTS

The system of (3) can be solved numerically retaining 2N +1 terms
in the expansions of the fields, a procedure that leads to a system of
8N+4 linear equations with 8N+4 unknowns:R�n ; S

�

n ; C
�

1n andC�
2n

with n varying in the range (�N;N). The value ofN was selected so
that the conservation of energy is satisfied within a tolerance of 10�6.
To achieve this goal, we have selected N = 10 for our examples (N
may vary from N = 5 to N = 15, depending on the height to period
ratio h=d and the wavelength to period ratio �=d).

To validate our program, we have checked our results for an al-
most flat interface (h=d ! 0) between vacuum and a gyroelectro-
magnetic uniaxial material with arbitrary orientation of the optic axis.
In this case, results obtained with our program are in perfect agreement
with those presented in a previous paper by M. Simon et al. [12], who
have found the reflection and refraction coefficients exclusively for flat
isotropic—gyroelectromagnetic interfaces.

Secondly, we have considered the case of gyroelectromagnetic grat-
ings with the optic axis in the plane of the interface. In this situation,
we have reproduced the curves given in [5] for sinusoidal profiles with
h=d = 0:1 for a grating with the optic axis in the x� z plane forming
an angle � = 40� with the x axis. As an example, we plot in Fig. 1,
the efficiency of the zeroth transmitted order of the electric (t0s1) and
of the magnetic type (t0s2) as a function of the angle of incidence with
the same parameters used in [5, Fig. 1]. The polarization of the in-
cident wave is TE, �? = 1:2; �k = 1:05; �=d = 0:5. Case (A):
�? = 2:5; �k = 1:8; case (B): �? = 1:8; �k = 2:5. As it can be ob-
served in this figure, the curves obtained with the present method for a
grating with the optic axis in the plane of the interface are identical to
those previously obtained in [5].

As examples of the method described above, we investigate the case
of sinusoidal profiles given by g(x) = (h=2) sin(2�x=d). We have
studied gratings in classical mounting illuminated from the isotropic
medium by a plane wave with TE polarization. To study the changes
that the corrugation of the interface introduce in the power carried by
the diffracted orders, we have considered a grating with the same pa-
rameters as in [12] (�e=�o = 0:8457; �e=�o = 0:95; 'c = 45�, and

Fig. 2. Zeroth order co-polarized efficiency r versus angle of incidence �
for a sinusoidal profile with different values of h=d. Other parameters are ' =
0; �=d = 2; � = 1; � = 1; � = 2:75; � = 2:32; � = 1; � =
0:95;' = 45 and � = 45 .

Fig. 3. Efficiencies of the zeroth transmitted orders of the electric type as
function of the angle of incidence � for different values of ' and h=d = 0:1.
Other parameters are the same as Fig. 2. (a)t (b) t .

�c = 45�). �c is the angle between the optic axis and the y axis, and
'c is the angle between the x axis and the projection of the optic axis
onto the x � y plane. In the examples, the value of �=d = 2 was se-
lected so as to have only one order reflected in the isotropic medium.
Four values of h=d were considered: 0.01, 0.1, 0.2, and 0.3.
In Fig. 2 we show curves corresponding to the the co-polarized re-

flection efficiency of the zeroth reflected order r0ss as a function of the
angle of incidence. As it can be appreciated in this figure, this efficiency
is very small except for near grazing incidence, where almost all the in-
cident energy is reflected back to the isotropic medium.
To show the effects of the orientation of the plane of incidence for

this grating, we have varied ' while maintaining the orientation of the
optic axis fixed. In Fig. 3(a) and (b), we have plotted the efficiencies
of the zeroth transmitted order of the electric and magnetic type for TE
incidence (t0s1 and t0s2, respectively), for 0 < ' < 75�; h=d = 0:1
and the same constitutive parameters as in the previous figures. As it
can be seen from these curves, these transmitted efficiencies drastically
change when ' is varied; for example, it is observed that efficiency t0s1
at normal incidence, drops approximately from 0.45 for ' = 0� to
zero for ' = 45�. Besides, Fig. 3(a) shows that, when the optic axis is



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 2, FEBRUARY 2006 755

parallel to the plane of incidence (' = 45�); t0
s1 vanishes, a result that

is related to the polarizations of the fields.

IV. CONCLUSION

A formulation of the Rayleigh method for calculating the elec-
tromagnetic fields scattered by a periodically corrugated interface
between an isotropic material and a gyroelectromagnetic uniaxial
medium has been presented. The present method can handle gen-
eral configurations in which the incident beam is associated to waves
coming either from the isotropic or from the gyroelectromagnetic side
and any orientations with respect to the grooves of the grating for the
plane of incidence and for the optical axis of the anisotropic medium.
Perfect agreement between the numerical results obtained with this
formalism and previous results has been observed for for perfectly
flat (h=d ! 0) gyroelectromagnetic interfaces and for corrugated
gratings in classical mountings with the optic axis of the anisotropic
material in the plane of the interface. Results for sinusoidal gratings
with different values of h=d in classical and conical mountings were
presented.
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Negative Group Velocity and Anomalous Transmission in a
One-Dimensionally Periodic Waveguide

Ruey Bing Hwang

Abstract—This study presents a theoretical investigation of the negative
group velocity (NGV) and anomalous transmittance of waves in the stop
band of a corrugated parallel-plate waveguide (CPPWG). The two different
schemes, scattering analysis for a finite CPPWG and the dispersion rela-
tion of an infinite CPPWG, were used to investigate the physical insight of
the wave process. The NGV zone corresponds to the stopband slanted at
an angle on the Brillouin diagram, following the mutual verification of the
results obtained by the two different approaches. This class of stopband is
caused by the contra-flow interaction between the fundamental mode and
the space harmonics of higher-order modes. Additionally, fluctuation was
also found in the transmitted coefficient within the conventional stopband,
caused by the excitation of the first higher-order mode within the stopband
of the fundamental mode.

Index Terms—Corrugated waveguide, negative group velocity, periodic
structures.

I. INTRODUCTION

The superluminal group velocity (that is, faster than the speed of
light, c, in vacuum) and negative group velocities (NGVs) of the waves
in an anomalous dispersion medium have previously been theoretically
and experimentally studied [1]–[5]. Recently, Siddiqui, Mojahedi and
Eleftheriades [6] designed a new artificial medium having both the
Negative Refractive Index and the NGV properties. In their proposed
framework, a resonant circuit is embedded within each loaded trans-
mission line unit cell, generating an anomalous dispersion zone with a
negative group delay [6]. Besides, dispersion analysis of Sievenpiper’s
shielded structure using multi-conductor transmission-line theory was
carried out and the formation of a slanted stopband formed due to
contra-directional coupling between the fundamental backward-wave
harmonic and the underlying parallel-plate mode was found [7].
In this paper, the NGVs property of the waves guided in a corru-

gated parallel-plate waveguide (CPPWG) was investigated. The struc-
ture under consideration is a parallel-plate waveguide with periodic
variation (corrugation) on its bottom wall. Such a CPPWG structure
has been widely studied with its guiding characteristics in the pass- and
stopbands regions [8]–[12], and has also been employed to design a sur-
face-wave antenna [13]. Here, we took this structure as an example to
examine its NGVs property, because that the structure is simple and the
mathematical formulation is straightforward. Significantly, dispersion
relation of the source-free fields supported by the CPPWG of infinite
extent can be exactly predicted.
A rigorous mode-matching method was applied to study such a elec-

tromagnetic boundary-values problem consisting of multiple disconti-
nuities. The input-output relation for each discontinuity was first for-
mulated and expressed in terms of the generalized scattering matrix
[14]. The scattering characteristics of the overall structure could be ob-
tained by cascading the respective scattering matrix. Besides, the dis-
persion relation of the infinite periodic structure can be obtained by im-
posing the Bloch (periodic boundary) condition at the input and output
interfaces of a unit cell. The dispersion relation was further converted
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