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Vector theory of diffraction by gratings made
of a uniaxial dielectric–magnetic material
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Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of
vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric–magnetic material is formulated as a
boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting
materials: those with negative definite permittivity and permeability tensors and those with indefinite permit-
tivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting
materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation
of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively
similar to that for conventional gratings: a finite number of refraction channels are supported. On the other
hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction chan-
nels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Op-
tical Society of America
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. INTRODUCTION
uring the past five years, much research has been re-
orted on the electromagnetic responses of negatively re-
racting, isotropic dielectric–magnetic materials.1–3 Mate-
ials with these constitutive properties are characterized
y a negative index of refraction because the phase veloc-
ty vector is in the opposite direction of the energy flux. As

cCall et al.4 and Boardman et al.5 have pointed out, it is
est to call these materials negative-phase-velocity (NPV)
aterials. Of late, focus is shifting to anisotropic materi-

ls wherein the phase velocity vector is not necessarily
ntiparallel to the time-averaged Poynting vector but—
ore generally—casts a negative projection thereupon.6

his is because the NPV materials synthesized thus far
re actually anisotropic in nature, and any hypothesis
bout their isotropic behavior holds only under some re-
trictions on propagation direction and polarization state.
urthermore, the use of anisotropic NPV materials offers
exibility in design and ease of fabrication.7–11

An important device in optics is the surface-relief
rating.12 Therefore, last year we began to investigate dif-
raction of plane waves by gratings made of isotropic NPV
aterials.13–15 We were motivated by two reasons. First,
PV materials promise new types of grating that could be

ignificantly different from those made with their
ositive-phase-velocity (PPV) counterparts. Second, all
xperimental realizations of NPV materials thus far are
0740-3224/06/030514-15/$15.00 © 2
s periodically patterned composite materials, with the
nit-cell size smaller, although not extremely, than the
avelength. Owing to this finite electrical size of the unit

ell, the exposed surface of a NPV material is not specu-
arly planar but periodically modulated instead.16,17 We
ound that—when the boundary between vacuum and a
sotropic, homogeneous dielectric–magnetic material is
eriodically corrugated—the replacement of a NPV dif-
racting material by its PPV analog affects mainly the
onspecular reflectances and refractances when the cor-
ugations are shallow and that the effect on the specular
eflectance and refractance intensifies as the corrugations
eepen.
We went on to compute diffraction by gratings made of
uniaxial dielectric–magnetic material under the condi-

ion that the polarization states of the incident plane
ave and of the reflected and the refracted Floquet har-
onics are identical and either s or p polarized.18 We

dapted the Rayleigh method for this purpose and ig-
ored dissipation in the diffracting material. Under cer-
ain conditions fulfilled by the constitutive properties of
he diffracting material, such gratings were found to sup-
ort an infinite number of refracted Floquet harmonics; it
as also found that in these cases the Rayleigh method
ither lacked good convergence or completely failed, even
ithin the expected validity range of the Rayleigh hy-
othesis. More recently, with a scalar version of the dif-
006 Optical Society of America
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erential method of Chandezon et al. and other
esearchers19–23—also called the differential method and
he C method—this lack of convergence was shown to be
elated to the existence of an infinite number of refraction
hannels and not to be exclusive to the Rayleigh
ethod.24

In this paper, we extend our consideration to the gen-
ral case when the polarization states of the reflected and
he refracted Floquet harmonics can be different from the
olarization state of the incident plane wave (which is
till taken to be linear). Four constitutive scalars are
eeded to characterize the diffracting material: �� and ��,
hich are the respective elements of the relative permit-

ivity and relative permeability tensors along the optics
xis, and �� and ��, which are the elements of the two
ensors in the plane perpendicular to the optic axis. These
calars have positive real parts for natural crystals, but
heir real parts can have any sign for artificial (but still
ffectively homogeneous) materials. The dispersion equa-
ion for plane waves in such a material can be factorized
nto two terms, leading to the conclusion that the mate-
ial supports the propagation of two different types of lin-
arly polarized wave, called magnetic and electric
odes.25,26 The geometric representation of these disper-

ion equations in the wave-vector space depends on cer-
ain relevant properties of the relative permittivity and
he relative permeability tensors and may take unusual
orms, compared with the case of natural crystals.27

As the relative permittivity and permeability tensors of
he (nondissipative) diffracting material are real symmet-
ic, each can be classified as (i) positive definite, (ii) nega-
ive definite, or (iii) indefinite.28 If all eigenvalues of a real
ymmetric tensor are �0, it is positive definite; if all ei-
envalues are �0, it is negative definite; but if it has both
egative and positive eigenvalues, then it is indefinite.
hus, the relative permittivity tensor is positive definite

f ���0 and �� �0; it is negative definite if ���0 and ��

0; and it is indefinite if ���� �0. A similar classification
pplies to the relative permeability tensor. If both �̃ and �̃
re positive definite, the material is of the PPV kind. We
ave recently shown27 that, depending on the combina-
ion of permittivity and permeability tensors, magnetic
nd electric propagating modes can exhibit dispersion
urfaces in the form of (a) ellipsoids of revolution, (b) one-
heet hyperboloids, or (c) two-sheet hyperboloids. Thus,
epending on the relative orientation of the optic axis,
ircles, ellipses, hyperbolas, or straight lines can be ob-
ained as a result of the intersection between these sur-
aces and a fixed plane of propagation.

The plan of this paper is as follows. Section 2 contains a
escription of the boundary-value problem for the diffrac-
ion of a plane wave by a surface-relief grating made of
he chosen anisotropic NPV material, and the description
f the differential method adopted to solve the problem
umerically is presented in Section 3. Section 4 is devoted
o a discussion of numerical results for two important
lasses of the diffracting material: either both the relative
ermittivity and the relative permeability tensors are
egative definite (Subsection 4.A) or both are indefinite
Subsection 4.B). The case of deep gratings is considered
n Subsection 4.C. Concluding remarks are provided in
ection 5. An exp�−i�t� time dependence is implicit, with
as angular frequency, t as time, and i=�−1. A Cartesian
oordinate system Oxyz is used, such that the x and z axis
re perpendicular and parallel, respectively, to the grat-
ng grooves.

. BOUNDARY-VALUE PROBLEM
et us consider the diffraction of a plane wave at a peri-
dically corrugated boundary between vacuum and a lin-
ar, homogeneous, nondissipative, uniaxial dielectric–
agnetic medium. The relative permittivity and

ermeability tensors of the diffracting medium share the
ame optic axis denoted by the unit vector ĉ, and their
our eigenvalues are denoted by ��,� and ��,�; thus,

�̃ = ��Ĩ + ��� − ���ĉĉ,

�̃ = ��Ĩ + ��� − ���ĉĉ, �1�

n dyadic notation with Ĩ as the identity dyadic.29 The ori-
ntation of the optic axis

ĉ = x̂ sin �c cos �c + ŷ cos �c + ẑ sin �c sin �c �2�

s given by the spherical angles �c, the angle between the
ptic axis and the y axis, and �c, the angle between the x
xis and the projection of the optic axis onto the xz plane;
ee Fig. 1.

The grating surface described by the periodic function
=a�x�=a�x±d� is illuminated from the vacuous half-
pace �y�a�x�� by either an s- or a p-polarized plane
ave, with its wave vector k� i lying on the mean section of

he grating (xy plane) and forming an angle �0 with the y
xis; i.e.,

k� i = �0x̂ − 	0ŷ,

�0 = k0 sin �0,

	0 = k0 cos �0, �3�

here k0 denotes the vacuum wavenumber.
In the region y�max a�x�, the electromagnetic fields

re rigorously represented by the following Floquet ex-
ansions:

ig. 1. Schematic for the incident wave vector k� i and the optic
xis of the diffracting medium.
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�
1 = �A�p��	0

�1�

k0
x̂ +

�0

k0
ŷ	 + A�s�ẑ
exp�i��0x − 	0

�1�y��

+ �
n=−


+
 �Rn
�p��−

	n
�1�

k0
x̂ +

�n

k0
ŷ	 + Rn

�s�ẑ
exp�i��nx

+ 	n
�1�y��, �4�

�
1 = �A�s��−

	0
�1�

k0
x̂ +

�0

k0
ŷ	 + A�p�ẑ
exp�i��0x − 	0

�1�y��

+ �
n=−


+
 �Rn
�s��	n

�1�

k0
x̂ −

�n

k0
ŷ	 + Rn

�p�ẑ
exp�i��nx + 	n
�1�y��.

�5�

n the foregoing expressions, A�s� and A�p� are complex-
alued amplitudes that define the polarization state of
he incident plane wave; Rn

�s� and Rn
�p� are unknown

omplex-valued amplitudes of the reflected Floquet har-
onics; and

�n = �0 + 2�n/d,

	n
�1� = + �k0

2 − �n
2�1/2. �6�

In the diffracting medium, the total fields in the region
elow the corrugations �y�min a�x�� can also be rigor-
usly represented by Floquet expansions, now in terms of
lectric-type (superscript E) and magnetic-type (super-
cript M) plane waves, as follows:

E� 2 = �
n=−


+


�Cn
�E�e�n

�E� exp�ik�n
�E� · r�� + Cn

�M�e�n
�M� exp�ik�n

�M� · r���,

�7�

H� 2 = �
n=−


+


�Cn
�E�h� n

�E� exp�ik�n
�E� · r�� + Cn

�M�h� n
�M� exp�ik�n

�M� · r���.

�8�

n these expressions k�n
�l�=�nx̂+	n

�l� ŷ �l=E ,M� are the
ave vectors associated with the Floquet harmonics of

he electric and magnetic types. These wave vectors are
ound as solutions satisfying the radiation condition as y

−
 of the dispersion equations29

k�n
�E� · �� · k�n

�E� = k0
2������, �9�

or Floquet harmonics of the electric type, and for the
agnetic Floquet harmonics we have

k�n
�M� · �̃ · k�n

�M� = k0
2������. �10�

he vectors e�n
�l� �l=E ,M� specify the polarization state of

he electric field associated with the electric and magnetic
loquet harmonics, and the vectors h� n

�l� �l=E ,M� are re-
ated to e�n

�l� according to the time-harmonic Maxwell equa-
ions. The unknown complex-valued amplitudes of the re-
racted Floquet harmonics are denoted by C�E� and C�M�.
n n
. DIFFERENTIAL METHOD
et us now briefly outline the main steps of the differen-

ial method for the chosen gratings, following closely the
otation used by Li20 for anisotropic dielectric gratings.
irst, to encompass gratings whose profiles are overhang-

ng or have a vertical or almost vertical facet, we intro-
uce an oblique Cartesian coordinate system �Ox1x2x3� as

x1 = x − y tan �,

x2 = y sec �,

x3 = z, �11�

here the directions of the x1 and the x axes coincide and
is the angle between the x2 and the y axes. Second, an-

ther coordinate system �Ox1x2x3� is then defined by

x1 = x1,

x2 = x2 − a�x1�,

x3 = x3. �12�

nder the transformations (11) and (12), the periodically
orrugated boundary is transformed into a plane, thus
implifying the treatment of the boundary conditions but
equiring us to express the time-harmonic Maxwell equa-
ions in the transformed coordinates as follows20:

�����H� = − ik0�g���E�, �13�

�����E� = ik0�g���H�. �14�

ere, ���� /�x�, g= �Det�g����−1 and g�� is the contravari-
nt metric tensor, ��� is the permutation tensor of rank
hree,30 and the summation convention applies. The
uantities ��� and ��� are the components of the tensors �̃
nd �̃ in the coordinate system Ox1x2x3, obtained by the
ensor transformation rules.

The essence of the differential method is the solution of
he Maxwell equations (13) and (14) by transforming
hem into a matrix eigenvalue problem in Fourier space.
he electric and magnetic fields are expanded as the
loquet–Fourier series

E��x1,x2� = �
n

E�n�x2�exp�i�nx1�, �15�

H��x1,x2� = �
n

H�n�x2�exp�i�nx1�, �16�

hich are then substituted into Eqs. (13) and (14). How-
ver, the Fourier series of ��� and ��� cannot be substi-
uted directly because that step slows down numerical
onvergence when grating profiles have sharp edges. To
void this problem, one can exploit the theory of Fourier
actorization. We refer the reader to Li20 for details on
his point—basically, the procedure consists of finding the
ourier factorization of D�=���E� and B�=���H�. There-
fter, the Fourier analogs of Eqs. (13) and (14) are ob-
ained as
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������H��m = − ik0�g�
n

�e���mnE�n, �17�

������E��m = ik0�g�
n

�m���mnH�n, �18�

here e�� and m�� are now submatrices of the 3�3 block
atrices e and m, respectively, as provided in Appendix
.
If the medium is isotropic, then ���=�g�� and ���

�g��. Accordingly, Eqs. (17) and (18) can be greatly sim-
lified, leading to

������H��m = − ik0�g�� �G���mnE�n, �19�

n e

n

d

H
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t
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������E��m = ik0�g��
n

�G���mnH�n, �20�

here G�� is also given in Appendix A.
Once the Fourier analysis is complete, the derivation of

he eigenvalue problem is straightforward. In the vacuous
egion, with either F=E or F=H, we have

− i�2�F3

F3�
	 = � 0 1

�G22�−1�2 − �G22�−1��G12 + G21��
�F3

F3�
	 ,

�21�

here � is a diagonal matrix with diagonal elements �m,

3�=−i�2F3, and the matrix �2 is defined as �2=k0
2Ĩ

g11�2. In the diffracting medium, the corresponding

quation is
− i�2
E3

H3

H1

E1

� = �
− T12� �0T13 �0T11 0

− �0Z13 − Z12� 0 − �0Z11

− �T22� + �0Z33 − �T23 + Z32� − �T21 �0Z31

− �Z23 + T32� �Z22� − �0T33 − �0T31 − �Z21

�
E3

H3

H1

E1

� , �22�
here �0=k0 cos � and Z�� and T�� are matrices provided
n Appendix B.

Since the matrices on the right side of expressions (21)
nd (22) do not depend on x2, the search for solutions
eads to the prescription of an eigenvalue problem in each
egion:

Ax = �x. �23�

ere A and x are the matrix and the column vector in Eq.
21) for the vacuous region and in expression (22) for the
iffracting medium, whereas � denotes the eigenvalue.
The next step is to write the total fields in regions y
a�x� and y�a�x�. In the vacuous side, the total field can

e written as a superposition of the incident wave and all
he eigensolutions that correspond to positive real eigen-
alues or to complex eigenvalues with positive imaginary
arts. In practice, we replace the real eigensolutions with
heir Rayleigh counterparts. Thus, we write the z compo-
ent of the the total field as

F3 = A�f� exp�i��0x1 + 	̃0
�1�−x2�� + �

n�U+

Rn
�f� exp�i��nx1

+ 	̃n
�1�+x2�� + �

m
exp�i�mx1� �

q�V+

F3mq exp�i�q
+x2�uq

�f�,

�24�

here f=s or p when F=E or H; U+ are the sets of inte-
ers n for which 	̃n

�1�+ are real and V+ are the sets of inte-
ers q such that the eigenvalues �q

+ of Eq. (21) have posi-
ive imaginary parts; A�f� and R�f� are the incident and
iffracted amplitudes; and 	̃n
�1�±=�n sin �±	n

�1� cos �.
The total field in the diffracting medium is given by

F = �
l=E,M

�
n�Ul

−

fn
�l� exp�i��nx1 + 	̃lnx2��Cn

�l�

+ b��
m

�
q�V−

F�mq exp�i��mx1 + �q
−x2��dq. �25�

ere, Ul
− and V− are the sets of integers that, respectively,

epresent the downward propagating Rayleigh waves and
he downward evanescent eigensolutions of the eigen-
alue problem in the diffracting medium, Cn

�l� and dq are
he corresponding unknown field amplitudes, and b� are
he contravariant basis vectors of the system Ox1x2x3. Be-
ause it is possible that only one of the two downward
aves is propagating (electric or magnetic), the sets Ul

−

epend on the subscript l. The vectors fn
�l� are equal either

o e or h and are determined in the coordinate system
xyz. The eigenvalues 	̃ln are in the coordinate system
x1x2x3 and are related to the eigenvalues 	n

�l� in system
xyz via the tensor transformation rules as 	̃ln=�n sin �

	n
�l� cos �.
Having found the general forms of the total electromag-

etic fields everywhere, we can obtain the unknown
omplex-valued amplitudes by matching the boundary
onditions at the interface.

After the determination of the Floquet expansion coef-
cients, the diffraction efficiencies31 for the propagating
lane-wave components of the reflected or refracted fields
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an be calculated as ratios between the diffracted and the
ncident intensities. These diffraction efficiencies are de-
ned as

�n
ls = �Re�	n

�1�� �Rn
l �2

	0
�1� �A�s��2

�
A�p�=0

,

�26�

�n
lp = �Re�	n

�1�� �Rn
l �2

	0
�1� �A�p��2

�
A�s�=0

�l = s,p�,

or the reflected Floquet harmonics of order n. Likewise,
or the refracted harmonics we have

�n
ls = − � �Cn

�l��2

�A�s��2
k0

	0
�1�

Re��e�n
�l� � �h� n

�l��*� · ŷ��
A�p�=0

�l = E,M�,

�27�

�n
lp = − � �Cn

�l��2

�A�p��2
k0

	0
�1�

Re��e�n
�l� � �h� n

�l��*� · ŷ��
A�s�=0

�l = E,M�,

�28�

ith the asterisk denoting the complex conjugate and Re
eaning the real part.

ig. 2. Specular refraction efficiencies versus the angle of incide
lluminated from the vacuous region, when the constitutive scal
ndicated on the plots. (a) �0

Es, (b) �0
Ms, (c) �0

Ep, and (d) �0
Mp.
. NUMERICAL RESULTS AND DISCUSSION
e applied the described differential method to investi-

ate grating configurations with different characteristics
f the permeability and the permittivity tensors. Basi-
ally, we considered cases in which these tensors are posi-
ive definite (��,� �0 ��,� �0), negative definite (��,� �0
nd ��,� �0), and indefinite (���� �0 and ���� �0).
For the sake of illustration, we present results for the

ollowing four sets of constitutive parameters:
Case IP, positive definite constitutive tensors: ��=2.1,

�=1.9, ��=1.3, and ��=1.6.
Case IN, negative definite constitutive tensors: ��

−2.1, ��=−1.9, ��=−1.3, and ��=−1.6.
Case IIA, indefinite constitutive tensors: ��=−2.1, ��

1.9, ��=1.3, and ��=−1.6.
Case IIB, indefinite constitutive tensors: ��=2.1, ��

−1.9, ��=−1.3, and ��=1.6.
For cases IP and IN (both constitutive tensors either

ositive or negative definite), both of the dispersion sur-
aces for the propagating refracted harmonics are ellip-
oids of revolution, as in natural crystals. Depending on
he orientation of the optic axis, the intersections between
hese surfaces and fixed planes of propagation are either
ircles or ellipses. For cases IIA and IIB (indefinite consti-
utive tensors), the dispersion surfaces for the propagat-
ng refracted harmonics are one-sheet hyperboloids of

for a sinusoidal grating delineated by Eq. (29) with h /d=0.1 and
e chosen for case IP, �0=1.1d, and �c=90°. The values of �c are
nce �0
ars ar
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evolution whose intersections with the fixed planes of
ropagation are circles, ellipses, hyperbolas, or straight
ines—depending on the orientation of ĉ.27

. Optic Axis in the xz Plane
e chose the sinusoidal grating profile

a�x� =
h

2
cos�2�x

d 	 �29�

nd set �c=90° in Eq. (2). Accordingly, Eq. (9) gives the
ollowing dispersion equation for the refracted Floquet
armonics of the electric type:

� ��

��

cos2 �c + sin2 �c	�n
2 + �	n

�E��2 = k0
2����. �30�

he analogous equation for modes of the refracted Flo-
uet harmonics of the magnetic type from Eq. (10) is

� ��

��

cos2 �c + sin2 �c	�n
2 + �	n

�M��2 = k0
2����. �31�

Let us start with cases IP and IN, both characterized
y elliptic dispersion equations. Specular refraction effi-
iencies against the angle of incidence �0 for both cases
re plotted in Figs. 2 and 3, for incident s- and
-polarization states, when �0 /d=1.1 and h /d=0.1.
urves for seven different values of �c are presented in

hese figures. In Fig. 2, we observe that the zeroth re-

Fig. 3. Same as
racted harmonics of both electric and magnetic types to-
ether carry almost all the energy incident onto the grat-
ng, except for near-grazing incidence angles for which
pecular reflection is highly intense. This behavior is ob-
erved for all orientations of the optic axis.

However, although for a flat boundary the (specular) re-
raction efficiencies for cases IP and IN are identical,32

ifferences appear in the diffraction efficiency plots for
/d�0, as can be appreciated by comparing Figs. 2 and 3.
hereas �−1

��� (�=E ,M; ��=s ,p) are negligibly small for
ase IP (and therefore not presented), these are not neg-
igible for case IN—as may be gathered from Fig. 4. Thus,
s expected, all refraction efficiencies are affected by the
ype of diffracting medium.

Weak Rayleigh–Wood anomalies12 manifested as dis-
ontinuities in the curves can be observed at those angles
f incidence at which a refracted harmonic propagates
arallel to the interface, for example, at �0=28.14° ��c
90° �, �0=28.47° ��c=75° �, and �0=29.38° ��c=60° � at
hich the refracted Floquet harmonic of the electric type
nd order n=1 changes from being propagating to evanes-
ent or at �0=43.03° ��c=60° �, �0=39.47° ��c=45° �, and
0=36.33° ��c=30° � at which the refracted Floquet har-
onic of the magnetic type and order n=1 changes simi-

arly.
Let us now go on to cases IIA and IIB. As we have al-

eady mentioned, the dispersion equations for these cases
an be hyperbolic or elliptic, depending on the value of �c.
rom Eqs. (30) and (31), we can deduce that, starting

, but for case IN.
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rom �c=0°, there is a critical angle at which the disper-
ion curves change from hyperbolic to elliptic. For re-
racted harmonics of the electric type, this angle is

�c
e = tan−1��− ��/���1/2�, �32�

hereas for the refracted harmonics of the magnetic type,
he critical angle is given by

�c
m = tan−1��− ��/���1/2�. �33�

hen �c=�c
e, the dispersion curves for refracted Floquet

armonics propagating in the xy plane are straight lines
electric type) and hyperbolas (magnetic type), whereas,
or �c=�c

m, the dispersion curves are ellipses (electric
ype) and straight lines (magnetic type).

Figure 5 contains the reciprocal space maps for cases
IA and IIB for four orientations of the optic axis: �c
30° (both dispersion curves are hyperbolic), �c=�c

e

43.57° (electric type is linear and magnetic type is hy-
erbolic), �c=45° (electric type is elliptic and magnetic
ype is hyperbolic), and �c=�c

m=47.97° (electric type is el-
iptic and magnetic type is linear). For �c��c

m=47.97°,
he refracted Floquet harmonics of both types have ellip-
ic dispersion relations (not shown).

The graphical construction to find the wave vectors for
he refracted Floquet harmonics is indicated in Fig. 5.
he light gray circles represent the dispersion equation

or plane waves in the medium of incidence, and the hori-

ig. 4. Nonspecular refraction efficiencies versus the angle of
0.1 and illuminated from the vacuous region, when the constitu
c are indicated on the plots. (a) �−1

Es, (b) �−1
Ms, (c) �−1

Ep, and (d) �−1
Mp.
ontal, light-gray double arrows represent the quantity
� /d. Note that one obtains the value of �n by adding or
ubtracting an integer number times 2� /d from the x
omponent of the incident wave vector. In Fig. 5(a) we ob-
erve that—in contrast to what happens for all gratings
ade of conventional materials (for which the dispersion

quation for the Floquet harmonics has real-valued solu-
ions only in a limited n range)—the dispersion equations
or refracted Floquet harmonics of electric and magnetic
ypes give real-valued solutions for all values of n. For ex-
mple, for n=1 and harmonics of the electric type, we can
nd two wave vectors with real-valued components whose
components equal �1, one belonging to the upper hyper-
ola and the other to the lower hyperbola. The ray direc-
ions (that is, the direction of the time-averaged Poynting
ector) associated with these wave vectors are perpen-
icular to the hyperbolas. Significantly, wave vectors in
he upper hyperbola do not satisfy the radiation condition
n case IIA, whereas wave vectors in the lower hyperbola
o not satisfy the radiation condition in case IIB. Thus,
ave vectors and ray directions for harmonics of the elec-

ric type have y components with the same sign for case
IA, whereas they are counterposed33 for case IIB. For
agnetic modes, wave vectors and ray directions are

ounterposed for case IIA, whereas they have y compo-
ents with the same sign for case IIB.
The refracted wave vectors k�n

�E� for n=0 and 2 are also
hown in Fig. 5(a) for case IIA. Repeating the construc-

nce �0 for a sinusoidal grating delineated by Eq. (29) with h /d
alars are chosen for case IN, �0=1.1d, and �c=90°. The values of
trast, these nonspecular efficiencies are negligible for case IP.
incide
tive sc
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ion procedure described in the previous paragraph, we
ee that an infinite number of wave vectors k�n

�E,M� with
eal-valued components can be obtained for cases IIA and
IB, whenever 0��c��c

e. A curious situation occurs when
c=�c

e [Fig. 5(b)]: the dispersion equation for harmonics of
he magnetic type is still hyperbolic, but the dispersion
quation for harmonics of the electric type is linear, indi-
ating that all 	n

�E� are real valued and independent of n.
e have again a situation with an infinite number of re-

racted harmonics of both electric and magnetic types, but
ow all the projections onto the xy plane of the rays asso-
iated with the harmonics of the electric type are aligned
arallel to the −y axis, independently of the angle of inci-
ence �0.
When �c

e��c��c
m [Fig. 5(c)], the dispersion equation

or refracted harmonics of the magnetic type is still hyper-
olic, but the dispersion equation for the electric type is

ig. 5. Reciprocal space maps for cases IIA and IIB, when �c=
c=45°, and (d) �c=47.97°. The graphical construction to find the
lliptic, indicating the existence of an infinite number of
efracted wave vectors k�n

�M� but a finite number of trans-
itted wave vectors k�n

�E�, with real-valued components.
When �c=�c

m [Fig. 5(d)], the curves representing the
ispersion equation for refracted harmonics of the electric
ype continue to be ellipses, but the curves representing
he dispersion equation for the magnetic type become
traight lines parallel to the x axis. In the same manner
s for harmonics of the electric type when �c=�c

e, now all

n
�M� are real valued and independent of n. Thus, there is
n infinite number of refraction channels of the magnetic
ype, with all the projections onto the xy plane of the re-
racted rays aligned parallel to the −y axis regardless of
he angle of incidence. These projections are indicated in
ig. 5(d) by gray arrows for harmonics of orders n=0, 1,
nd 2.

d �0 /d=1.1; kx=k� · x̂ and ky=k� · ŷ. (a) �c=30°, (b) �c=43.57°, (c)
ted Floquet harmonics is not shown in (c) for the sake of clarity.
� /2 an
refrac
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When �c��c
m, the dispersion equation for refracted

armonics of both electric and magnetic types are elliptic,
hereby indicating the existence of a finite number of
ransmitted wave vectors k�n

�E,M� with real-valued compo-
ents. This situation is the same as for natural crystals.
As has been already discussed elsewhere,18 the main

eature that appears in gratings with indefinite constitu-
ive tensors is the possibility of an infinite number of
ropagating harmonics refracting into the anisotropic dif-
racting medium. As computer implementations of the
heoretical methods developed for conventional gratings
including the present one) are based on a finite number
f propagating harmonics, particular attention must be
aid when they are applied to the study of the new kind of
rating. In situations in which the polarization state does
ot alter on diffraction, the Rayleigh and the differential
ethods have shown a lack of convergence,18,24 due to the

xistence of an infinite number of propagating refracted
loquet harmonics.
Because of experience with gratings made of materials

ith indefinite constitutive tensors, we carefully exam-

ig. 6. Reciprocal space maps for cases IIA and IIB, when �c=
45°, and (d) � =47.97°.
c
ned the convergence of the numerical results obtained
hrough the differential method reported here. For h /d
0.1 and �c=0°, 15°, 30°, 43.57°, 45°, 47.97°, 60°, 75°, and
0°, we obtained good convergence and satisfaction of the
rinciple of conservation of energy for all angles of inci-
ence. The efficiency curves for specularly refracted Flo-
uet harmonics of both the electric and the magnetic
ypes and for s- and p-polarized incident waves for cases
IA and IIB are similar to those for case IN and are not
hown. When the number of refracted propagating har-
onics is finite (in our example when �c��c

m, generally
hen �c�max��c

e ,�c
m�), we ascertained that good results

re obtained with the differential method for h /d�334;
owever, when the number of refracted propagating har-
onics is infinite, the differential method fails to give ad-

quate results for h /d�0.2.

. Optic Axis in the yz Plane
ext, we consider the optic axis ĉ lying in the yz plane. On

etting �c=90° in Eq. (2), for the refracted Floquet har-

d �0 /d=1.1; kx=k� · x̂ and ky=k� · ŷ. (a) �c=15°, (b) �c=43.57°, (c) �c
90° an
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onics of the electric type Eq. (9) gives the dispersion
quation

�n
2 + �sin2 �c +

��

��

cos2 �c	�	n
�E��2 = k0

2����, �34�

hereas, for the refracted Floquet harmonics of the mag-
etic type, Eq. (10) gives the dispersion equation

�n
2 + �sin2 �c +

��

��

cos2 �c	�	n
�M��2 = k0

2����. �35�

Taking into account that for cases IP and IN the disper-
ion equations are elliptic for all orientations of the optic
xis and that the characteristics of elliptic dispersion
quations have been extensively discussed for gratings
ade of natural crystals, we have elected here to not dis-

uss those two cases.
Cases IIA and IIB, however, allow for new possibilities,

.g., an infinite number of refraction channels. Indeed,
rom Eqs. (34) and (35), we find again that dispersion
quations for these two cases can be either elliptic or hy-
erbolic, depending on the orientation of the optic axis.
tarting from �c=0°, we can easily deduce the existence of
ritical angles for �c at which the dispersion curves
hange from hyperbolic to elliptic. For refracted harmon-
cs of the electric type, this angle is

ig. 7. Specular reflection efficiencies versus the angle of incide
lluminated from the vacuous region, when the constitutive scala
ndicated on the plots. (a) �0

ss, (b) �0
pp, and (c) �0

sp.
�c
e = tan−1��− ��/���1/2�, �36�

hereas for refracted harmonics of the magnetic type the
ritical angle is given by

�c
m = tan−1��− ��/���1/2�. �37�

hen �c=�c
e, the dispersion curves for refracted Floquet

armonics propagating in the xy plane are straight lines
electric type) and hyperbolas (magnetic type); however,
or �c=�c

m, the dispersion curves are ellipses (electric type)
nd straight lines (magnetic type). Values of the critical
ngle for cases IIA and IIB are �c

e=43.57° and �c
m

47.97°, respectively.
In Fig. 6, we have plotted the reciprocal space maps for

ases IIA and IIB for four orientations of the optic axis:
c=15° (both dispersion curves are hyperbolic), �c=�c

e

43.57° (electric type is linear and magnetic type is hy-
erbolic), �c=45° (electric type is elliptic and magnetic
ype is hyperbolic), and �c=�c

m=47.97° (electric type is el-
iptic and magnetic type is linear). For �c��c

m=47.97°, the
efracted Floquet harmonics of both types have elliptic
ispersion relations (not shown).
From the graphical constructions shown in Fig. 6 we

nd that—just as in Subsection 4.A—an infinite number
f Floquet harmonics can be propagated into the diffract-
ng medium. However, there are some differences be-
ween ĉ · ŷ=0 and ĉ · x̂=0 that lead to three rather curious
onsequences:

for a sinusoidal grating delineated by Eq. (29) with h /d=0.1 and
chosen for case IIA, �0=1.1d, and �c=90°. The values of �c are
nce �0
rs are
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First, the specularly refracted harmonics of both types
re not allowed to propagate when ĉ · x̂=0, but that re-
triction does not exist when ĉ · ŷ=0.

Second, it is possible that low-order (�n� small) re-
racted harmonics are not allowed to propagate when
ˆ · x̂=0, depending on the value of �0 /d, but that restric-
ion does not exist when ĉ · ŷ=0. For instance, when �0 /d
1.1, this distinction is shown by the refracted harmonics
f order n=−1.

Third, whereas for ĉ · x̂=0 the straight-line dispersion
urves corresponding to the critical angles �c

e and �c
m are

arallel to the x axis, leading to an infinite number of re-
racted harmonics, for ĉ · x̂=0 the straight-line dispersion
urves corresponding to the critical angles �c

e and �c
m are

arallel to the y axis and thus are not associated with an
nfinite number of refracted harmonics. Furthermore, for
ˆ · x̂=0 the refracted harmonics of the electric type associ-
ted with the linear dispersion curves can be excited only
or those angles of incidence �0 that satisfy the relation

sin �0 = ����� ± n
�0

d
, �38�

hereas refracted harmonics of the magnetic type associ-
ted with the linear dispersion curves can be excited only
f

ig. 8. Nonspecular refraction efficiencies versus the angle of
0.1 illuminated from the vacuous region, when the constitutive
re indicated on the plots. (a) �2

Es, (b) �2
Ms, (c) �2

Ep, and (d) �2
Mp.
sin �0 = ����� ± n
�0

d
, �39�

ith n as an integer. When these conditions apply, the
rojections onto the xy plane of the rays associated with
he linear dispersion curves are parallel to the x axis, re-
ardless of �0. We note that in these curious situations,
urrently under investigation, no power can be coupled
nto the diffracting medium through these channels.

Let us now turn to the diffraction efficiencies when the
rating profile is the sinusoid [Eq. (29)]. Specular reflec-
ion efficiencies for case IIA are plotted as functions of �0
n Fig. 7, for �c=15° and �c=30°. For both orientations of
he optic axis, the dispersion equations for the refracted
armonics are hyperbolic. The plots show that the copo-

arized specularly reflected harmonics carry almost all
he energy incident on the grating for all angles of inci-
ence, except at certain values of �0 where sharp dips are
bserved. At these angles, the specular cross-polarized re-
ection also exhibits peaks, reaching �0.16 for �c=15°
nd �0.2 for �c=30°.
Although the specularly refracted harmonics are eva-

escent, a strong coupling with refracted harmonics of
igher orders is observed, as we show in Fig. 8, where the
fficiencies of the refracted harmonic n=2 of both types
re plotted for both polarization states of the incident
lane wave for 0° �� �10°. The peaks are associated

nce �0 for a sinusoidal grating delineated by Eq. (29) with h /d
s are chosen for case IIA, �0=1.1d, and �c=90°. The values of �c
incide
scalar
0
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ith the excitation of surface plasmons at the periodic
oundary.17,18 One can approximately obtain the position
f the peaks by taking the real part of the zero of the char-
cteristic determinant of the system of linear equations
or the diffraction amplitudes.

Next, we consider two other orientations of the optic
xis: �c=60° and �c=75°. The dispersion curves for the re-
racted Floquet harmonics of the electric and the mag-
etic types are elliptic, resembling the IP and IN cases.
pecular refraction efficiencies for case IIA are plotted in
ig. 9, for both polarization states of the incident plane
ave. When the incident polarization state is s �p�, the

pecularly refracted harmonic of the magnetic (electric)
ype is weak in the plots presented.

The foregoing observation may be explained as follows.
hen the optic axis is oriented along the z axis (i.e., �c
90°), no polarization conversion takes place owing to dif-

raction, and the full boundary-value problem can be
eparated into two smaller problems for autonomous lin-
ar polarization states18; the refracted harmonics of the
lectric type have the s-polarization state, whereas those
f the magnetic type are p polarized. Although we are not
onsidering exactly this case, as �c→90°, it seems reason-
ble to obtain that tendency in our results. For a
-polarized incident plane wave, there is a coupling of en-
rgy into the n=−1 refracted harmonic of the magnetic
ype, which reaches a value of �0.22 at �0�22° (not
hown). The increased coupling into higher-order re-
racted harmonics was also observed in gratings with con-

ig. 9. Specular refraction efficiencies versus the angle of inci-
ence �0 for a sinusoidal grating delineated by Eq. (29) with
/d=0.1 and illuminated from the vacuous region, when the con-
titutive scalars are chosen for case IIA, �0=1.1d, and �c=90°.
he values of �c are indicated on the plots. Incident polarization
tate: (a) s, (b) p.
titutive parameters of case IN and is an important dif-
erence between materials with negative definite tensors
r indefinite tensors and conventional materials with
ositive definite tensors.
For orientations of the optic axis in �c regimes near

c
e,m, the numerical implementation of the differential
ethod becomes unstable, and results do not converge.
he problem near these singularities, currently under in-
estigation, is not totally understood, but it seems to be
elated to the fact that power fluxes associated with
ather vertical branches of the dispersion curves are al-
ost parallel to the x axis. Therefore, owing to the exis-

ence of numerical errors, great care must be taken to se-
ect those solutions of Eqs. (34) and (35) that satisfy the
adiation condition.

. Deep Sinusoidal Gratings
he gratings studied in Subsections 4.A and 4.B are not
eep because h /d=0.1. Let us therefore turn to deep grat-
ngs for which computational methods are often
roublesome.12,18,24 Sample results are presented for con-
titutive scalar sets belonging to case IIA and for �0 /d
1.1. We consider here two orientations of the optic axis:
ne leading to elliptic and the other to hyperbolic disper-
ion curves.

Tables 1 and 2 show the computed reflection and refrac-
ion efficiencies for sinusoidal gratings with different val-
es of h /d, for normally incident plane waves that are s

ig. 10. Specular reflection and refraction efficiencies versus
he angle of incidence �0 for a sinusoidal grating delineated by
q. (29) and illuminated from the vacuous region, when the con-
titutive scalars are chosen for case IIA, �0=1.1d, h /d=3.0, �c

90°, and � =60°. (a) �ss,pp,sp, (b) �Es,Ms,Ep,Mp.
c 0 0
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nd p polarized, respectively. The chosen orientation of
he optic axis (�c=90° and �c=60°) is such that the dis-
ersion curves for refracted harmonics of both types are
lliptic; hence, the number of refraction channels is finite.
he quantity indicated as PC in both tables should equal
nity, if the principle of conservation of energy is satis-
ed. We used Floquet harmonics of orders �n��35 for
.8�h /d�2.2 and �n��43 for h /d=3, which sufficed to
nsure that the principle of conservation of energy was
atisfied to an error of 1 part per million. As can be de-
uced from these tables, the differential method performs
ell for deep gratings with h /d�3.0.34

Figure 10 contains plots of the specular diffraction effi-
iencies as functions of �0 for the same parameters as in
ables 1 and 2 except that h /d=3.0. The specular copolar-

zed as well as the cross-polarized reflection efficiencies
uctuate quite significantly as the angle of incidence is
hanged. In particular, �0

pp equals 0.85 for normal inci-
ence and exceeds 0.4 for all �0. In contrast, �0

ss fluctuates
ess and peaks at 0.53 when �0�9°. Of course, both effi-
iencies tend to unity as �0→90°. The efficiency of polar-
zation conversion �0

sp is low, with a maximum value of
.32 when �0�14°. The specular transmission efficiencies
n Fig. 10(b) are small—except for �0

Es, which is low at nor-
al incidence, but then increases, with a maximum value

f approximately 0.45 at �0�54°.
Elsewhere18,24 we have shown that, in situations for

hich scalar analysis suffices and a full-vector analysis is
nnecessary, both the Rayleigh method and the differen-
ial method yield nonconvergent results for gratings made
f materials characterized by indefinite constitutive ten-
ors. The lack of convergence was attributed to the exis-
ence of an infinite number of propagating harmonics re-
racted into the grating medium. For further
nvestigation of this point, to provide our final example in
his paper, we reoriented the optic axis to � =30°, the

Table 1. Diffraction Efficiencies
Delineate

h /d=0.8 h /d=1.4

0
ss 0.1009�10−1 0.1617

0
Es 0.9989�10−1 0.1729

0
Ms 0.4802�10−2 0.7171�10−1

−1
Es 0.3288 0.1950

−1
Ms 0.2891�10−1 0.5541�10−1

C 1.00000 1.00000

aGratings have different values of h /d and are illuminated from the vacuous reg
1.1d, �c=90°, �c=60°, and �0=0°. The differential method was used with �n��43

Table 2. Same as Table 1 but for

h /d=0.8 h /d=1.4

0
pp 0.5117�10−1 0.4518

0
Ep 0.5353 0.1333

0
Mp 0.4526�10−1 0.2425�10−1

−1
Ep 0.4941�10−1 0.1553

−1
Mp 0.6664�10−1 0.6146�10−2

C 1.00000 1.00000
c

ther parameters remaining the same as for Tables 1 and
. Physically, this situation is completely different, how-
ver, since an infinite number of refracted Floquet har-
onics are allowed now to propagate. In Tables 3 and 4,
e present some diffraction efficiencies for different val-
es of h /d. These tables show that the differential method
ive adequate results for shallow gratings with h /d�0.2,
or which the efficiencies converge satisfactorily. For val-
es of h /d�0.2, the method becomes unstable, and the
omputed results do not satisfy the principle of conserva-
ion of energy. This observation is not surprising, and it
upports the connection between the lack of convergence
nd the existence of an infinite number of refraction chan-
els in the diffracting medium.

. CONCLUDING REMARKS
e applied the differential method to examine the diffrac-

ion of linearly polarized plane waves due to the periodi-
ally corrugated boundary of vacuum and a linear, homo-
eneous, nondissipative, uniaxial dielectric–magnetic
aterial. We specifically considered two classes of dif-

racting materials: those with negative definite permittiv-
ty and permeability tensors and those with indefinite
ermittivity and permeability tensors. The dispersion
quations turn out to be elliptic for the first class of dif-
racting materials. For the second class of diffracting ma-
erials, the dispersion equations can be hyperbolic, ellip-
ic, or linear, depending on the orientation of the optic
xis. When the dispersion equations are elliptic, a finite
umber of refraction channels are supported, just as for
ratings made of PPV materials.

We demonstrated with the aid of several examples that
yperbolic or linear dispersion equations imply the possi-
ility of an infinite number of refraction channels. This
act leads to difficulties with the differential method, par-

puted for Sinusoidal Gratings
Eq. (29)a

h /d=1.8 h /d=2.2 h /d=3.0

0.2087 0.3462 0.1552
0.2897 0.2938 0.3367�10−1

0.1331 0.5626�10−1 0.8214�10−1

5198�10−1 0.5789�10−1 0.3162
1796�10−1 0.5239�10−1 0.8214�10−2

1.00000 1.00000 1.00003

n s-polarized plane wave, when the constitutive scalars are chosen for case IIa, �0
inciple of conservation.

cident p-Polarized Plane Wave

h /d=1.8 h /d=2.2 h /d=3.0

0.3199 0.5955 0.8451
1489�10−1 0.2173�10−1 0.8824�10−2

4050�10−1 0.2934�10−1 0.8662�10−2

0.1789 0.1389 0.2888�10−1

1911�10−1 0.1153�10−2 0.7546�10−3

1.00000 1.00000 1.00002
Com
d by

0.
0.

ion by a
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icularly as the corrugations deepen, and nonconvergent
s well as unphysical results are obtained. Thus the
mergence of NPV materials has helped us comprehen-
ively identify a new research frontier in grating theory.

PPENDIX A
he matrix e in Eq. (17) is defined as
e = �
� 1

�11�−1 � 1

�11�−1� �12

�11� � 1

�11�−1� �13

�11�
� �21

�11�� 1

�11�−1 � �21

�11�� 1

�11�−1� �12

�11� +��22 −
�21�12

�11 � � �21

�11�� 1

�11�−1� �13

�11� +��23 −
�21�13

�11 �
� �31

�11�� 1

�11�−1 � �31

�11�� 1

�11�−1� �12

�11� +��32 −
�31�12

�11 � � �31

�11�� 1

�11�−1� �13

�11� +��33 −
�31�13

�11 �� , �A1�
here �f� stands for the Toeplitz matrix generated by the
ourier coefficients of a periodic function f, such that

f�mn= fm−n and ��� are components of �̃ in system Ox1x2x3.
ne obtains the matrix m in Eq. (18) from Eq. (A1) after

eplacing � with �. The G matrix used in Eqs. (19) and
20) is given by

G = sec2 ��
1 − ��ȧ� + sin �� 0

− ��ȧ� + sin �� cos2 � + ��ȧ� + sin ��2 0

0 0 cos2 �
� ,

�A2�

here ȧ=da /dx1.

PPENDIX B
he expressions of matrices Z are given in expressions

18) and (20) of Ref. 20:

Z11 = e11 − e12�e22�−1e21, Z12 = e12�e22�−1,

Z13 = e13 − e12�e22�−1e23,

Z21 = �e22�−1e21, Z22 =
1

�0
�e22�−1,

Z23 = �e22�−1e23,

Z = e31 − e32�e22�−1e21, Z = e32�e22�−1, �B1�
Z33 = e33 − e32�e22�−1e23.

xpressions of matrices T are obtained from Eqs. (B1) on
eplacing e by m.

CKNOWLEDGMENTS
. A. Depine and M. E. Inchaussandague acknowledge fi-
ancial support from Consejo Nacional de Investigaciones
ientíficas y Técnicas, Agencia Nacional de Promoción
ientífica y Tecnológica (ANPCYT-BID 1201/OC-AR-
ICT14099), and Universidad de Buenos Aires. A. La-
htakia thanks the National Science Foundation-funded
enter for the Integration of Research, Teaching, and
earning Project for partial support. Corresponding au-

hor M. E. Inchaussandague can be reached by e-mail at
ei@df.uba.ar. R. A. Depine’s e-mail address is

dep@df.uba.ar, and A. Lakhtakia’s e-mail address is
khlesh@psu.edu.

p-Polarized Plane Wave

h /d=0.1 h /d=0.15 h /d=0.2

0
pp 0.4948�10−2 0.2465�10−2 0.5204�10−3

0
Ep 0.7408 0.7358 0.7256

0
Mp 0.1798 0.1147 0.5440�10−1

−1
Ep 0.1519�10−2 0.3617�10−2 0.7302�10−2

−1
Mp 0.3264�10−1 0.5712�10−1 0.6991�10−1

C 1.00000 1.00000 1.00005
Table 3. Same as Table 1 but for �c=30°a

h /d=0.1 h /d=0.15 h /d=0.2

0
ss 0.3362�10−2 0.1436�10−2 0.1508�10−3

0
Es 0.2410 0.2337 0.2255

0
Ms 0.5794 0.4165 0.2547

−1
Es 0.5070�10−2 0.1022�10−1 0.1594�10−1

−1
Ms 0.7738�10−1 0.1396 0.1808
C 1.00000 1.00000 1.00006

aThe differential method was used with �n��35. Note that convergent results
ere not obtained for h /d�0.2.
Table 4. Same as Table 3 but for an Incident
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