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We investigate the occurrence of 1 / f spectra of low-frequency fluctuations in numerical simulations of
three-dimensional hydrodynamic and magnetohydrodynamic turbulence driven by a random forcing with a
controlled correlation time. A range of one decade of 1/ f spectrum is observed when a strong background
magnetic field is present. The frequency spectra of individual Fourier modes is also analyzed and it is observed
that the 1/ f range is present in the largest available wavelength mode for the magnetohydrodynamic simula-
tions with and without a background magnetic field and it is not observed �or is less clear� for the hydrody-
namic case. The presence of 1 / f spectra of low-frequency fluctuations is also analyzed for two-dimensional
magnetohydrodynamic and hydrodynamic turbulence simulations and it is observed in both cases. The origin
of these long period fluctuations is discussed.
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I. INTRODUCTION

The appearance of so-called 1/ f noise, or “flicker” noise
in a variety of natural and nonlinear systems is widely re-
garded as a signature of some kind of scale invariant feature
of the underlying dynamical processes. The distinctive char-
acteristic is a spectral density P�f� �the Fourier transform of
the two-time autocorrelation function �1�� of the form �1/ f
for some range of frequency f . This implies equal energy per
octave independent of f , for the corresponding range of fre-
quencies. Time records having a range of 1/ f spectral den-
sity have been reported in systems as wide ranging as elec-
tronics, tree growth, astrophysical dynamics, interplanetary
magnetic fields, and human activities such as music and the
stock market �2�. This widespread occurrence has motivated
theoretical activity to identify robust pathways for generating
this type of random fluctuation, loosely classified as “noise.”
Indeed, generic pathways for generating flicker noise have
been found, based, for example, in systems with broad dis-
tributions of characteristic time scales �3�, especially those
with scale invariant properties �2� which can emerge in many
systems having log-normal statistics associated with multi-
plicative processes �4�. The emergence of these properties in
nonlinear systems has been associated with unifying prin-
ciples, such as self-organized criticality �5�. Given the famil-
iarity of the set of conditions, especially in nonlinear sys-
tems, that can give rise to 1/ f noise, one might expect that
fluid turbulence, in some sense a paradigm of nonlinear be-
havior, would be a prime candidate for finding this signature.
As far as we are aware, however, there is no clear record of
identification of flicker noise in turbulence �see, however,
�6��, and no clear statements in the literature regarding the
conditions, if any, in which one might expect to see 1/ f noise
in a fluid. Here we address this problem directly, by exam-
ining numerical simulations of turbulence in hydrodynamic
and magnetohydrodynamic �MHD� turbulent flows as mod-

erate Reynolds number. We find some useful working prin-
ciples for deciding whether one expects to see flicker noise
for a range of turbulence parameters.

Turbulence is characterized by the involvement of mul-
tiple space and time scales �7�. Nonlinearity, by way of the
usual estimates, introduces a broad range of time scales. For
example, the local hydrodynamic nonlinear time �nl
=1/ �kvk�, in terms of wave-number mode k �length scale l
=1/k� and fluid velocity amplitude vk at scale 1 /k, extends
several orders of magnitude according to the amplitude vk

=�kE�k� that is obtained from the standard Kolmogorov ki-
netic energy spectrum, E�k���2/3k−5/3, with steady energy
transfer rate �. The nonlinear time at scale 1 /k is then �nl
��L /u��kL�−2/3 �with L a characteristic large scale and u the
root-mean-square �rms� velocity�, extending from the large
scale turnover time at kL=1 toward higher frequencies as kL
becomes large in the inertial range. In this picture, there is no
obvious way to generate correlated signals at frequencies
much lower than u /L.

MHD nonlinear time scales are similar to hydrodynamics.
However, MHD �Alfvén� waves can develop if a mean mag-
netic field is present. This can be a uniform dc magnetic field
B0 or a large local mean magnetic field. The waves introduce
additional time scales, so that if the equations are linearized,
MHD waves are associated with specific wave frequencies
obtained from a dispersion relation. The interplay of waves
and turbulent fluctuations �nonlinear activity� is actually a
complex topic in MHD plasmas �7�, pioneered by the works
by Kraichnan �8�. Indeed, much of the subject of MHD tur-
bulence is permeated by discussion of the balance of wave-
like and nonlinear activity.

The range of frequencies of the waves is readily esti-
mated. If a unit time is defined in terms of the largest length
scale in the system �in a simulation, the k=1 mode� and the
rms velocity, the nonlinear times extend from this unit time
toward higher frequencies associated with the upper inertial
range, and dissipative effects �at the end of the MHD scale
description and the beginning of kinetic physics effects�.
MHD wave periods can be interspersed among those values,
depending on the value of B0. This may include incompress-
ible Alfvén waves as well as magnetosonic �fast and slow�
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waves if compressible effects are taken into account.
If the only time scales are the nonlinear and wave time

scales, then one expects uncorrelated signals at frequencies
lower than the lowest frequency wave or the reciprocal of the
fundamental nonlinear time. This implies a flat frequency
spectrum. At higher frequencies a different power law is ex-
pected. To generate low-frequency 1/ f noise, it would appear
necessary to generate signals correlated in time over much
longer time scales than those that appear directly in the non-
linear dynamics, and for these signals to generate correla-
tions over a range of time scales. One would expect these
time scales which do not correspond directly to wave activity
nor to the usual local nonlinear time, but instead involve very
long time fluctuations of the fields.

If it appears, a f−1 spectral range contrasts with both the
flat uncorrelated lowest frequencies, and the steeper spec-
trum that can be observed in the nonlinear time range or
single peaks corresponding to the frequencies of the MHD
waves. One possibility at higher frequencies is a f−5/3 spec-
trum that could be explained, for example, by random
sweeping �9� of the smaller fluctuations by the large eddies.
Another possibility at higher frequencies is a f−2 power-law-
type spectrum that would imply a single correlation time
�defined in terms of the autocorrelation function� of the sig-
nal. A f−1 power-law spectrum means that there is no single
correlation time in the signal.

A related antecedent of the results shown here is the ob-
servation of 1 / f low-frequency noise in magnetic field fluc-
tuations in the solar wind �10,11�, which have so far re-
mained not well understood. MHD simulations of the solar
wind have attempted to show this type of fluctuation �12� but
with negative results. Although the MHD system considered
in this paper cannot be directly applicable to the solar wind
plasma, it is interesting to show when 1/ f-type fluctuations
appear in a basic situation as a step toward understanding the
more complex observational results. There has been a sug-
gestion of a 1/ f signal in some dynamo simulations �6�.
Below we find in particular that both MHD and hydrody-
namics can, in some circumstances, show ranges of approxi-
mately 1/ f spectral features at frequency much lower than
the reciprocal large scale eddy turnover time. The longest
wavelength modes of the driven system show this character-
istic most clearly, and when these large scale modes make
substantial contributions to the total energy budget, then one
can see the 1/ f signal in the single-point two-time correla-
tions, and the Eulerian frequency spectrum. This leads us to
the conclusion that fluid systems that admit an inverse cas-
cade are most likely to generate 1 / f noise.

II. EQUATIONS, NUMERICAL SIMULATIONS, AND
DIAGNOSTICS

The compressible MHD equations �momentum and induc-
tion equations� in dimensionless units are

�v

�t
+ v · �v = −

1

��Ms
2 � p +

j � B

�
+

1

R
��2v +

1

3
� � · v� ,

�1�

�b

�t
= � � �v � B� +

1

Rm
�2b , �2�

where v is the plasma velocity, B=b+B0 is the magnetic
field, with a fluctuating part b and a mean field �dc field� B0,
j=��b is the current density, p is the pressure, and � is the
plasma density. The units are based on a characteristic speed
v0, which for MHD is chosen to be the typical Alfvén speed
of the magnetic field fluctuations, v0=va= 	b2
1/2 /��0 �with
�0 the initial density�. The characteristic length scale is L,
where the simulation box side length is defined as 2�L. The
unit time is t0=L /v0 which for MHD becomes the Alfvén
crossing time. The dimensionless parameters appearing in
the equations are the kinetic and magnetic Reynolds numbers
R=v0L /�, Rm=v0L /� �with � the kinematic viscosity, � the
magnetic diffusivity� and the Mach number Ms=va /cs, with
cs the sound speed.

The equations are complete with the continuity equation

��

�t
+ � · ��v� = 0, �3�

and an equation of state, which here is the polytropic case, is
assumed here,

p

p0
= � �

�0
��

, �4�

where p0 and �0 are the initial pressure and density, and �
=5/3 �sound speed cs=��p0 /�0�.

Equations �1� and �2� are solved with a triply periodic
Fourier pseudospectral code. Results are reported here from
runs with resolutions of 1283 which allow several types of
simulations �varying forcing parameters and mean magnetic
field� and long time integrations, to obtain well-resolved fre-
quency power spectra.

The Reynolds numbers are R=Rm=400. The scheme en-
sures exact energy conservation for the continuous time spa-
tially discrete equations. The discrete time integration is
done with a second-order Runge-Kutta method. The method
ensures stabilized aliasing errors �13�.

The initial state consists of nonzero fluctuation amplitudes
for the velocity and magnetic field �in equipartition and with
total mean squares normalized to 1� random phased in the
k-space �wave-vector� shell 1	 �k�	4 �with k in units of
1 /L�. Initial uniform density and a low Mach number Ms
=0.25 are used. The initial cross helicity Hc= 	v ·b
 and mag-
netic helicity Hm= 	a ·b
 �with a the potential vector for the
fluctuating magnetic field� are small.

Driving terms are added to Eqs. �1� and �2� to achieve a
statistically steady state. This requires that we integrate the
equation for hundreds or thousands of characteristic nonlin-
ear times. The driving consists of independent vector forcing
terms fv, fb for the velocity and magnetic field evolution
equations. The forcing is k dependent �only a range of modes
are forced, with wave number between k=1 and k=2�, with
uncorrelated random intensities for each component at each
time step and a memory function which implies a controlled
correlation time of the driving. The forcing correlation time
is set up to be of the order of the unit time �largest nonlinear
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time�. The uncorrelated random intensities of the forcing
components assure no �statistical� injection of cross or mag-
netic helicity. This type of forcing represents a set of inco-
herent driven waves at a range of wave numbers. The ab-
sence of injection of cross or magnetic helicity is verified by
checking the values of these quantities after a long time. In a
typical run, for instance, the mean magnetic helicity is ap-
proximately 0.04, while the mean cross helicity is 0.006 �as
compared with kinetic and magnetic energy, approximately
1�. Temporary excursions of the magnetic helicity to positive
or negative values of approximately 0.5 in some cases are
however possible, a situation associated with the back-
transfer phenomena discussed in Sec. VI.

Probes are set in the simulation box, to obtain time series
of the fluctuating magnetic field or velocity field. Specifically
a plane is chosen in the middle of the simulation box and a
set of 64 probes in that plane, placed in a regular array of
8�8 points, is used to compute the extract data. A similar
procedure was employed in �14� to study the presence of
discrete modes within a turbulent system. A long time series
of the single-point data are obtained �2000 unit times dura-
tion� to compute the frequency power spectra at the position
of each probe. All spectra are computed from one Cartesian
component of the fluctuations time series. For cases with a
mean magnetic field, this component is perpendicular to the
mean-field direction. Sampling rate of the time series is 
t
=0.04 unit times, which are 25 samples per unit time. The
square absolute value of the fast Fourier transform of the
time series is used to compute the power spectrum. An aver-
age spectrum is constructed using the spectra from each
probe. This improves the statistics, reducing the noise, espe-
cially at high frequencies.

III. EULERIAN FREQUENCY SPECTRA IN
HYDRODYNAMICS AND MAGNETOHYDRODYNAMICS

We carried out driven, dissipative spectral method simu-
lations of hydrodynamics �HD�, incompressible MHD
�IMHD�, and compressible MHD �CMHD�. The Eulerian
frequency spectra �Fourier transform of the two-time, single-
point correlation function� were computed over very long
times as described above. Figure 1 compares the results for
the three cases. There is little or no suggestion of 1 / f behav-
ior in the HD case. The intriguing result for the two MHD
cases is that, while there is no clearly identified 1/ f range,
there is more low-frequency power than in the HD run. The
compensated spectra show a very gentle maximum well over
a decade of frequency in a range corresponding to 0.1 or
lower frequencies.

To further investigate the possibility that MHD can gen-
erate a 1/ f signal, we examine next a series of compressible
MHD runs with progressively stronger externally supported
mean �dc� magnetic field B0=0 ,1 ,2 ,8.

The frequency power spectra are shown in Fig. 2, for
different values of B0=0 ,1 ,2 ,8 from the top panel to the
bottom panel. Several features can be observed in the fre-
quency spectrum which extends for more than four orders of
magnitude in frequency. The nonlinear time for the k=1
mode �unit time� corresponds to a frequency f =1/ �2��

�0.16. The spectrum appears to be steep for higher frequen-
cies, corresponding to nonlinear times for different k modes.
Toward lower frequencies a 1/ f power-law-type range is ob-
served, and it is more prominent as the dc magnetic field
increases. The panels show the compensated spectra fP�f� to
highlight the 1/ f range �a constant value in the compensated
spectrum�. The range of 1/ f fluctuations is between 2
�10−3 to 2�10−1 for about two orders of magnitude. This is
more clear for larger B0, while it is not seen much for the
B0=0 case.

Another effect of the presence of a dc magnetic field B0
�0 is the appearance of a broad peak in the spectra at
around a frequency f =B0 / �2��. This value is f
=0.16,0.32,1.27 for B0=1 ,2 ,8, respectively. This peak cor-
responds to an Alfvén wave with frequency f = �kB0� / �2��
for k=1. Other peaks appear in the B0=8 frequency spectra,
corresponding to compressive-type MHD waves, as well as
higher wave-number �k� Alfvén waves.

The inset panels in Fig. 2 show the results of magnetic
field fluctuations for a single probe during 500 unit times �a
section of the full time series�, for the different values of the
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FIG. 1. Compensated frequency power spectrum fP�f� �average
over 64 probes� of magnetic field fluctuations for compressible
MHD �CMHD, top panel�, incompressible MHD �IMHD, middle
panel�, and velocity field fluctuations for incompressible hydrody-
namics �HD, bottom panel�. Units of Va

2 and V0
2 are used for the

spectra fP�f� and units of 1 / t0 are used for frequency f , as defined
in Sec. II.
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dc magnetic field. It can be observed that as the dc magnetic
field is increased there are longer time features observed in
the time series, which correspond to low-frequency activity.
The time features or oscillations observed are as long as 100
unit times, more clearly observed for the larger B0 case. The
noisy character of the spectra in the lowest decade of fre-
quencies is due to the small number of samples of these
fluctuations in the available time series. It is noted that the
forcing correlation time is set up to be 1 unit time, so the
observed features cannot be attributed to a direct result of the
forcing.

Two additional diagnostics are made, to understand the
properties of the observed low-frequency fluctuations. First,
we want to quantify the well-known phenomenon of the de-
velopment of anisotropy as the imposed magnetic field B0
become stronger. As a measure of anisotropy, we computed
the ratio of the two-dimensional mean-square magnetic field
fluctuations and the total mean-square magnetic field fluctua-
tions as a function of time, for different values of B0. If b
=keik·r, the two-dimensional part of the fluctuations is de-
fined as b2D=k�B0

eik·r, i.e., the sum of the modes with
wave number perpendicular to the dc magnetic field. When
there is no dc magnetic field, an arbitrary direction is chosen
to compute the two-dimensional part. Table I shows the fol-
lowing results: as B0 increases, the two-dimensional part be-
comes relatively larger, consistent with the well-known result
of the development of anisotropy of MHD in the presence of
a mean magnetic field �15–18�.

Another useful diagnostic is the ratio of the mean-square
vector potential �the fluctuating part� to the mean-square
magnetic field fluctuation, as a function of time, for different
values of B0. The fluctuating vector potential is a, such that
b=��a �the mean field B0 is not included in the computa-
tion�. The mean value of a is excluded from the computation
of 	a2
, that is, if

a = 
k

akeik·r, �5�

then 	a2
 is defined as

	a2
 = 
k�0

�ak�2. �6�

Since �bk�2=k2�ak�2, then the ratio 	a2
 / 	b2
 is a weighted
mean of 1/k2. This ratio can be interpreted as a characteristic
mean-square length scale. In theories of magnetic field line
diffusion �19� it is sometimes called the “ultrascale” because
it is independent of, and usually greater than, the correlation
scale. In Table I we can see that this ratio gets bigger as B0

TABLE I. Ratio of mean-square perpendicular magnetic field to
mean-square total magnetic field and of mean-square fluctuating
potential vector to mean-square magnetic field for different values
of the dc field B0, for compressible MHD runs.

B0=0 B0=1 B0=2 B0=8

	b2D
2 
 / 	b2
 0.34 0.39 0.59 0.94

	a2
 / 	b2
 0.48 0.38 0.55 0.87
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FIG. 2. Compensated frequency power spectrum fP�f� �in units
of Va

2� of magnetic field fluctuations �averaged over 64 probes� for
compressible MHD. Panels correspond to different values of the dc
magnetic field B0=0,1 ,2 ,8 �from top to bottom�. Units of 1 / t0 are
used for frequency f . The inset panels show the magnetic field
fluctuation �x component, in units of Va� in a single probe in a
selected period of time �in units of t0�.
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increases. This shows that the lower k modes become domi-
nant �in terms of power amplitude� as B0 gets larger.

The above two diagnostics suggest that as anisotropy be-
comes more dominant, the steady MHD state becomes more
dominated by the longest allowed wavelength. This provides
important clues to explain the more robust appearance of a
1/ f signal in the MHD cases with stronger B0.

IV. FREQUENCY SPECTRA OF INDIVIDUAL MODES

There is a relationship between low-frequency activity
�increased as B0 increases� and the lowest allowable modes
�k=1� in the system. To better assess this, a frequency power
spectrum is computed for different single k modes. This is
obtained from the time series of a mode bk�t�, with the
square absolute value of the fast Fourier transform of this
time series. Results are shown in Figs. 3 and 4.

Figure 3 shows the compensated frequency power spec-
trum for modes k= �1,0 ,0�, k= �0,0 ,1� and k= �2,0 ,0�,
where the three coordinates are x ,y ,z and the mean magnetic
field is B0= �0,0 ,B0�, with B0=8. The spectrum for the trans-
verse mode k= �1,0 ,0� shows a 1/ f range, whereas this is
not seen in the spectrum for the parallel mode k= �0,0 ,1�
which shows instead a clear peak at the Alfvén frequency f

=kB0 / �2��=1.27. The k= �2,0 ,0� also shows some low-
frequency activity but less clear than the k= �1,0 ,0� case.
The results of the modes with B0=8 are consistent with the
probe-point frequency spectrum shown in Fig. 2 and the di-
agnostics discussed for Table I. Here, with large B0, both
two-dimensional activity and low k modes are dominant, and
so the low-frequency activity is more clearly seen.

Figure 4 show results for B0=0 and modes k= �1,0 ,0�,
k= �2,0 ,0� both in compressible MHD �top panels� and in-
compressible MHD �middle panels�. Low-frequency activity
with a 1/ f range is seen for the k= �1,0 ,0� mode. The k
= �2,0 ,0� mode shows instead less low-frequency power in
the spectra. Unlike the probe-point frequency power spec-
trum shown in the top panel of Fig. 1 for the B0=0 case, the
mode frequency power spectra for the k=1 cases with B0
=0 shown in Fig. 4 have a low-frequency 1/ f range. It seems
then that the 1/ f low-frequency content is directly related
with the amount of power in the k=1 modes and, as was
shown in Table I, this is less important for lower values of
B0.

The bottom panels of Fig. 4 show the single mode results
for the HD case. There we can see that in neither k
= �1,0 ,0� mode, nor in the k= �2,0 ,0� mode, is there any
suggestion of 1 / f activity.

An additional set of simulations were done with higher k
forcing, 3�kf �4. No big differences are seen with respect
to the previous cases, although less power is seen in low-
frequency fluctuations for the B0=0 case. This is consistent
with the fact that less power exists in k=1 modes in com-
parison, due to the driving at higher k modes.
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V. TWO-DIMENSIONAL MAGNETOHYDRODYNAMICS
AND HYDRODYNAMICS RESULTS

A set of two-dimensional incompressible MHD and HD
turbulence simulations was also performed. This means that
the fluctuating magnetic field is b= �bx�x ,y� ,by�x ,y�� and the
velocity field is v= �vx�x ,y� ,vy�x ,y��. No dc field was con-
sidered for these simulations.

A similar procedure as for the three-dimensional case dis-
cussed in the paper is followed, adding driving terms to the
magnetic and velocity field equations and putting probes �in
this case in the single plane of the simulations� to compute
frequency spectra from the probes times series as well as
frequency spectra of individual modes. Resolution of the
runs is 1282, Reynolds numbers are R=Rm=400 and the total
time is 2000 eddy turnover times.

The Eulerian frequency spectra for the MHD and HD
cases are shown in Fig. 5. There is a clear indication of a 1/ f
low-frequency range for both MHD and HD. This is in con-
trast to results in three dimensions which showed no clear
hint of 1 / f range for the hydrodynamic case.

The frequency spectra of individual modes are shown in
Fig. 6. The top panels show the results for MHD for the x
component of the lowest wave-number mode k= �0,1� and
mode k= �0,2�. �Note that the x component of mode k
= �1,0� is 0 because of the incompressibility condition.� The
bottom panels show the HD results. In both cases, MHD and
HD, it is seen that the 1/ f range is present in the k= �0,1�
mode but is not observed �or less clear� in the k= �0,2�
mode.

VI. DISCUSSION AND CONCLUSIONS

These results indicate that the presence of 1 / f low-
frequency fluctuations in turbulence is directly related with
the behavior of the lowest wave-number mode in the system.
As an example of this, in three-dimensional MHD, when a
strong background magnetic field exists, the familiar type of
transverse spectral anisotropy is favored �15�, and the system
progressively two dimensionalizes. To the extent that this can
occur, the mean-square vector potential discussed at the end
of Sec. III asymptotically becomes an ideal quadratic invari-
ant �20�, and nonlinear couplings become less able to change
the value of this quantity. Accordingly, the system must en-
gage in stronger back transfer �or back scattering� of excita-
tions toward lower wave number. Therefore, the lowest
wave-number modes, with wave vectors perpendicular to the
mean field, become dominant �see Table I�, as we have seen
in the computations, and a 1/ f range of low-frequency fluc-
tuations is clearly observed. Consistent with this interpreta-
tion, the 1/ f signal is observed clearly in two-dimensional
MHD where the addition of a second strictly conserved qua-
dratic ideal invariant �20,21� ensures a genuine inverse cas-
cade.

For MHD, when there is no background magnetic field,
the existence of 1 / f fluctuations is observed in the spectrum
of the lowest wave-number mode, both in three and two
dimensions. For hydrodynamics, the spectrum of the lowest
wave number shows the existence of low-frequency fluctua-
tions but no clear 1 / f range in three dimensions. In contrast,
two-dimensional hydrodynamics show a 1/ f range in low-
frequency fluctuations for the lowest wave-number mode.

A consistent interpretation of all of these results is that the
1/ f range is associated mainly with the behavior of the long-
est wavelength modes, and seems to require the presence of,
or the tendency toward, back transfer into those modes. Evi-
dently, for three-dimensional �3D� hydrodynamics there is
insufficient tendency toward two dimensionalization to en-
able the back-transfer effects that make possible a strong 1/ f
signal. However, inspecting Fig. 4, one cannot rule out a hint
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of broadening of the peak in the 3D hydrodynamic fP�f�
spectrum of the k= �1,0 ,0� mode, compared, for example,
with the relative sharpness of the turnover of the spectrum of
the �2, 0, 0� mode in the same simulation.

When long time 1/ f fluctuations are present in these
simulations, they can have periods of ��10–100 eddy turn-
over times �frequencies f �1/ �2��� between 0.001–0.01�.
As an example of this we show in Fig. 7 time histories of the
fluctuation energy and the mean-square magnetic potential
from a 3D MHD simulation with strong mean magnetic field.
The time range is 2000 units, corresponding to about 2000
eddy turnover times. It is clear that there is substantial struc-
ture in both quantities at time scales much larger than the
nonlinear and wave time scales. Some of these excursions
are quite large. These are the direct effect of the 1/ f charac-
ter. It is also notable that the variations of the two quantities
are highly correlated at the scales visible in the figure, and
that their ratio 	b2
 / 	a2
 remains roughly in the range be-
tween 1 and 2. This indicates that most of the magnetic en-
ergy is in the longest wavelength modes. In this circum-
stance, for two-dimensional �2D� turbulence �20,21� the
nonlinear part of the dynamics would be closely governed by
conservation of energy and mean-square magnetic potential.
In this 3D MHD case, which is highly anisotropic due to the
strong mean magnetic field, it seems likely that in the pres-
ence of forcing, the “quasiconservation” of 	a2
 by subse-
quent spectral transfer may be intimately involved in the
appearance of the 1/ f behavior.

Consider, for example, the period shown in Fig. 7 prior to
about t=100. The mean magnetic energy is about 0.4 in this
period, and 	a2
�0.25, so the mean magnetic wave number
�	b2
 / 	a2
 is about 1.26. Later, between around t=100 and
t=350, the energy rises to about 2.1 while 	a2
 rises to about
1.9, and the mean wave number is therefore reduced to about
1.05. Consequently the rise in energy is almost completely
due to accumulation of excitation at the longest allowed
wavelength. By further examining data such as these, one
sees that the entire history of these quantities is dominated
by the amount of energy in those modes. The conclusion is
that the propensity of these modes to attract excitation sup-

plied by the forcing, through back transfer and quasiconser-
vation of the mean-square potential, and to accumulate it to a
varying degree over long time scales, is responsible for the
long time scale fluctuations that we see in this simulation.
Note that there are excursions seen in the figure that have
developed with time scales up to at least 100 time units. This
appears to be the time domain signature of the spectral 1 / f
noise.

The picture above is that the low-frequency noise is asso-
ciated with back transfer and the special role of the longest
wavelength modes. It is worth recalling that these fluctua-
tions cannot be attributed to the driving, since this is con-
structed so that its correlation time is of the order of 1 eddy
turnover time �f �0.16�. Local nonlinear times 1/ �kv�k��,
based on the characteristic local length scale 1 /k and veloc-
ity v�k� are also of order 1 or smaller. Furthermore, all of the
standard waves in these simulations are estimated to have
frequencies �1 Hz. Therefore, the standard linear and the
direct-cascade related nonlinear phenomena do not provide
an explanation for the presence of the 1/ f signal.

The key to further understanding the origin of these long
time fluctuations must lie in the nature of the interaction of
the lowest wave-number mode with much larger wave-
number modes, say in the inertial range. Such couplings are
highly nonlocal, in contrast to the standard Kolmogorov in-
ertial range dynamical picture in which nonlinear interac-
tions are dominated by couplings involving wave vectors
that are either just lower than, or just greater than, the wave
number in question. Here, singling out the longest wave-
length mode of the system, it is clear that the dynamics can-
not be local in the usual sense. In fact, we argue that, in
nonlocal dynamics, the lowest wave-number mode k=1 in-
teracts, through triads, with pairs of much larger wave-
number modes. The time evolution of these interactions is
controlled by the �comparative small� amplitude of the larger
wave-number modes, but the large length scale �small k� of
the lowest wave-number mode. This can be seen from the
expression for this type of interaction which is of the �sche-
matic� form

�b�k�
�t

= − ik 
k=p+q

v�q�b�p� , �7�

where b�k� , v�q� , b�p� are generic Fourier mode ampli-
tudes, with the constraint that k= p+q. In particular we con-
sider the lowest wave-number mode k=1. If the particular
interaction is local, then k� p�q and the time scale of that
interaction is given by �kv�k=1��−1�1, whereas if the inter-
action is nonlocal, then p ,q�k=1, p�q, and the time scale
is �kv�q�b�q� /b�k=1��−1 which is much longer than the local
time scale since v�q� , b�q��v�k=1� , b�k=1�. This rea-
soning also suggests that for larger Reynolds numbers, as
larger wave-number modes are available, the range of time
scales involved in the nonlocal interaction with the k=1
mode becomes also larger, which means that presumably a
larger range of 1/ f would occur �provided the energy con-
taining scales remain fixed�.

The present results show the existence of low-frequency
fluctuations in all of the simulations for the k=1 mode, con-
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sistent with this view. However, the range of low-frequency
fluctuations with 1/ f spectra appears to be stronger for MHD
�as well as two-dimensional hydrodynamics� as compared to
three-dimensional hydrodynamics. Recent numerical simula-
tions seem to support that energy transfer in MHD in the
inertial range is still mostly local �22,23�, although with
more degree of nonlocality for the v-b couplings, especially
in the case of forced MHD simulations. The lowest wave-
number mode in MHD seems however to be involved in
energy transfers with widely separated scales. An interesting
example of this case was shown in a two-dimensional MHD
numerical computation of the energy transfer between modes
�24�.

The coupling of the lowest wave-number mode with dif-
ferent wave-number modes can give rise to different charac-
teristic times �. A scale invariant distribution of characteristic
times G����1/� is needed �2,3� in order to obtain the 1/ f
range in the frequency spectrum. Although nonlocal energy
transfer can give in our view an explanation of the broad
distribution of characteristic times observed here, the origin
of the precise invariant form of this distribution of times
remains unclear to us.

We note that the dynamics of the longest allowed wave-
length modes may have a widespread tendency to display

1/ f frequency spectra, according to the above scenario. The
associated clearly defined 1/ f Eulerian frequency spectra re-
quires a much stronger condition, since this spectrum in-
volves the total contribution to the time variation due to all
Fourier modes of the system. The significance of the present
study is that we have seen that cases in which the Eulerian
spectrum shows a 1/ f character are precisely those cases in
which inverse cascade �or, back transfer� cause the longest
wavelength mode to become energetically significant in the
global energy budget. Then its characteristic temporal signal,
which is 1 / f in nature, becomes detectable in the low-
frequency spectral characteristics of the system as a whole.
This may be viewed as a form of self-organization in the
time domain. It remains to see if this view remains viable in
examining additional dynamical systems of this type in
which special modes are singled out by the turbulent dynam-
ics.
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