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1 Introduction

The idea of the present work is to investigate 1/N2 corrections to DIS of charged leptons off

glueballs at strong coupling by using the gauge/gravity duality.1 This corresponds to a DIS

process where there are two-hadron final states. By using the optical theorem this is related

to a forward Compton scattering (FCS) process with two-particle intermediate states, i.e.

one-loop FCS Feynman diagrams. Moreover, we also consider 1/N2n corrections to DIS

(where n is an integer), which corresponds to (n+ 1)-hadron final states, while in terms of

FCS it is related to (n+1)-particle intermediate states, i.e. n-loop FCS Feynman diagrams.

In terms of the gauge/string duality Polchinski and Strassler studied scattering pro-

cesses in the large N limit both for hard scattering [1] and for DIS [2]. Further work related

to DIS from the gauge/string duality includes [3–21]. For DIS in [2] the authors considered

1N is the rank of the gauge group of the gauge theory.
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Figure 1. Schematic picture of DIS of a charged lepton with four-momentum k off a hadron with

four-momentum P , through the exchange of a virtual photon with four-momentum q.

the structure functions of glueballs in the case when there is a single-hadron final state. In

addition, they suggested that for two-hadron final states DIS can also be studied within the

supergravity description. Thus, we will investigate type IIB supergravity loop corrections,

in particular describing in detail one-loop corrections.

DIS of a charged lepton off a hadron is schematically shown in figure 1. The process

involves a charged lepton with four-momentum k, which emits a virtual photon with four-

momentum q. This probes the internal structure of a target hadron with initial four-

momentum P . The scattering cross section of DIS is proportional to the contraction of

a leptonic tensor, lµν , described by using perturbative QED, and a hadronic tensor, Wµν ,

which is difficult to calculate since it involves soft QCD processes. At weak coupling, the

parton model describes this process: the virtual photon interacts directly with one of the

partons inside the hadron. At strong coupling, on the other hand, the parton model is not

a suitable description and therefore a different strategy must be considered. We will use

an approach based on the gauge/string duality and the methods developed in [2].

In general terms, from the theoretical point of view, there is a standard way to proceed

in order to study the internal structure of hadrons. In fact, by using the optical theorem

the DIS cross section is related to the matrix element of a product of two electromagnetic

currents Jµ(x) Jν(0) inside the hadron, which corresponds to the FCS process.2 The

product of these two currents can be written in terms of the operator product expansion

(OPE), for an unphysical kinematical region (i.e. for x � 1). Then, by using dispersion

relations it is possible to connect the above unphysical result with the physical DIS cross

section. The matrix element of two electromagnetic currents inside the hadron is given by

the tensor Tµν , which is defined as

Tµν = i

∫
d4x eiq·x 〈P, h′|T̂ (Jµ(x) Jν(0))|P, h〉 , (1.1)

where h and h′ label the polarizations of the initial and final hadronic states. T̂ indicates

the time ordered product of the two currents. This tensor depends on q2 and the Bjorken

2Jµ(x) Jν(0) correlation functions have also been calculated at strong coupling for the N = 4 SYM

theory plasma, both in the DIS regime [22, 23] and in the hydrodynamical one [24]. Also, the corresponding

leading string theory corrections (O(α′3), with α′ = l2s), which allow one to investigate the strong coupling

expansion in powers of 1/
√
λ (where λ is the ’t Hooft coupling) in the gauge theory, have been calculated

in both regimes in [25] and [26–29], respectively.
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parameter defined as

x =
−q2

2P · q
, (1.2)

being 0 ≤ x ≤ 1 its physical kinematical range, where x = 1 corresponds to elastic

scattering. Beyond the physical kinematical region, i.e. for x > 1, it is possible to carry

out the OPE of the tensor Tµν . This tensor is related by the optical theorem to the

hadronic tensor

Wµν(P, q) = i

∫
d4x eiq·x〈P, h′|[Jµ(x), Jν(0)]|P, h〉 . (1.3)

Since we will focus on scalar glueballs, the hadronic tensor is given by

Wµν = F1(x, q2)

(
ηµν −

qµqν
q2

)
+

2x

q2
F2(x, q2)

(
Pµ +

qµ
2x

)(
Pν +

qν
2x

)
, (1.4)

where F1(x, q2) and F2(x, q2) are the structure functions. Recall that in the context of

the parton model they are associated with the distribution functions of the partons inside

the hadron, leading to the probability of finding a parton which carries a fraction x of the

target hadron momentum, i.e. xP .

The optical theorem implies that 2π times the imaginary part of the structure functions

associated with FCS gives exactly the DIS structure functions. It allows one to calculate

DIS structure functions at strong coupling from the holographic dual description given

in [2]. In that paper a prescription for the calculation of Wµν for 1� λ� N , in the planar

limit of the gauge theory, has been developed. The idea is to calculate the amplitude of

a supergravity scattering process in the bulk that turns out to be dual to the FCS in the

boundary Yang-Mills theory. According to that prescription, the insertion of a current

operator on the boundary induces a U(1) metric perturbation,3 that interacts with the

dual type IIB supergravity field of the glueball, i.e. the dilaton φ. The holographic picture

is schematically depicted in figure 2. The sum over all possible on-shell intermediate states

leads to a formula for the imaginary part of the amplitude, and allows one to obtain F1

and F2 and, from it, the longitudinal structure function FL. In this case in the FCS there

is only one intermediate state, which means that in the DIS that we consider there is

only one outgoing single-hadron final state. Note that supergravity provides and accurate

description of the holographic dual process of DIS only if λ−1/2 � x < 1. This is because

in this regime the Mandelstam variable s (associated with the center-of-mass energy) is

not large enough in order to produce excited string states. When x becomes smaller than

λ−1/2 it is necessary to consider the full string theoretical description. On the field theory

side, for 1� λ� N double-trace operators dominate the OPE. In fact two very different

kinds of limits can be considered, namely, the large N limit and the q2 � Λ2 limit, being

Λ the IR confinement scale of the dual SYM theory.

It is very interesting to consider the case when DIS involves two-hadron states as the

final states. In this case the optical theorem dictates that the holographic dual description

3Recall that the isometry group of S5 is SO(6) which is related to the SU(4)R R-symmetry group of the

N = 4 SYM theory. The idea is that the mentioned U(1) group is a subgroup of SO(6). Thus, the metric

perturbation is parameterized by an Abelian gauge field Aµ times a Killing vector on S5.
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Figure 2. Witten diagram representing the s-channel contribution to the holographic dual de-

scription of FCS in the N →∞ limit. The vertical dashed line schematically represents the optical

theorem procedure used to extract the relevant imaginary part of Tµν . There is a single-hadron

intermediate state, which means that only single-hadron final states are considered in DIS. The

horizontal dotted line represents the boundary of AdS5. In addition, φin, φX and φout are the

dual supergravity fields of the initial, intermediate and final hadronic states, respectively, while Aµ
couples to Jµ of the quantum field theory at the AdS boundary.

of FCS is given in terms of one-loop Witten diagrams, which in practical terms are one-

loop Feynman diagrams in type IIB supergravity. In fact, in [2] it was suggested that

this process can be calculated by using supergravity. It gives the first correction to DIS

in the 1/N2 expansion. Also from each supergravity Feynman diagram it is possible to

extract the dependence in powers of Λ2/q2. It is very interesting the fact that by taking

first the N → ∞ limit, followed by the q2 � Λ2 limit, it gives a totally different result

compared with the one obtained by taking these limits the other way around. This effect

has already been noted in a recent paper by Gao and Mou [16], where this question has been

addressed only in part, by using an effective interaction Lagrangian in five dimensions. On

the other hand, in our present work instead we start from the type IIB supergravity action

in ten dimensions, including all the relevant fields, thus carrying out a first principles top-

down calculation. These bulk fields correspond to specific operators of the boundary SYM

theory, which in this case is an IR deformation of SU(N) N = 4 SYM. In addition, we

carry out the explicit calculation of all relevant t-channel diagrams in type IIB supergravity

at leading order in Λ2/q2, taking into account all possible Kaluza-Klein states within the

full AdS5 × S5 solutions of the bulk fields. In comparison with our calculations, in [16]

only a few Kaluza-Klein states have been considered, rendering their result incomplete

in that sense. Furthermore, we obtain the explicit functional dependence on the Bjorken

parameter at leading order in Λ2/q2. We find that this dependence is consistent with the

expectations of [2] concerning the 1/N2 corrections.

Another new finding from our investigation is that it is interesting to calculate the

longitudinal structure function FL = F2−2xF1, extracting its explicit dependence on both

Λ2/q2 and 1/N2, obtaining

FL = F2 − 2xF1 (1.5)

= f
(0)
2

(
Λ2

q2

)∆−1

+
1

N2

(
f

(1)
2 − 2x f

(1)
1

) (Λ2

q2

)
+

1

N4

(
f

(2)
2 − 2x f

(2)
1

) (Λ2

q2

)
+ · · ·
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with ∆ ≥ 4 (where ∆ is the conformal dimension associated with the incoming dilaton),

in such a way that the functions f
(n)
1 and f

(n)
2 (where n = 0, 1, · · ·) give the order in 1/N2

corresponding to the expansions of F1 and F2, respectively. Notice that FL in principle

contains all the terms of the form 1/N2n×
(
f

(n)
2 − 2x f

(n)
1

) (
Λ2/q2

)
, which correspond to

the exchange of (n+1)-intermediate states in the FCS, i.e. corresponding to (n+1)-hadron

final states in DIS. From equation (1.5) we can observe several interesting aspects. For

instance, the large N limit and the limit in which q2 � Λ2 do not commute, which means

that at infinite N the first term is the leading one, implying that the dominant contribution

to DIS in this limit comes from single-hadron intermediate states in the FCS. On the other

hand, if we first take the q2 � Λ2 limit, the second term dominates (after considering

N � 1), indicating that two-particle intermediate states give the leading contribution.

Recall that this is the so-called high energy limit. Moreover, as we will show below, the

rest of the contributions in this limit are subleading under certain assumptions that will

be discussed later. There is an explicit tensor structure associated with each term in F1

and F2 in the expansion above that we will study in this work. This allows us to provide

a strong argument in favor of the structure of the expansion of equation (1.5).

The paper is organized as follows. In the rest of this Introduction we study DIS

beyond the N → ∞ limit and then we briefly comment on the operator product expan-

sion analysis of DIS at strong coupling. In sections 2 and 3 we perform the supergravity

calculation of diagrams with two intermediate states in a detailed way. In section 4 we

consider some general aspects of supergravity diagrams involving multi-particle intermedi-

ate states, which imply 1/N2n corrections to the FCS and DIS processes. In section 5 we

present the discussion and conclusions. Some details of our calculations are presented in

appendices A and B.

1.1 Two-particle intermediate states in FCS

The aim of the present work is to study the leading 1/N2 corrections to the scalar glueball

structure functions in the strongly coupled regime of the gauge theory. Therefore, it is

important to understand how this affects the calculation of the supergravity amplitude.

Within the AdS/CFT correspondence, the regime where classical supergravity is an

accurate description of the boundary field theory is the planar limit, where the ’t Hooft

coupling λ = g2
YMN is kept fixed and large with the condition 1 � λ � N . It is possible

to go beyond this approximation in two directions given by two series expansions, one in

powers of 1/
√
λ, while the other one is the 1/N expansion, which for adjoint fields leads to

a 1/N2 expansion. From the dual string theory point of view the strong coupling expansion

(1/
√
λ) and the 1/N2 one correspond to the α′ expansion and the genus expansion (i.e. the

string coupling gs expansion), respectively. In the low energy limit of type IIB superstring

theory the genus expansion of type IIB string theory becomes a loop Feynman diagram

expansion in type IIB supergravity, and this is the one that we study.

In the N → ∞ limit only tree-level diagrams must be included. In fact, since we

consider the low energy limit of type IIB superstring theory in the large N limit we use

type IIB supergravity at tree level. In the holographic dual calculation of DIS for scalar

– 5 –
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glueballs4 we are dealing with a 2 → 2 scattering process between two gravitons and two

dilatons. Therefore, in this limit we only need to study the Witten diagrams corresponding

to s-, t- and u-channels,5 together with diagrams with four-point interaction vertices. In

this case and also for other types of hadrons such as (holographic) mesons, it can be

shown that the s-channel diagram is the relevant one when the center-of-mass square

energy s = −(P + q)2 is not large enough in order to produce excited string states in

the holographic dual process [2, 14, 15]. However, at high energy the t-channel graviton

exchange dominates the dynamics of the process [2, 18]. Thus, different regimes can be

investigated in different ways according to the value of the Bjorken parameter: supergravity

gives the full picture provided that 1/
√
λ� x < 1, however when x� 1/

√
λ it is necessary

to consider string theory.

Let us consider type IIB supergravity. In the Einstein frame its action is given by

SSUGRA
IIB = − 1

2κ2
10

∫
d10x

√
| det g|

[
R10 −

1

2
(∂φ)2 − 1

2
e2φ (∂C)2 − 1

4 · 5!
(F5)2

]
, (1.6)

where φ is the dilaton, C is the Ramond-Ramond axion field and F5 is the five-form field

strength. This action must be supplemented with the self-dual condition for the five-form

field strength.

An exact solution is the AdS5 × S5 background metric

ds2 =
r2

R2
ηµν dx

µdxν +
R2

r2
dr2 +R2 dΩ2 , (1.7)

where R4 = 4πgsNα
′2. In order to fix notation indices M,N = 0, 1, · · ·, 9 are on AdS5×S5,

Greek indices µ, ν = 0, 1, · · ·, 3 and Latin indices m,n = 0, 1, · · ·, 4 are on AdS5, while Latin

indices a, b = 5, 6, · · ·, 9 are on S5.

Now we describe how to perform the 1/N -power counting in type IIB supergravity

Feynman diagrams. For that we must carry out the dimensional reduction of type IIB

supergravity on S5 (see for instance [34] and also [15, 31–33]). The resulting reduced

action can be written in terms of the five-dimensional dilaton φ5(x) as

SSUGRA
5d = − 1

2κ2
5

∫
d5x

√
| det g5|

[
R5 −

1

2
(∂φ5)2 + . . .

]
. (1.8)

In this action dots indicate other terms which are not relevant in our calculation, since we

only consider the 1/N2 series expansion. The constant κ5 is given by

1

2κ2
5

=
N2

8π2R3
. (1.9)

Next, we define the canonically normalized fields, namely: we rescale the five-dimensional

dilaton as φ̃5 ≡ Nφ5, and also we do this for the graviton. Thus, by plugging the canonically

4We refer to this process as the holographic dual of DIS, but as we have seen formally this is the

holographic dual description of FCS.
5Recall that s, t, and u are the Mandelstam variables.
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normalized fields into SSUGRA
5d we obtain the 1/N dependence of the three-point interaction

vertices and 1/N2 dependence of the four-point ones. With them we can construct the

Witten diagrams with the corresponding 1/N -power counting.

In order to obtain the one-particle exchange contribution to the hadronic tensor and

the structure functions F1 and F2, it is necessary to calculate the imaginary part of the

amplitude associated with the s-channel interaction between two dilatons φin and φout,

and two metric perturbations (gravitons) of the form hma = Amva. In this notation, Am
represents a U(1) gauge field in AdS5 and va is a Killing vector of the five-sphere. The

only way that this can occur within type IIB supergravity is through the exchange of

an intermediate dilaton φX state. The interaction action directly derived from type IIB

supergravity is given by

SAφφ =
1

2κ2
10

iQ
∫
d10x

√
−g Am (φ∗in ∂mφX − φ∗X ∂mφin) . (1.10)

Q is the U(1) charge of the scalar field, va∂aY (Ω) = iQY (Ω), where Y (Ω) represents an

spherical harmonics on S5. The corresponding five-dimensional reduced interaction action

is obtained by integrating over S5. Taking into account the dilaton rescaling and also

Ãm5 ≡ NAm5 , it leads to

SÃφ̃φ̃5d =
1

8π2NR3
iQ
∫
d5x

√
| det g5| Ãm5 (φ̃∗in,5 ∂mφ̃X,5 − φ̃∗X,5 ∂mφ̃in,5) , (1.11)

which gives a factor 1/N for each Ãφ̃φ̃ vertex. Thus, the tree-level diagram has an overall

factor 1/N2, which will also be present in all the rest of loop diagrams. Since we are

interested in the relative power counting between different terms in the 1/N expansion we

will ignore the overall factor. Henceforth, we will omit the tilde on the fields.

The functional form of the non-normalizable gauge field Am dictates that the inter-

action must occur at rint ∼ qR2 � r0 = ΛR2. Then, as explained, the imaginary part of

the FCS amplitude is obtained by using the optical theorem, cutting the diagram in the

only possible way as shown in figure 2. Thus, one has to evaluate the on-shell action SAφφ
and sum over all possible intermediate states. Note that the restriction to the s-channel

diagram implies that the photon strikes the whole hadron, and in the case of a scalar object

this leads to F1 = 0. This calculation is shown schematically in figure 2.6 The final result

for a scalar glueball state with scaling dimension ∆ has been obtained in [2] leading to

F2(x, q2) = π A0Q2

(
Λ2

q2

)∆−1

x∆+1(1− x)∆−2 , (1.12)

where A0 = 2∆π|cin|2|cX |2Γ(∆)2, with cin and cX being dimensionless constants.

Next, we want to calculate the first correction to these structure functions, i.e. the

leading order 1/N2 contribution. This means that we have to take into account all possible

type IIB supergravity one-loop corrections to the s-channel diagram of figure 2. In order to

illustrate it, in figure 3 a few examples of the one-loop diagrams which can be constructed

6Details of the calculation are presented in [2, 14, 15].
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Figure 3. Some type IIB supergravity Feynman diagrams that could contribute to the one-loop

correction to the FCS. Solid, wavy and double wavy lines correspond to scalar, vector and tensor

perturbations from type IIB supergravity, respectively.

with the available interactions (that will be described in section 2) are shown. From the

SÃφ̃φ̃5d action it is easy to see that since a one-loop Feynman diagram has two more vertices

of the type Ãφ̃φ̃ (or a quartic vertex) in comparison with the tree-level Feynman diagram,

then there is an additional overall factor 1/N2. Notice that the cuts (vertical dashed lines)

in these diagrams are only schematic: the actual computation of the imaginary part of

FCS requires to square the sum of all possible supergravity Feynman diagrams having

two intermediate on-shell states. Therefore, one also must consider the crossed terms.

This calculation is difficult, specially in an AdS5 background. A recent paper by Gao and

Mou [16] has done a first step to attempt to address these 1/N2 corrections. However,

their calculations are carried out in the context of an effective model given by a scalar-

vector Lagrangian, which has a very small number of modes and interactions among them

in comparison with the actual possible field fluctuations of type IIB supergravity.

In the present work we will study this problem using the full spectrum of particles

and interactions from type IIB supergravity on AdS5 × S5 and show that the Λ2/q2 → 0

limit renders important simplifications, leading to only one dominant diagram. The actual

scattering amplitude is difficult to calculate, however our final formula will allow us to

draw some conclusions about the physics of this process. We will also comment on what

these observations imply on the field theory side.

1.2 Operator product expansion analysis of DIS

In this subsection we describe the OPE analysis of the DIS process in the strong coupling

regime of gauge theories. We follow the analysis by Polchinski and Strassler [2], and

describe it here since it will be relevant for the results of the present work. Let us consider

the DIS process from the quantum field theory point of view. It is possible to perform

this kind of analysis in any SYM theory like N = 4 SYM whose conformal invariance is

– 8 –
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broken by an IR cutoff Λ. The important point is to have an IR confining gauge theory. It

is interesting to consider the moments of the structure functions involved in the hadronic

tensor, generically defined as

M (s)
n (q2) =

∫ 1

0
dxxn−1 (2x)1−s F (s)(x, q2) . (1.13)

These moments can be studied in terms of the OPE of two electromagnetic currents inside

the hadron J(0)J̃(q), whose matrix element defines the hadronic tensor. In [2] it was

found that

M (s)
n (q2) ≈ 1

4

∑
j

C
(s)
n,jAn,j

(
Λ2

q2

) 1
2
τn,j−1

+
1

4

∑
Qp=Q

C(s)
n,pAn,p

(
Λ2

q2

)τp−1

(1.14)

+
1

4N2

∑
Qp 6=Q

C(s)
n,pan,p

(
Λ2

q2

)τp−1

,

where C(s)’s are numerical coefficients, A’s stand for matrix elements of the corresponding

operators and An,p = an,pN
−2, while τ ’s account for their twist, given in terms of the

conformal dimension ∆, the anomalous dimension γ and the spin s

τ = ∆ + γ − s . (1.15)

Equation (1.14) contains very important physical information. In the DIS regime the square

momentum of the virtual photon is very large with respect to the IR confining scale7 Λ ,

therefore the lowest twist operators dominate since their contribution are less suppressed.

The first term corresponds to the contribution to the current-current OPE coming from

single-trace SYM operators Tn,j . Using the normalization of the local operators in such a

way that they create hadrons at order N0, the OPE coefficients behave like

C
(s)
n,j ∝ 〈J J Tn,j〉 ∼ N

−1 ,

while the matrix elements have the following behavior

An,j = 〈Q,P |Tn,j |Q,P 〉 ∼ N−1 .

The anomalous dimension of the Tn,j ’s is of order γ ∼ λ1/4. Twist-two single-trace opera-

tors give the dominant contribution at weak ’t Hooft coupling. However, when the coupling

becomes large this is no longer the case. The second and third terms are associated with

certain double-trace operators T †p (∂)rTp built from the so-called protected operators Tp.

The conformal dimension of the protected operators has small or null corrections. There-

fore, protected double-trace operators have the lowest twist and dominate the OPE when

λ is sufficiently large. In addition, it can be seen that among these operators there are two

possibilities [2], namely:

An,p = 〈Q,P |T †p (∂)rTp|Q,P 〉 ∼ N0 if 〈Q,P |Tp|0〉 6= 0 , (1.16)

An,p = 〈Q,P |T †p (∂)rTp|Q,P 〉 ∼ N−2 if 〈Q,P |Tp|0〉 = 0 . (1.17)

7The limit q2 →∞ means q2 � Λ2.
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The second one corresponds to the third term in equation (1.14). Obviously, at N → ∞
this term is negligible and the OPE is dominated by the second term, and we can see

from equation (1.16) that it describes a regime where hadron production is turned off.

However, at finite N the hadron number is not conserved, and the third term becomes

important. In fact, we will see that this is the leading contribution since in this case the

lower twist contributions can come from the created hadrons instead of the initial one.

This is interpreted as a situation where the virtual photon strikes a pion in the hadron

cloud that surrounds the incoming hadron.

On the one hand, the perturbative gauge theory analysis allows us to study the weak

coupling regime. On the other hand, string theory and supergravity help us to study

the strongly coupled regime. Let us focus on the case when the Bjorken parameter is

within the range 0.1 < x < 1, where the bulk physics can be accurately described by type

IIB supergravity. Then, the process can be understood in the following way: the current

operator insertion on the boundary theory generates a non-normalizable vector fluctuation

of the metric (as seen in the five-dimensional reduction of type IIB supergravity) which

couples with the normalizable bulk modes corresponding to hadronic states in the SYM

theory. The leading behavior in the 1/N expansion was studied in [2] for the dilaton and

the dilatino and in [14, 15] for scalar mesons and polarized vector mesons by using the

optical theorem, where the leading contribution comes from a diagram with no mixing

and with only one intermediate state. In this work, we build on the work started in [16]

and focus on the finite 1/N2 leading contributions, by considering an external supergravity

state given by a dilaton (which is the dual supergravity field of a scalar glueball state

in the gauge field theory), by allowing a second intermediate state and explicitly obtain

the resulting structure functions. This is equivalent to study the one-loop contribution

to the supergravity interaction with two external gravi-photon states and two external

dilaton states.

In principle, we would have to calculate every possible contribution coming from a Cu-

tovsky-cut diagram allowed by type IIB supergravity, including all the Kaluza-Klein towers

of modes from all the fields which develop fluctuations. Among them, for example, we can

find the ones coming from the three-scalar vertex considered in [16]. This is complicated,

since the geometry of AdS5 renders Bessel function solutions, and then the integral of

a generic three-particle interaction would be impossible to be carried out analytically.

However, the OPE of equation (1.14) gives us an important insight into the physical process

that we are trying to describe.

Reference [2] shows that when the current operator couples directly to a state of

Kaluza-Klein mass ∆ the resulting scattering amplitude (and the structure functions) are

proportional to
(
Λ2/q2

)∆−1
. This should hold regardless of the fact that this hadron might

not be the initial state, since it could come from a hadron splitting into two other hadrons.

This hypothesis is supported by the 1/q2-power analysis performed in [16]: by looking at

the s-, t- and u-channel (one-loop) diagrams with scalars, we expect that the less suppressed

contribution would come from the t-channel where the mode with the lowest Kaluza-Klein

mass is exchanged (corresponding to the lowest-twist coupling). This is exactly what

happens. In fact, the interaction terms present in the action imply that this is the diagram
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which dominates the full amplitude at strong coupling and finite N . The rest of diagrams

are suppressed by higher powers of 1/q2. This was anticipated in reference [2].

In the rest of this paper we will obtain this particular leading amplitude and calculate

the structure functions with 1/N2 corrections.

2 Supergravity calculation of diagrams with two intermediate states

2.1 The background and its S5-reduced spectrum

The background used in this work is a deformation of type IIB supergravity on the AdS5×S5

of radius R, which can be written as

ds2 =
R2

z2

(
ηµνdx

µdxν + dz2
)

+R2dΩ2
5 . (2.1)

When z = R2/r this becomes the metric (1.7). In this coordinate system, the conformal

boundary of the AdS space is located at z = 0, or equivalently at r →∞ in equation (1.7).

By introducing a cutoff r0 it corresponds to an IR confinement scale of the boundary gauge

theory Λ = r0/R
2 = z−1

0 . Recall that the self-dual five-form field strength F5 has N units

of flux through the five-sphere. At low energy with respect to 1/
√
α′ the spectrum of

fluctuations of type IIB supergravity is similar to the one described in [30].

Now, let us briefly review how the full spectrum of bosonic fluctuations around the

AdS5 × S5 background is calculated. The relevant fields contained in the bosonic part of

the action are the metric GMN = gMN +hMN , the complex scalar φ and the RR four-form

A4 (F5 = dA4 in this case). The non-zero components of F5 with no fluctuations are

Fmnopq =
1

R
εmnopq , Fabcde =

1

R
εabcde , (2.2)

where the ε stands for the Levi-Civita pseudo-tensor density. Recall that the zeroth order

metric G and F5 are non-vanishing. If we want to study the corresponding fluctuations we

need to work out the equations of motion at quadratic order. One starts from the expansion

on S5, leading to the usual Kaluza-Klein decomposition of the fields in a basis of spherical

harmonics. This includes scalar, vector and tensor (symmetric or antisymmetric) spherical

harmonics8 that we denote as Y l(Ω), Y l
a(Ω), Y l

(a,b)(Ω), Y l
[a,b](Ω), respectively. These are all

eigenfunctions of the angular Laplacian9 ∇2 such that

∇2Y l(Ω) = − 1

R2
k(k + 4)Y l(Ω) , (2.3)

for some integer k. By separating the different components of the metric as

Gmn = g(AdS)
mn + h̃mn , h̃mn = hmn −

1

3
g(AdS)
mn haa , (2.4)

Gma = hma , Gab = gS
5

ab + hab ,

8Details on the definition and properties of these objects are given in appendix B of [35]. In what

follows, parentheses between two indices mean interchange symmetry with the trace removed, while brackets

mean antisymmetry.
9Notice that we denote the AdS Laplacian by �.
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Field Spin Build from m2(k) ∆(k) OQFT SU(4)R

φ (0, 0) φ k(k + 4) , k ≥ 0 k + 4 Tr
(
F 2Xk

)
(0, k, 0)

s (0, 0) haa , aabcd k(k − 4) , k ≥ 2 k Tr
(
Xk
)

(0, k, 0)

t (0, 0) haa , aabcd (k + 4)(k + 8) , k ≥ 0 k + 8 Tr
(
F 2F̃ 2Xk

)
(0, k, 0)

Ω (0, 0) h(ab) k(k + 4) , k ≥ 2 k + 4 Tr
(
λλλλXk

)
(2, k − 2, 2)

Am (1
2 ,

1
2) hma , amabc (k − 1)(k + 1) , k ≥ 1 k + 3 Tr

(
λλXk

)
(1, k − 1, 1)

Bm (1
2 ,

1
2) hma , amabc (k + 3)(k + 5) , k ≥ 1 k + 7 Tr

(
FF̃λλXk

)
(1, k − 1, 1)

h(mn) (1, 1) h(mn) k(k + 4) , k ≥ 0 k + 4 Tr
(
FF̃Xk

)
(0, k, 0)

Table 1. Some features of type IIB supergravity fluctuations in the AdS5 × S5 background which

are relevant to this work. The integer k indicates the SO(6) ∼ SU(4)R irrep and defines the

corresponding Kaluza-Klein mass. Also, the operator that creates the boundary Fock-space state

corresponding to each normalizable fluctuation is shown. The relation between the scaling dimension

∆ and k is shown.

and by fixing the De Donder-type gauge conditions Dah(ab) = 0 and Daham = 0, we have

hmn(y,Ω) =
∑
l

H l
mn(y)Y l(Ω) , hma(y,Ω) =

∑
l

Alm(y)Y l
a(Ω) ,

h(ab)(y,Ω) =
∑
l

φl(y)Y l
(ab)(Ω) , haa(y,Ω) =

∑
l

πl(y)Y l(Ω) ,

where y denotes coordinates on AdS5 while Ω are the five angular coordinates on S5. The

expansion behaves similarly for the other fields. For instance, one important part of the

A4 fluctuations is

amabc(y,Ω) =
∑
l

alm(y) ε de
abc Dd Y

l
e (Ω) . (2.5)

This expansion simplifies considerably the linearized equations of motion. Still, some al-

gebra is needed in order to diagonalize them, and finally a set of different Kaluza-Klein

towers of particles, each one with its Kaluza-Klein mass formula, is obtained. From the

combination of the metric expansion with some of the terms coming from A4 there are

three scalar particles, two vectors and one tensor. Their equations of motion, Kaluza-Klein

masses and other properties are listed in table 1.10 Note that the massless state of the

h(mn) tower corresponds to the AdS5 graviton. We need the solutions to these equations.

These are shown in appendix A. All the normalizable bosonic modes have similar form:

the modes carrying a given four-dimensional momentum pµ turn out to be of the form11

Φm1... ∼ εm1...e
ip·xzαJ∆(k)−2(pz)Y l(k)(Ω) (2.6)

10More complete tables which include all the bosons and fermions can be found in [30] and in the review

article [36].
11The angular dependence is only written generically.
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for some power α and polarization εm1.... The main difference between the spectrum of

our confining background and the one from [30] for AdS5 × S5 comes from the inclusion

of the cutoff z0. This imposes a restriction analogous to the one for modes in a box [2]

which means that p is restricted to be one of the infinite but discrete set of numbers such

that J∆(k)−2(pz0) = 0.12 Canonical normalization for the scalar states as defined in [1] is

discussed in appendix A.

2.2 Selection rules for the interactions

The different scalar, vector and tensor fields we studied in the previous section can interact

with each other in complicated ways. These interactions can be directly obtained from the

type IIB supergravity action by performing the expansion of the fields in terms of spherical

harmonics on S5. The relevant vertices will be explicitly derived in the next section.

However, besides the appearance of these vertices in the action it is important to consider

the selection rules coming from the fact that these particles belong to representations of

the isometry group SO(6) ∼ SU(4). The lowest dimensional representations in which these

fields are found can be viewed in [30, 36].

The selection rules can be written in terms of the Clebsh-Gordon coefficients of the

tensor product decomposition in irreducible representations (irreps) of SU(4) given in the

notation of table 1 by

(0, k1, 0)⊗ (0, k2, 0) =

k2⊕
i=0

k2−i⊕
j=0

(j, k1 + k2 − 2i− 2j, j) , k2 ≤ k1, (2.7)

and similarly for the product (0, k1, 0) ⊗ (1, k2, 1). Physically, a null coefficient implies

that in a scattering process where the two initial states belong to the first two irreps, a

particle belonging to the third irrep cannot be among the final states. Together with the

reduction of the ten-dimensional action to the five-dimensional effective one, this tells us

which are the indices of the Bessel functions that can be present in the interactions when

calculating the amplitudes involved in the dual DIS process. In terms of our solutions,

these coefficients are given by angular integrals of combinations of the different spherical

harmonics over the S5 coordinates [37, 38]:

a123 = a(k1, k2, k3) =

∫
S5

dΩ5 Y
k1Y k2Y k3 , (2.8)

b123 = b(k1, k2, k3) =

∫
S5

dΩ5 Y
k1
a DaY k2Y k3 , (2.9)

c123 = c(k1, k2, k3) =

∫
S5

dΩ5D
aY k1DbY k2Y k3

(ab) . (2.10)

The first integral appears when studying an interaction between scalars like s, t or φ, or

tensor fields in the (0, ki, 0) representations. The second one involves two scalars and one

vector. These two will appear in our calculations. The third one is written for completeness

and has two scalars and one Ω field (see table 1). These factors are present in the coupling

constants of the interaction vertices.
12Recall that p ≡ √ηµνpµpν . We call this the AdS mass as opposed to the Kaluza-Klein mass.
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The relevant selection rules for the diagrams that we will consider are the follo-

wing ones:13

1. When two scalars in the (0, k1, 0) and (0, k2, 0) representations are involved in a

three-particle interaction, the relevant outgoing particles can be

• s, t, φ or h particles in the (0, k
(1)
3 , 0) rep. with |k1 − k2| ≤ k(1)

3 ≤ k1 + k2,

• vector particles in the (1, k
(2)
3 − 1, 1) rep. with |k1− k2|+ 1 ≤ k(2)

3 ≤ k1 + k2− 1,

• Ω-scalars belonging to the (2, k
(3)
3 −2, 2) rep. with |k1−k2|+2 ≤ k(3)

3 ≤ k1+k2−2,

where all the k3 indices changes in two units.

2. When a scalar particle and one vector particle belong to the (0, ks, 0) and (1, kv, 1)

representations interact in the same way the possible resulting particles are

• s, t, φ or h particles in the (0, k
(1)
3 , 0) rep. with |k1−k2|+1 ≤ k(1)

3 ≤ k1 +k2−1,

• vector particles in the (1, k
(2)
3 − 1, 1) rep. with |k1 − k2| ≤ k(2)

3 ≤ k1 + k2,

• Ω-scalars in the (2, k
(3)
3 − 2, 2) rep. with |k1 − k2|+ 1 ≤ k(3)

3 ≤ k1 + k2 − 1,

where all the k3 change as before.

Recall that all different integers k associated with each particle are bounded from

below. In fact, the existing massless particles in general correspond to the lowest represen-

tations, given by k = 1 for vectors and k = 0 for scalars and tensors. There is an exception

given by the negative mass sk=2 scalar. In addition, consider the case of a massless vector

excitation interacting with a given scalar particle. The vector excitation can only belong

to the (1, 0, 1) representation, while the scalar one is in the (0, k, 0) representation for some

integer k associated with its dimension ∆ as indicated in table 1. Then, the second selection

rule implies that if we are looking for outgoing s, t or φ scalar particles, we can only have

something belonging to the same (0, k, 0) representation. Now, the vector representation

we have chosen can only correspond to the Am field that represents our holographic photon,

i.e. the graviton fluctuation coming from the boundary. Thus, as in the SAφφ interaction

of [2] there is no mixing for an SssA vertex.

2.3 Relevant vertices

Some of the relevant interaction vertices are derived in this section. We also need the

propagators of some fields, which are considered in appendix A. Let us first focus on how

the incoming dilaton can interact with two other fields. We focus on the φ → s + φ

interaction, but other interactions may be studied in the same way. The corresponding

Ssφφ vertex comes from the dilaton kinetic term14∫
d10x
√
−GGMN∂Mφ∂Nφ , (2.11)

13Recall that we are omitting some of the possible outgoing particles because they are not relevant in the

process we consider. Explicit examples of these selection rules can be checked at the web page in ref. [39].

Note that in this reference the notation is slightly different.
14This kind of analysis was performed in [36], where the authors describe in detail an Stφφ vertex.
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once the mentioned fluctuations are worked out.15 The relevant fluctuations are given in

equation (2.4) (and indirectly in equation (2.5)). The only non-vanishing modes we consider

are the scalar ones plus h̃(mn) which cannot be completely turned off: their fluctuations

are given by [36]

h̃k(mn) = D(mDn)

[
2

5(k + 1)(k + 3)
(πk − 30bk)

]
, (2.12)

with

bk ≡ tk − sk ,
πk ≡ 10[(k + 4)tk + ksk] .

Then, we have
√
−G ≈

√
−g
(

1 +
1

2
hMM

)
, GMN ≈ gMN − hMN , (2.13)

where the indices are lowered and raised using the background metric g. By plugging these

expressions into the action (2.11) for the case tk = 0, and integrating by parts using the

Kaluza-Klein mass conditions (i.e. the equations of motion at quadratic order), it leads to

Ssφφ =
1

2κ2
5

∫
AdS5

dx5√gAdS5 a123

×
[

2k2
1

k1 + 1
s1Dmφ2D

mφ3 −
2

k1 + 1
DmDns1D

mφ2D
nφ3

]
=

1

2κ2
5

∫
AdS5

dx5√gAdS5 a123 s1φ2φ3 (2.14)

×
[

k2
1

k1 + 1
(m2

1 −m2
2 −m2

3) +
1

2(k1 + 1)

(
(m2

2 −m2
3)2 −m4

1

)]
.

Notice that φi stands for the mode with k = ki of φ and the corresponding Kaluza-Klein

mass m2
i = m2

φ(ki). The global N2 factor has been discussed in the introduction and

is absorbed by a field redefinition, leaving canonically normalized quadratic terms, triple

interactions proportional to N−1 and quartic interactions proportional to N−2. By writing

the masses in terms of the ki and defining Σ = 1
2(k1 + k2 + k3) and αi = Σ− ki we obtain

Ssφφ =
1

2κ2
5

∫
AdS5

d5x
√
gAdS5 λ123 s1φ2φ3 , (2.15)

where the coupling constant is given by

λ123 =
−8α3 α2(α1 + 2)(Σ + 2)

k1 + 1
a123 . (2.16)

The sign of the coupling is irrelevant for us since our final amplitude will be proportional

to λ2
123. However, note that λ123 vanishes for k1 = |k2− k3| (and also for k1 = k2 + k3 + 4),

which eliminates some diagrams. In fact, for k1 = 2 the previous selection rules only

15Throughout this section we set R = 1, but we will recover it in the next section.
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allow k3 = k2 − 2, k2, k2 + 2, therefore we are left with the k3 = k2 case. This is because

there is no need to consider surface terms since all the solutions under consideration are

normalizable and vanish at the boundary. Finally, when performing the integrals needed

for the on-shell evaluation in the AdS5 coordinates we use the solutions from appendix A.

First, the integration over dx0 . . . dx3 implies the four-momentum conservation. Second,

since the determinant behaves as z−5 and all solutions are of the form z2J∆i−2(pz) we

obtain a z-integral of the form16∫ z0

0
dz z J∆1−2(az) J∆2−2(bz) J∆3−2(cz) , (2.17)

where a, b and c are AdS masses. Although it is difficult to solve this integral, we will

analyze it in two different ways. On the one hand, the largest contribution comes from

the z ∼ z0 region, which means that for numeric purposes the Bessel functions can be

approximated by the asymptotic expression

Jm(z) ≈
√

2

πz
cos
(
z − mπ

2
− π

4

)
. (2.18)

This type of numerical analysis has shown to give interesting results in our previous

work [19]. On the other hand, we can have some intuition about the physics of the process

from the case z0 →∞, where the integral is known (see appendix B). For our purposes it is

useful to approximate it by using a behavior which is easily seen from numerical integration:

the result is non-zero only when one of the AdS masses is the sum of the other two.17

Now, since in our diagram there are s particles we need to know how they interact

with the massless vector perturbation Am generated by the current boundary insertion.

This kind of interactions has been studied before in order to obtain a more complete

knowledge of the five-dimensional effective action from type IIB supergravity, and proved

to be very useful to calculate n-point correlation functions of chiral primary operators via

the AdS/CFT correspondence [35, 41–43]. The method used in these papers is slightly

different from the previous one.18 It is based on using the equations of motion together

with the self-duality condition on F5 rather than the ten-dimensional action. The authors

calculate the quadratic and cubic corrections to these equations and obtain the interaction

terms present in the action leading to the corrections. Note that in this context integration

by parts and surface terms appear as field redefinitions that simplify the interactions. Here,

we only write the result for the triple interaction between the Am and two s scalars [41]:

SssA =
1

2κ2
5

∫
AdS5

d5x
√
−g G123A

m
1 s2∂ms3 , (2.19)

where the coupling constant can be written in terms of the indices k1, k2 and k3 as

G123 =
25(k1 + 1)

(
Σ2 − 1

4

) (
Σ + 3

2

) (
α1 − 1

2

)
(k1 + 2)(k2 + 1)(k3 + 1)

b123 . (2.20)

16The relation between ∆ and k is given in table 1. Even if it is different for each type of particle, in

appendix A we show that all the solutions come with some Bessel function of index ∆ − 2.
17This was observed in [40].
18This is only for technical reasons.
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The conclusion is that s modes interact with the gauge fields in a similar way as dilaton

perturbations. The case k2 = k3 = 2 will be important for us. Had we considered a complex

scalar field, as we will in the next section and as was done for the dilaton in [2], we would

have found exactly the same type of vertex with a gauge boson and the associated U(1)

current as in equation (1.10). Note that this interaction term must come from∫
d10x

√
−G

(
R10 −

1

4 · 5!
F 2

5

)
plus F5 = ?F5 . (2.21)

In this case, by evaluating the vertex with the on-shell solutions and integrating it leads

to the four-dimensional momentum conservation delta, now multiplied by a z integral of

the form ∫ z0

0
dz z2K∆1−2(az)J∆2−2(bz)J∆3−2(cz) , (2.22)

as in the N →∞ case in [2]. We will elaborate on this in the next sub-section. Note that

the Bessel function K vanishes rapidly when going to the interior of AdS, which means that

in this case integrating up to z →∞ is effectively the same as stopping the integration at z0.

For completeness let us discuss another situation: the quartic vertex that would appear

twice in a one-loop diagram like the fourth one in figure 3 (with gauge or scalar intermediate

particles). It is obtained from the dilaton kinetic term in the action (2.11). We expand the

determinant and the metric in terms of the fluctuations obtaining the following action in

ten dimensions up to an overall constant,

Sφφhh =

∫
d10x
√
−g
(
−1

4
hhMN∂Mφ∂Nφ+

1

8
h2∂Pφ∂Pφ+

1

8
hMN h

N
M∂

Pφ∂Pφ

+
1

2
hMPhNP ∂Mφ∂Nφ

)
, (2.23)

where h denotes the trace hMM . The fields h and hMN can be expanded in spherical har-

monics and with the fluctuations of the five-form field strength, we can build for example

the s and t scalar modes. The second term will not be considered since vector fluctuations

are absent. The other terms have two dilatons coupled to Am and a fluctuation in the AdS5

space. As we will see in the next section, the normalizable mode of the incident dilaton can

be approximated by its asymptotic expansion near the boundary since this is where the

interaction takes place. Then, the z-integral becomes proportional to the integral of two J

Bessel functions and one K Bessel function. The complete integral can be calculated from

equation (B.3), however we are interested in the q-dependence

M∝
∫
dz z∆1+αK1(az)J∆2−2(bz)J∆3−2(cz) ∝ a−∆1

(
b

a

)∆2 ( c
a

)∆3

, (2.24)

where α is a constant which depends on the normalizable solutions of the intermediate

states.

Now, from dimensional analysis it is easy to see that with the normalizations used in [2]

the coupling constants in triple scalar vertices with no derivatives have to be proportional
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to R2. This is important in order to obtain dimensionless structure functions from the

holographic FCS amplitude. In fact, final results will not depend on R.

In addition, we would like to note that in a general one-loop diagram one has to take

into account fluctuations of all kind of fields from type IIB supergravity, including fermions.

We have not discussed this here because in fact we will focus on one single diagram, and the

selection rules involved in this diagram (together with consistent dimensional reduction)

do not allow the appearance of these fields.

2.4 Classification of diagrams

In the previous sections we have discussed some important aspects of the particles present

in the AdS5 × S5 background with a cutoff and their possible interactions. However, we

have only focused on some of them: triple interactions involving s scalars, dilatons and

graviton fluctuations. In this section we will see why these are all the interactions we need,

and infer which diagrams must be considered in the context of the one-loop supergravity

dual process of DIS.

As seen in the Introduction, the process under consideration is a 2 → 2 scattering where

both the initial and final states are two-particle states. There is a normalizable φ∆ dilaton

fluctuation for some ∆ and a non-normalizable massless vector field Am which propagates

from the boundary of AdS5 into the bulk. The dilaton is dual to the scalar glueball, while

the Abelian gauge field corresponds to the virtual photon. Since the non-normalizable

mode is given by a Bessel function of the form K1(qz) it only lives near the boundary in

the small z region. In the N → ∞ limit particle creation is not allowed, and the incident

holographic hadron has to tunnel from the interior to this region in order to interact with

it, leading to a suppression of the scattering amplitude by the factor
(
Λ2/q2

)∆−1
. This can

be interpreted as the probability of the full hadron to shrink down to a size of order 1/q.

The details of this calculation are given in appendix A, but the important part is that the

interaction term

SAφφ =

∫
d10x
√
−GAmva∂mφ∂aφ , (2.25)

evaluated on-shell gives an integral in the radial variable which takes the following form∫ z0

0
dz z2 J∆−2(Pz)J∆−2(s1/2z)K1(qz) ≈ 2∆−1Γ(∆)

q s
∆
2
−1

(s+ q2)∆
, (2.26)

where

s = −(P + q)2 ≈ −q2 − 2P · q = −q
2

x
(1− x) , (2.27)

is the Mandelstam variable related to the center-of-mass energy in four dimensions. The

incoming momentum P is not very large in comparison to q or s1/2 and we can use the

asymptotic expression of J∆−2(z) ∼ z∆−2 for small arguments. Thus, after squaring the re-

sult of the integral according to the optical theorem (and by considering the normalizations

and the sum over intermediate states) one finds that the imaginary part of the amplitude

written in terms of q2 and x has the anticipated suppression factor, and similarly for the

structure functions. As explained in [2], this is exactly the suppression factor predicted by

the field theory OPE as we can see from the second term in equation (1.14).
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Now, the important point is that this analysis holds for any diagram where a scalar

field interacts with the Am coming from the boundary. This is because as we have seen

the vertex has the same form. Beyond the N →∞ limit, one-loop diagrams with different

intermediate particles can contribute and one of these particles scatters from the interaction

with the dual virtual photon. Since all the solutions have similar combinations of powers

and Bessel functions, in our calculations we should find integrals like equation (2.26).19 In

consequence, we have found a hint about how each diagram will be suppressed by powers

of Λ2/q2, and shown that it is directly related to the conformal dimension ∆ of the mode

that interacts with the gauge field. This is where the large q2 limit becomes important:

it classifies the different diagrams according to their relative weight in powers of Λ2/q2,

and implies that there will be a dominant (i.e. less suppressed) contribution. This is

strongly supported by the OPE formula (1.14), since the third term gives a contribution

of the expected form, namely: it is suppressed by 1/N2 and with different Λ2/q2 powers

associated with different operator twists which could be smaller than the one associated

with the full target hadron. For example, the corresponding vertex of an s-channel diagram

as in the first two cases of figure 3 will produce a suppression similar to the tree-level

Witten diagram. However, when considering a diagram where the incoming dilaton splits

into two particles, only one of the resulting pieces carrying some fraction of the original

four-momentum interacts with the graviton perturbation near the boundary, leading to a

suppression related to the nature of this particle and its Kaluza-Klein mass, defined by a

conformal dimension ∆′. This is consistent with the fact that in a process like the one

we are describing this intermediate particle is the only one which has to tunnel to the

small-z region.

Our conclusion is the following: the dominant diagram or sum of diagrams will be given

by the ones where this role is played by the particle or particles with the lowest possible

∆′. This is consistent with the expectations from reference [2]. This analysis holds in more

general cases as we will see in section 4. Fortunately, in the one-loop case this leads to

only one possibility as the lowest ∆′ = 2 dimension can only be found at the bottom of

the Kaluza-Klein tower corresponding to the s scalar particles of table 1.20 Note that this

excludes for example the diagram with quartic vertices discussed in the previous section,

which will always be more suppressed.

There is an interesting feature that we can discuss. The N →∞ limit leads to F1 = 0

since the photon strikes the entire scalar hadron. Beyond this limit, by considering DIS

with two-hadron final states it leads to a non-vanishing structure function F1. This is due

to the fact that the incoming glueball splits into two other hadrons and only one of them

interacts with Aµ near the boundary region. Therefore, there is a set of diagrams which

contribute in order that F1 6= 0, among which there is the leading contribution.

From the detailed analysis carried out in this section and from the vertices studied in

19The approximation of a small argument of the incoming Bessel function could break down for an

intermediate particle. However, we will see that this possibility is suppressed and henceforth we assume

the validity of the result of the integral.
20This kind of behavior was already found for different processes in [1]. It was also suggested for this

case in [2].
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Figure 4. Witten diagram corresponding to the one-loop dominant contribution to FCS.

the previous subsections, we conclude that the leading diagram is the one shown in figure 4.

Although we have not written it here, we consider all the scalar solutions to have a definite

charge Qi under the U(1) symmetry, and assume charge conservation in each vertex. This

means that if the charge of the initial hadron is Q1, then the on-shell intermediate states

must have charges Q2 and Q3, such that Q1 = Q2 +Q3.

We ought to say that even if all the ingredients seem to support this conclusion, this

is not a full proof. This is hard to do since the definite integrals with three or four Bessel

functions arising from the evaluation of the amplitude and in particular from integrations

in z are not known analytically in every parametric regime (for the AdS masses) and for any

combination of indices. However, this analysis should be extensive to other theories whose

dual backgrounds are asymptotic to AdS5×S5. In fact, for any asymptotically AdS5×C5

background, where C5 stands for some compact five-dimensional Einstein manifold, the

idea would be the same: to find the excitation with the smallest conformal dimension and

construct the diagram or diagrams where the initial hadron produces this particle, which

is the one that interacts with the holographic virtual photon.

3 Results for the structure functions

3.1 General considerations and tensor structure

Once the leading diagram and the relevant interaction terms are identified, we work out an

expression for the imaginary part of the scattering amplitude and extract the order 1/N2

contributions to the hadronic tensor and its structure functions. The imaginary part of

Tµν is obtained by using the optical theorem. We must calculate the scattering amplitude

for the process at the left-hand side of the vertical cut of figure 4 with on-shell outgoing

particles, and then square the resulting amplitude and sum over all possible intermediate

states. In comparison with the N →∞ case, there is now an off-shell state: the propagating

s scalar represented in this figure by a vertical line on each side of the cut. This state is

very important, since as we have seen its conformal dimension ∆′ = 2 ensures that we

obtain the smallest Λ2/q2 suppression.

This is also depicted in figure 5, where we define the momenta and mass notation

which we use in the rest of the paper. Notice that we use q′0 =

√
M2

2 + |~q′|2 and p′0 =

– 20 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
3

Figure 5. Feynman diagram corresponding to the left-hand side of the cut. The field associated

with each line is explicitly presented along with the notation for the four-dimensional momenta,

conformal dimensions and AdS masses. The solutions are described in appendix A.√
M2

3 + |~p′|2. We will work in the center-of-mass frame, where

P 0 = |~P | = |~q| = q

2
√
x(1− x)

, |~q′| = |~p′| and q0 =
(1− 2x)q

2
√
x(1− x)

. (3.1)

Now, let us define the following vectors as

vµs =
1

q

(
Pµ +

qµ

2x

)
and vµt =

1

q

(
q′µ +

qµ

2y′

)
with y′ =

−q2

2q′ · q
. (3.2)

The auxiliary variable y′ can be thought of as equivalent to the Bjorken parameter x for

the scattering of the s scalar and the gauge field.

In the field theory side, this will lead to the dominant contribution of the Wµν hadronic

tensor for interactions with two intermediate states X1 and X2, and we can schemati-

cally write

Im (Tµν2 ) = π
∑
X1,X2

〈P,Q|J̃µ(q)|X1, X2〉〈X1, X2|Jν(0)|P,Q〉 (3.3)

= π
∑

M2,M3

∫
d3p′

2Ep′(2π)3

d3q′

2Eq′(2π)3
〈P,Q|J̃µ(q)|X1, X2〉〈X1, X2|Jν(0)|P,Q〉

= 4π3
∑

M2,M3

∫
d4q′

(2π)4
δ
(
M2

2 − q′2
)
δ
(
M2

3 − (P + q − q′)2
)
|〈P,Q|Jν(0)|X1, X2〉|2,

where the subindex in Tµν2 indicates that we are considering only processes with two-particle

intermediate states, and

nµ〈P,Q|J̃µ(q)|X1, X2〉 = (2π)4δ4
(
P + q − p′ − q′

)
〈P,Q|n · J(0)|X1, X2〉 , (3.4)

is identified in the AdS/CFT context with what we have been calling the amplitude on

each side of the cut. Thus, we obtain the following hadronic tensor

Wµν
2 =

∑
M2,M3

c2

∫
d3p′

2Ep′(2π)3

d3q′

2Eq′(2π)3
(2π)4δ4

(
P + q − p′ − q′

)
vµt v

ν
t |Ct|2 , (3.5)
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where c2 ≡ c2
1c

2
2c

2
3 stands for square of the product of the normalization constants of each

on-shell field. The complex scalar factor Ct contains all the information from the evaluation

of the vertices and the propagator of the diagram as well as from the AdS5 solutions, with

the exception of the phase factors and the integrals on the xµ coordinates which only give

the four-momentum conservation. By plugging the explicit solutions and the propagator

given in appendix A, equation (A.4), we can schematically write

Ct(M2,M3, p
′, q′) =

∫
dz dz′

[
VssA(z)× Vsφφ(z′)×G(z, z′)

]
, (3.6)

where we omit the integration of the spherical harmonics on the S5 whose contribution

was explained in the previous sections.

Then, from the vµt v
ν
t factor of this holographic hadronic tensor, which is consequence

of that the t-channel diagram gives the leading contribution, it is easy to separate the

1/N2 contributions to each structure function. This is because from equation (1.4) we

know that21 (
ηµν −

qµqν
q2

)
Wµν = ηµνW

µν = 3q2F1 + 2xv2
sF2 , (3.7)

q2(vs)µ(vs)νW
µν = PµPνW

µν = q2v2
sF1 + 2xv4

sF2 . (3.8)

Thus, we obtain

F1(x, q2) =
∑

M2,M3

c2

∫
d3p′

2Ep′(2π)3

d3q′

2Eq′(2π)3
(2π)4δ4

(
P + q − p′ − q′

)
|Ct|2

×2q2
[
v2
t + 4x2(vs · vt)2

]
, (3.9)

F2(x, q2) =
∑

M2,M3

c2

∫
d3p′

2Ep′(2π)3

d3q′

2Eq′(2π)3
(2π)4δ4

(
P + q − p′ − q′

)
|Ct|2

×4xq2
[
v2
t + 12x2(vs · vt)2

]
. (3.10)

As we will see in the next section this decomposition holds in a more general situation.

Before obtaining |Ct|2 we can already see that the first two terms which contribute to the

structure functions F1 and F2 can be thought of as related by the Callan-Gross relation

F ∗2 (x, q2) = 2xF ∗1 (x, q2) , (3.11)

where the star means that these are not the complete structure functions but only the first

term between brackets in the corresponding leading 1/N2 contribution. In contrast, the

second terms in F1 and F2 give non-zero contributions to the longitudinal structure function

FL = F2 − 2xF1 . (3.12)

This will be important when analyzing our results in terms of the internal structure of the

hadron. We will discuss more about this in section 5.
21Note that qµW

µν = qνW
µν = 0, meaning that upon contraction with the leptonic tensor lµν terms

with qµ vanish, thus we can ignore them.
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3.2 Details of the amplitude computation

Now, let us consider some details of the calculation of the structure functions, i.e. the

computation of (3.9) and (3.10).

There are different parts of the calculation that we have to assembly. First, we discuss

the terms that are common to both structure functions: the momenta integrations, the sum

over intermediate states and the complex scalar Ct with the contribution of both vertices.

Then, we will write the dimensionless factors, which define each structure function in terms

of the relevant kinematic parameters. Note that at the end all R factors cancel, thus we

will omit them.

• There is an integral over the space component of the momenta ~p′ and ~q′, as well

as a factor associated with the energy-momentum conservation. This can be easily

rewritten in the center-of-mass frame and by using spherical coordinates, where all

the integrals but one can be solved trivially. The remaining one is an angular integral

in the variable θ, the angle between the incoming and outgoing vector momenta q

and q′,∫
d3q′

(2π)32Eq′

∫
d3p′

(2π)32Ep′
(2π)4δ(4)(P+q−p′−q′)(. . . ) =

|~p′|
8πq

√
x

1− x

∫
dθ sin θ(. . . )

where |~p′| solves the algebraic equation

q

√
1− x
x

=

√
|~p′|2 +M2

2 +

√
|~p′|2 +M2

3 . (3.13)

• There is a factor c2 corresponding to the product of the normalizations of all states

involved in the process given by c2
1c

2
2c

2
3. If we assume that the masses are known

this is easy to compute since in all cases the normalization integral is dominated by

the region z ∼ z0 = Λ−1. The arguments of the Bessel functions cannot be small,

therefore we can use the asymptotic expression (2.18). In this way an on-shell scalar

field solution associated with this Bessel function J∆−2 comes with a normalization

constant c∆ such that

c2
∆ =

( √
2

z0|J∆−1(kz0)|

)2

∼ kz0

z2
0

= kΛ , (3.14)

up to numerical factors. In the last step we have used the fact that since kz0 is a

zero of J∆−2, it must be either a minimum or a maximum of J∆−1 because of the

recursion relations for the derivative of these functions.

• There is a sum over the masses of the intermediate on-shell states, M2 and M3. The

masses are constrained by the energy conservation (3.13). Thus, we have

∑
M2M3

≡
q
√

1−x
x∑

M2=0

q
√

1−x
x
−M2∑

M3=0

. (3.15)
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The complex scalar Ct contains the information of the vertices and the propagator (A.4),

including the coupling constants λ123 and G123 with the corresponding k indices. In what

follows we will collect these in a dimensionless constant B independent of q2 and x whose

exact form is irrelevant for our conclusions. We can take the ω-integral out in order to

factorize the other integrals, obtaining

Ct = q

∫
dω

ω

ω2 + (P − p′)2
S

(z)
ssA(M2, q, ω)S

(z′)
sφφ(M1,M3 , ω) , (3.16)

where S
(z)
ssA and S

(z′)
φφs are integrals over z and z′, respectively. We will explain briefly each

term and calculate the integral below. Thus, we have:

• An integral (or sum) in the variable ω of the intermediate field s and its propagator

given by
ω

ω2 + (P − p′)2
=

ω

ω2 −M2
1 −M2

3 + q√
x(1−x)

(√
|~p′|2 +M2

3 − |~p′| cos θ

) . (3.17)

• An integral associated with the interaction between the three scalar modes (two

dilatons and the scalar s)

S
(z′)
sφφ =

∫ z0

0
dz′z′ J∆−2(M1z

′)J0(ωz′)J∆′′−2(M3z
′) , (3.18)

where ∆ labels the spherical harmonics corresponding to the initial dilaton, while

∆′′ is associated with the intermediate dilaton field which has mass M3. The leading

contribution to this integral is given by the region z ∼ z0 � 1. Thus, we can approx-

imate the Bessel functions for large arguments. By considering both approximations

of the integrals and numerical integration one finds that this integral behaves as (B.1)

S
(z′)
sφφ ∼

1√
M1M3

[δ(ω − |M1 −M3|)± δ(ω − (M1 +M3))] , (3.19)

where the dependence on ∆ and ∆′′ is only reflected on the ± signs in front of each

term (see appendix B). This will allow us to perform the integral in ω.

• An integral associated with the interaction vertex between two fields s and the non-

normalizable vector perturbation Aµ. By using the axial gauge the corresponding

z-integral becomes

S
(z)
ssA =

∫ z0

0
dzz2K1(qz)J0(ωz)J0(M2z) , (3.20)

where the Bessel function K1(qz) quickly decreases in the bulk which allows one

to approximate the upper limit by z → +∞. We can solve the integral using the

equation (B.3) with ρ = 3, λ = 0, µ = 0 and ν = 1 from the appendix. For ω � q

the expression for the Bessel function J0(ωz) at small arguments can be used, and

this corresponds to consider J0(ωz) ∼ 1. Therefore from equation (B.4), we obtain

S
(z)
ssA =

2q(
M2

2 + q2
)2 . (3.21)

Notice that both for M2 � 1 and M2 ∼ q this provides an order q−3 factor.
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Recall that the factors which appear in the last three items enter the definition of Ct, and

therefore they must be squared in order to give |Ct|2 before doing the angular integral.

Finally, we have the dimensionless factors which define the structure function, F1

F2

FL

 =
1

N2

∑
M2M3

c2 q|~p′|
8π

√
x

1− x

∫
dθ sin θ

 v2
t + 4x2(vs · vt)2

2x[v2
t + 12x2(vs · vt)2]

16x3(vs · vt)2

 |Ct|2 . (3.22)

Henceforth, the prefactor 1/N2 carries all the N -dependence of the structure functions

coming from the rescaled fields. Without any approximation the dimensionless factors in

the parenthesis can be written in terms of M2, M3 and θ as,

|~p′|2

q2

[
1− cos2 θ

]
,

1

(1− x)q2

[(
q′0 + (2x− 1)|~p′| cos θ

)2
]
,

and
1

(1− x)q2

[
2x(1− x)|~p′|2

(
1− cos2 θ

)
+
(
q′0 + (2x− 1)|~p′| cos θ

)2
]
, (3.23)

for F1, FL and F2 respectively.

These are all the ingredients needed for the calculation of the structure functions.

3.3 Angular integral and final results for the structure functions

Among the previous discussion the most difficult part of the calculation is the angular

integral. Recall that the factor which depends on the angle θ is |Ct|2 (through (P − p′)2 in

the denominator of the propagator) multiplied by the combination of v2
t and (vs · vt)2 for

each of the structure functions.

The longitudinal structure function FL, on which we will focus, takes the following

expression,

FL =
1

N2
B2

∑
M2,M3

Λ3M1M2M3

∫
dθ sin(θ)

1

8π

√
x

1− x
|~p′|q3


(
q′0 + (2x− 1)|~p′| cos(θ)

)2

(1− x)q2


×
(∫

dω
ω

ω2 + (P − p′)2 − iε
S

(z′)
sφφ(ω,M1,M3)S

(z)
ssA(ω, q,M2)

)2

. (3.24)

By using equation (3.19) the integral becomes

FL =
1

N2
B2

∑
M2,M3

Λ3M2

∫
dθ sin(θ)

1

8π

√
x

1− x
|~p′|q3


(
q′0 + (2x− 1)|~p′| cos(θ)

)2

(1− x)q2

×
(∫

dω
ω

ω2 + (P − p′)2 − iε
[δ(ω − |M1 −M3|)± δ(ω − (M1 +M3))]S

(z)
ssA(ω, q,M2)

)2

.

(3.25)

Let us consider the case M3 � q and |~p′| ∼ q which leads to the leading contribution.22

The conditions over the mass M1 � q implies that ω = |M1 ±M3| � q allowing one to

22We assume that the case M3 ∼ q leads to a subleading contribution as in [16].

– 25 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
3

solve approximately the integral S
(z)
ssA(|M1 ±M3|, q,M2) from equation (3.21). In order

to solve the integral in θ we can expand the denominator in the propagator considering

M3 � |~p′|. This restriction imposes a condition on the upper limit of M2 in the sum, since

for M2 close to the maximum we can see from the definition (3.13) that |~p′| should be small

or vanishing. By expanding p0 and p′0, we obtain

p′0 =

√
|~p′|2 +M2

3 ≈ |~p′|+
M2

3

2|~p′|
− M4

3

8|~p′|3
, (3.26)

p0 =
√
|~p|2 +M2

1 ≈ |~p′|+
M2

1

2|~p|
− M4

1

8|~p|3
. (3.27)

Thus, the denominator becomes

(M1 ±M3)2 + (P − p′)2 ≈ 2|~p||~p′| (1− cos(θ)) +
|~p|
|~p′|

(
M3 ±M1

|~p′|
|~p|

)2

+O(M4
1 ) . (3.28)

The largest contribution comes from the small θ region in the term with a minus sign.

This is so because for θ = 0, M3 = αM1 with α = |~p′|/|~p| is a zero of the denominator.

Therefore, we will focus on the term with the minus sign. The possible divergence will be

addressed later.23 Notice that the expression above contains two Dirac deltas, but the term

we will focus on has a very simple physical interpretation: for M3 < M1 and M3 +ω = M1

it represents a process in which the incoming hadron splits into two hadrons, each one

carrying a fraction of the incident four-momentum.

The condition M3 � |~p′| implies that the dimensionless factor of FL is approximately
(
q′0 + (2x− 1)|~p′| cos θ)

)2

(1− x)q2

 ≈ 1

x

[
1 +

√
x

1− x
|~p′|
q

((2x− 1) cos θ − 1)

]2

. (3.29)

Under the mentioned approximations we obtain

FL =
1

N2
B2

∑
M2,M3

Λ3M2q
5

(M2
2 + q2)2

|~p′|
2π

(M1 −M3)2√
x(1− x)

×
∫ π

0

dθ sin(θ)
[
1 +

√
x

1−x
|~p′|
q ((2x− 1) cos θ − 1)

]2

[
2|~p||~p′|(1− cos θ) + |~p|

|~p′|
(M3 −M1α)2

]2 . (3.30)

The integral in θ now can be solved, and by considering the 1/q2 expansion we obtain

∫ π

0
dθ

sin(θ)
[
1 +

√
x

1−x
|~p′|
q ((2x− 1) cos θ − 1)

]2

[
2|~p||~p′|(1− cos θ) + |~p|

|~p′|
(M3 −M1α)2

]2 =

(
1− 2

√
x(1− x) |

~p′|
q

)2

2|~p|2(M3 −M1α)2
+O

(
log q

q4

)
.

(3.31)

23In order to calculate the integral we assume that the IR-cutoff Λ is small compared with the photon

momentum transfer.
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Then,

FL =
1

N2

∑
M2

Λ3M2q
5

(M2
2 + q2)4

|~p′|
2π

(
1− 2

√
x(1− x) |

~p′|
q

)2

2|~p|2
√
x(1− x)

∑
M3

(M1 −M3)2

(M3 −M1α)2
. (3.32)

From the sum over M3 we keep the most important contribution, given by the term where

M3 is as close as possible to αM1. Recall that M3 can only take a few discrete values due

to the presence of the cutoff Λ. Then, we assume a representative value M3 = αM1 + Λ.

Thus, we take ∑
M3

(M1 −M3)2

(M3 −M1α)2
≈ M2

1 (α− 1)2

Λ2
. (3.33)

This term depends on α = |~p′|
|~p| , which implicitly depends on M2 through the definition

of |~p′|.
Then, we approximate the sum over M2 by an integral, similarly to what is done for

MX in [2]. The upper limit is given by a fraction 0 < c < 1 of the center-of-mass energy

q
√

1−x
x . Notice that c should be restricted by the condition |~p′| � M3. Then, |~p′| can be

written as a function of M2 and q from the equation

|~p′| ≈ q

2

√
1− x
x
− M2

2

2q

√
x

1− x
. (3.34)

Therefore, we find

FL =
M2

1

N2
B2Λ

∫ cq
√

1−x
x

0

dM2

Λ

M2q
4

(M2
2 + q2)4

(
1− x

(
1 +

(
M2

q

)2
))

x4

(
1 +

(
M2

q

)2
)4

=
1

N2
B2c2(2− c2)

M2
1

4πq2
x3(x− 1)2 , (3.35)

where B is a dimensionless constant that contains the corresponding coupling constants

λ123 and G123 of section 2.3 with the k indices corresponding to each particle. We can see

that FL has a maximum around x ≈ 0.6 and vanishes for x = 1 as expected. Note that the

x-dependence of this result is independent of the value of c. Also, recall that the solutions

are such that the AdS masses (as M1) are proportional to Λ.

For F1 the integrals in z, z′ and ω can be solved in a similar way as for FL. The main

difference comes from the dimensionless factor in the angular integral. We obtain

F1 =
1

N2

∑
M2,M3

Λ3 M2q
5

(M2
2 + q2)4

1

8π

(M1 −M3)2√x√
(1− x)

|~p′|

×
∫ π

0
dθ sin(θ)

|~p′|2
q2 (1− cos2 θ)[

2|~p||~p′|(1− cos θ) + |~p|
|~p′|(M3 −M1α)2

]2 .

The integrals over M2 and M3 are very complex and we can not obtain an analytic result for

F1. However, if we estimate the q-power counting, it turns out that the structure function

F1 has a log q
q4 dependence. Therefore, F1 is non-vanishing but subleading.
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Figure 6. Relevant Witten diagrams at a generic loop-level.

4 Multi-particle intermediate states from type IIB supergravity

In this section we study the situation where there are multi-particle intermediate states in

the FCS. We investigate this by considering Witten diagrams with multi-particle interme-

diate states from type IIB supergravity. The idea is to show that both the tensor structure

(and the decomposition of the scattering amplitude in structure functions) and the Λ2/q2

dependence are the same for any number of loops from the supergravity point of view. We

also give arguments to motivate the following conjecture: within the supergravity regime,

all the n-loop with n ≥ 1 leading contributions to DIS are suppressed by the same power

of Λ2/q2 than the n = 1 case that we have studied in detail in this work. We only consider

Witten diagrams such that an scalar s with the smaller scaling dimension ∆′ = 2 inter-

acts with the non-normalizable gauge field. We assume the separation of this interaction

region from the rest of the multi-particle exchange process, which occurs in the IR. This

is because if the first masses are small, all the others are bounded to be of the same order

due to the form of the vertices present in the splitting of the original hadron, which involve

normalizable modes and render a z-integral of the type of our sφφ interaction. This type

of diagrams give the most relevant contribution for the reasons explained in the previous

sections. Figure 6 schematically represents this kind of diagrams. We can start from the

most general Lorentz-tensor decomposition of the hadronic tensor

Wµν = F1(x, q2)

(
ηµν − qµqν

q2

)
+ F2(x, q2)2x vµs v

ν
s , (4.1)

and the solution of the U(1) gauge field which is a perturbation of the bulk metric, induced

by the current operator inserted in the AdS boundary given by

Aµ(x, z) = eiq·x
[
cµqzK1(qz) +

n · q
q2

qµ

]
, cµ = nµ −

n · q
q2

qµ , A
µ = z2ηµνAν . (4.2)

This solution has been obtained within the axial gauge, for which Az = 0, using the

boundary condition

Aµ(x, z → 0) = nµe
iq·x . (4.3)
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The tensor structure of the amplitude is

Im(A) ∼ nµnνIm(Tµν) . (4.4)

The relevant interaction is the one on the vertex closer to the boundary, given by SssA or

SAφφ, which appears in all the Witten diagrams we are considering. Using the dilaton field

solutions24 in the axial gauge (see appendix A) φ, this vertex evaluated on-shell is given by

SAφφ|on−shell =

∫
d10x

√
−gGMN∂Mφ∂Nφ

=

∫
d10x

√
−gAmva (∂aφ1∂mφ

?
2 − ∂aφ2∂mφ

?
1)

= iQ
∫
d4ydzdΩ5

√
gΩ z

−5Aµ (φ1∂µφ
?
2 − φ2∂µφ

?
1)

= iQ δ(4)(q + p1 − p2)

∫
dzdΩ5

√
gΩ z

−3 φ1 φ
?
2 η

µν Aµ (p1ν + p2ν) , (4.5)

where φ1 is the incoming dilaton (or s scalar) and φ2 is the one representing the upper

intermediate state in the diagram of figure 6. The corresponding four-momenta are p1 and

p2, respectively. gΩ is the determinant of the metric of the five-sphere with radius R. For

φ we can chose the spherical harmonic such that

va∂aφi = cφie
ipi·xz2J∆−2(piz)va∂aY (Ω) = iQiφi. (4.6)

Also, charge conservation implies that Q1 = Q2 ≡ Q. From the solution for Aµ the integral

splits into two terms: one with the Bessel function K1(qz) which dominates in the region

close to the AdS boundary, and another one from the part of Aµ which is independent of

z. The last one vanishes for the reasons explained in the appendix when N →∞, thus the

tensor structure, i.e. the factors containing nµ is exclusively given by the square of

ηµνcµ (p1ν + p2ν) = ηµν
(
nµ −

n · q
q2

qµ

)
(p1ν + p2ν) . (4.7)

In the limit N →∞ we have

cµ(pµ1 + pµ2 ) = cµ(Pµ + (P + q)µ) = 2q(n · vs) , (4.8)

and since qµv
µ
s = 0, then F1 = 0 and F2 6= 0. However, for a one-loop amplitude we have

pµ1 + pµ2 = (q′)µ + (P − p′)µ = (2q′ − q)µ . (4.9)

Then

ηµν
(
nµ −

n · q
q2

qµ

)
(p1ν + p2ν) = 2n ·

(
q′ +

q

2y′

)
≡ 2q(n · vt) . (4.10)

This tensor structure and the generic decomposition of Wµν schematically leads to

F1 ∼ 2q2
[
v2
t + 4x2(vs · vt)2

]
, (4.11)

F2 ∼ 4xq2
[
v2
t + 12x2(vs · vt)2

]
. (4.12)

24Here we write the steps in terms of dilatons as in the N →∞ case, but in general they are replaced by

s scalars.
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In the above expressions we should include all the integrals which are necessary to com-

plete them.

It is easy to see that this analysis for one-loop Witten diagrams holds for a generic

n-loop diagram as schematically depicted in figure 6. In fact, for an n-loop diagram the

difference is that now p2 = P − p′1 − · · · − p′n−1, but from momentum conservation this

is q′ − q. The p′i are the momenta of the on-shell intermediate particles that appear in

the IR region, while q′ is the momentum of the s scalar after the scattering with the

non-normalizable vector. Thus, the Lorentz-tensor decomposition is totally general, and

therefore we will always have a similar structure as the one presented in the Introduction in

equation (5). If θ is the angle between vectors ~q and ~q′, we can also say that F1(θ → 0) = 0.

Now, since the tensor structure and the most relevant vertex are the same, we propose

that the leading q-dependence will be the same for all these cases. If this proposal turned

out to be true there would be an important consequence: the 1/N2n corrections with n > 1

would be subleading. This would mean that once particle creation is allowed, N →∞ and

q2 → ∞ become commuting limits. In that case, the only relevant processes in the study

of DIS in the large N and strong coupling limit would be the one- and two-particle final

states processes.

5 Discussion and conclusions

In this work we have focused on the 1/N2 corrections to DIS of charged leptons from

glueballs at strong coupling, where N is the number of color degrees of freedom of the

gauge theory. We have done it by considering the gauge/string duality. We have considered

the AdS5 × S5 background with a hard cutoff z0 = Λ−1, where Λ is the IR confinement

scale in the gauge theory. In the bulk description the initial hadron is represented by

a dilaton with a conformal dimension ∆, while a massless Am vector is associated with

the perturbation produced by the insertion of the electromagnetic currents (it can be the

R-symmetry current) at the boundary, and it is interpreted as a dual virtual photon.

The DIS high energy limit is when q2 � Λ2, where q is the four-momentum of the

virtual photon. On the other hand, for the AdS/CFT correspondence the gauge theory

processes are studied in the planar limit, and from that it is possible to investigate correc-

tions in the 1/N expansion of the gauge theory. From the string theory point of view this

corresponds to the genus expansion. In the low energy limit of string theory it becomes

the supergravity loop Feynman diagram expansion.

The idea of this work is to study the compatibility between these two limits. Our

results show that they do not commute. By considering first the N → ∞ limit, it leads

to the case where DIS is described by a bulk process with only one intermediate state

which results in structure functions proportional to (Λ2/q2)∆−1. On the other hand, by

taking first the high energy limit q2 � Λ2 particle creation is allowed, and the resulting

two-intermediate particle process renders structure functions proportional to 1/N2 and

(Λ2/q2). In a way this is expected since the high energy limit allows particle creation.

From first principles we have described the bulk processes that contribute to the 1/N2

corrections to DIS in terms of the holographic forward Compton scattering (related to
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DIS via the optical theorem) with two-particle intermediate states, i.e. by calculating the

corresponding one-loop Witten diagrams. For this purpose, we have described the relevant

supergravity fluctuations in terms of an expansion in spherical harmonics on S5, focusing

on dilatons and gravitons, more specifically scalar and vector fluctuations of the metric,

together with their interactions. By using the interaction terms we have studied the corre-

sponding Witten diagrams. We have concluded that at order 1/N2 and in the DIS regime

of the gauge theory there is only one leading diagram: the t-channel. This specific channel

must be considered on both sides of the cut, together with the sum over all possible inter-

mediate states. It is the dominant contribution. The incoming hadron splits into two other

hadrons in the IR region, producing a dilaton and a scalar s with the lowest conformal

dimension ∆′ = 2, each one carrying a fraction of the incoming hadron momentum. Then,

only the second particle tunnels to the UV region and interacts with the Am field. The

appearance of this s particle is the reason why the t-channel is the dominant diagram. It

leads to further consequences. In the N →∞ limit, the photon strikes the entire hadron,

which implies that F1 = 0. Beyond this limit, i.e. by including the first 1/N2 correction,

the hadron is fragmented and the photon interacts only with one of the resulting particles,

which leads to F1 6= 0. In fact, F1 and F2 can be explicitly separated in two parts: the

first terms of each structure function are related by the Callan-Gross relation F ∗2 = 2xF ∗1 ,

while the second ones give a non-zero contribution to the longitudinal structure function

FL ≡ F2 − 2xF1. This unveils a richer structure for the currents, since both F1 and F2 are

non-vanishing in this limit, which means that the currents can, in principle, contain spin-1,

spin-1/2 and spin-0 fields inherited from the N = 4 SYM supermultiplet. The expansion

of equation (1.5) allows one to understand more about the current structure inside the

glueballs at strong coupling. This in fact holds for any holographic dual pair of theories

whose asymptotic geometry is AdS5 × S5.

Also, from the calculation of the amplitude we have obtained the q2 dependence of

FL(x, q2) and, within some approximations, its exact functional form at order 1/N2 (3.35).

It turns out to be completely consistent with the field theory OPE prediction discussed

by Polchinski and Strassler. Furthermore, we found the x dependence of FL ∝ x3(1− x)2

which compares well with phenomenology and lattice-QCD results [19]. In consequence,

this represents an explicit example where q → ∞ and N → ∞ limits do not commute.

In addition, the x-dependence implies that FL goes to zero at x = 0 and x = 1 and it is

bell-shaped with a maximum at x ≈ 0.6, as expected. It is also consistent with the fact

that, for some particles (for example the π-meson) comparison with experimental results

have shown that valence structure functions behave like (1 − x)2 when x → 1 [19] (and

references therein). Note that in previous work we have seen that the concepts of valence

structure functions and the contribution of the sea of quarks are related in the context of

holographic calculations with the contributions coming from the supergravity regime (at

λ−1/2 � x < 1) and those coming from string theoretical considerations (exp(−λ1/2) �
x � λ−1/2), respectively. We have also found that F1 turns out to be subleading in the

1/q2 expansion. This means that obtaining its explicit form from the t-channel diagram

would have been meaningless since contributions coming from other diagrams could be of

the same order.
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In addition, we have discussed DIS considering multi-hadron final states, analyzing the

general structure of contributions of higher order loop expansion under a few assumptions

based on the 1/N2 case. We have found that the fundamental first steps of the our previous

analysis remain unchanged.25 Aside from the possible IR process, where the hadron splits

into multiple particles leading to multi-particle intermediate states in FCS, the appearance

of an s scalar with conformal dimension ∆′ = 2 is needed in order to have the lowest

possible Λ2/q2 suppression. This is the particle that interacts with Am in the small-z

region, leading to an identical tensor structure. The overall q-dependence seems to be the

same in all the n-loop cases with n ≥ 1, implying that the results of this paper together

with the ones in [2] are the only ones relevant for glueball DIS at strong coupling, at least

in the regime where supergravity provides an accurate description.

In conclusion, if hadron production is forbidden (the large N limit), the most relevant

term in equation (1.5) is f
(0)
L . On the other hand, if hadron production is possible, f

(1)
L

becomes the leading one, since the rest of terms have a structure as shown in figure 6 where

the multi-loop with (n− 1) hadrons occur in the IR, while a single hadron tunnels towards

the UV of the gauge theory as commented before. Then, the net effect is similar as having

one-loop corrections.

The fact that the planar limit and the high energy limit do not commute has very

interesting implications. We have shown an explicit calculation where this effect becomes

evident for the glueball structure functions, which supports a general expectation from

the OPE of two electromagnetic currents inside the hadron. We can see this relation by

looking at the expression for the moments of the glueball structure functions in equa-

tion (1.14). The third term with the factor 1/N2 dominates the expression for M
(s)
n (q2)

when q2 ≥ Λ2N2/(τQ−τc) for which τQ = τc + 1, where τc is the minimum twist for all the

electrically charged protected operators. Then, in this momentum regime the exchange

of two intermediated states dominates the forward Compton scattering cross section, and

therefore the DIS one. The immediate consequence is that the longitudinal structure func-

tion f
(1)
L in this range does not depend on the conformal dimension of the incident hadron

(recall that in the planar limit the expression for f
(0)
L depends on ∆). It implies that for

the Bjorken parameter 1/
√
λ � x < 1 the glueball structure functions do not depend on

the conformal dimension of the incident hadron.

Also, notice that taking large q2 with fixed x, it corresponds to increase the collision

energy. There is a transition between the regime where the DIS cross section is dominated

by one-hadron final state to two-hadron final state. The physical picture is as follows [2]: at

weak ’t Hooft coupling the lowest-twist operators of the confining gauge theory dominate,

then the first term in (1.14) describes the partonic dynamics corresponding to a weakly

coupled confining gauge theory. Then, as the coupling increases the mentioned lowest-

twist operators develop large anomalous dimensions. Thus, for large ’t Hooft coupling

their twists become high. On the other hand, there are double-trace operators, which for

instance in QCD are sub-leading, and their anomalous dimensions do not become high

25This refers to the steps we followed in the case of two-particle intermediate states up to the end of

section 3.1.
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for large ’t Hooft coupling, so that their twists remain relatively low. Therefore, these

higher-twist operators become the leading ones for large ’t Hooft coupling. Physically, it

means that the virtual photon strikes the entire hadron. This is reflected in the fact that

the second term of (1.14) dominates in this regime. If the momentum of the virtual photon

increases further, q2 ≥ Λ2N2/(τQ−τc), the third term in (1.14) dominates. In that case

the physical picture is that the virtual photon strikes a hadron in the hadron cloud that

surrounds the initial glueball.

Recall that all the present discussion is for the parametric regime where supergravity

is an adequate description, thus the 1/N corrections are described by supergravity loops.

It would be interesting to consider the description beyond the supergravity regime, i.e.

x� λ−1/2, where string theory plays a crucial role. In that case string loop effects become

important, which eventually could lead to black hole formation. However, in the present

work we have not focused on these effects.

Notice that from lattice Yang-Mills theory simulations for glueball masses and other

properties it has been found that relatively small values of the rank of the gauge group like

N = 6, 8 display a very similar behavior to the one expected for the large N limit [44, 45].

In that sense it means that the values of q2 for which the third term dominates moments

in equation (1.14) will be not necessarily extremely large.

Possible extensions can be studied with the techniques presented in this work. For

instance one can consider a different background of the type AdS5 × C5 (for a compact

Einstein manifold C5). In this case if the five-dimensional reduction from type IIB super-

gravity is known, in principle, one can calculate the 1/N2 corrections in a similar way as

described in this work. In general, one would expect that if there appear α′ and/or 1/N

corrections to the background, these corrections may affect the region where the cutoff

of the AdS space is located. In that case, since the loop corrections we study have the

virtual photon interaction with two scalar fluctuation near the UV, we would expect sim-

ilar conclusions. Another interesting possibility from the theoretical point of view is to

study DIS processes in gauge theories in different spacetime dimensions. As an interesting

possibility one could consider the (0, 2) theory, and study the scattering amplitudes by us-

ing the AdS/CFT correspondence in the AdS7 × S4 from eleven-dimensional supergravity,

and then to include loop corrections. The consistent dimensional reduction in that case

has been done in [46]. Also, a similar procedure could be carried out for AdS4 × S7 from

eleven-dimensional supergravity, for a dual three-dimensional gauge theory.
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A Axial gauge calculations

A.1 Scalar, vector and tensor solutions

In this appendix we briefly review the solutions for the different bosonic fluctuations and

their derivations. In the massless cases we follow the work in [47]. As we have done in

section 2, the different fluctuations on the AdS5×S5 background can be expanded in terms

of the spherical harmonics of the S5. Once this is done for each supergravity mode one

obtains a series of massive scalar, vector and tensor fluctuations in AdS5. Kaluza-Klein

masses are given by the eigenvalues with respect to the angular Laplacian. Moreover, it

is useful to work with a complete set of momentum eigenfunction solutions of the form

Φ(x0, . . . , x3, z) = eip·xΦ(p)(z) and focus on the timelike momentum case.

There are three different Kaluza-Klein towers of scalar fluctuations, labeled as s, t and

Ω in table 1. As we have seen, they have different Kaluza-Klein mass formulas but in what

follows we will use generically m ∝ R−1. Like any scalar massive mode in AdS5 they are

defined by the Klein-Gordon equation

(�−m2)φ(x, z) = 0⇒
[
z2∂2

z − 3z∂z +
(
z2p2 −R2m2

)]
φ(p)(z) = 0 , (A.1)

with p2 = ηµνp
µpν . In the massless case the equation is equivalent to ∂m(

√
−ggmn∂n)φ = 0

and one obtains the well known solutions

φ(p)(z) ∼ z2J2(pz) normalizable, (A.2)

φ(p)(z) ∼ z2Y2(pz) non-normalizable,

where p ≡
√
−p2 and J and Y are the Bessel functions of the first and second kind,

respectively. For the diagrams we study in this work we only need the normalizable modes.

Henceforth, we omit the non-normalizable ones.26 When m2 6= 0 the story is similar and

one has

φ(p)(z) ∼ z2J√4+R2m2(pz) . (A.3)

Note that this implies that the solutions are different for each type of scalar. In general, for

scalar fluctuations the scaling dimension ∆ ≥ 2 of the associated operator of the boundary

field theory is given by m2 = R−2∆(∆ − 4). Thus, the Bessel function index is given by√
4 +R2m2 = ∆− 2. This is of course the same in any gauge. For completeness we write

the scalar propagator corresponding to the solutions above

G(x, z;x′, z′) =
1

V ol(S5)R3

∫
d4p

(2π)4
G(p)(z, z′)eip·(x−x

′)

= − i

π3R8

∫
d4p

(2π)4

dM2

2

z2 J∆−2(Mz)z′2J∆−2(Mz′)eip·(x−x
′)

p2 +M2 − iε
. (A.4)

This propagator is easily obtained by solving the equation27

�G(x, z;x′, z′) =
i

√−gAdS5

δ4(x− x′)δ(z − z′) , (A.5)

26The only non-normalizable solution is the vector perturbation produced by the insertion of the current

at the boundary. This goes exactly as in [2].
27This is in five dimensions, but we also have to integrate on the sphere.
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in Fourier space (for the first four coordinates) [47] using the identity∫
dz z Jν(Mz)Jν(M ′z) =

1

M
δ(M −M ′) . (A.6)

Let us recall that there is a cutoff z0 in the AdS space where the solutions have to vanish.

This means that p has to be such that the product pz0 is a zero of the Bessel function.

This holds for all the normalizable fields we consider.

For vector fields in AdS5 (that we generically denote Am) one has to solve the Einstein-

Maxwell equation after fixing some gauge degrees of freedom. The axial gauge is defined

by imposing Az = 0. Thus, after separating variables one finds[
z2∂2

z − z∂z + (z2p2 −R2m2)
]
A(p)
µ = 0 and ηµνpµA

(p)
ν = 0 , (A.7)

where the last equation only holds for normalizable modes. This system has the following

massive solutions

A(p)
µ (z) ∼ εµ z J√1+R2m2(pz) with p · ε = 0 . (A.8)

The definition m2 = R−2(∆ − 1)(∆ − 3) for vector fluctuations in the context of the

AdS/CFT correspondence leads to an index of the form
√

1 +R2m2 = ∆ − 2. The only

difference with the scalar case is the power of the z factor.

Now, let us consider the tensor fluctuations hµν . There is only one Kaluza-Klein tower

of these states, and among them the massless one corresponds the AdS5 graviton. In this

case, the axial gauge is defined by hµz = 0, which leads to important simplifications and,

as in the vector case, it selects the transversally polarized solutions for hµν .28 After some

algebra, one finds that the equations of motion are given by[
z2∂2

z + z∂z +
(
z2p2 − 4−R2m2

)]
h(p)
µν = 0 and ηµνpµh

(p)
µσ = 0 , (A.9)

where we are only left with symmetric traceless perturbations. Thus, the solutions are of

the form

h(p)
µν (z) ∼ Eµν J√4+R2m2(pz) with ηνσpνEσµ = ηνσpνEµσ = 0 , ηµνEµν = 0 , Eµν = Eνµ,

(A.10)

and since the m2(∆) equation for tensor modes is the same as in the scalar case, while the

index is ∆− 2 with a different z factor.

The canonical normalization condition for scalars involves the cutoff z0 and is given

in [1, 16], where it is shown that for a field of the form φ = eip·xf(z)Y (Ω5), canonical

quantization implies the normalization condition∫ z0

0
dz dΩ5 ω(z)

√
gzzgS5 |f(z)Y (Ω5)| = 1 , (A.11)

where ω(z) = (R/z)2 is the warp factor multiplying ηµνdx
µdxν in the metric, and in a

more general context gzzgS5 should be replaced by the determinant of the part of the

28Formally, there is also a mode associated with hzz, however this is not an independent degree of freedom

since the trace hµµ is already included in the scalar fluctuations.
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metric corresponding to the rest of the coordinates. Assuming that the angular part of the

solution is normalized as ∫
dΩ5
√
gS5 |Y (Ω)|2 = 1 , (A.12)

and using the fact that our solutions vanish at z = z0, which means that the J∆−2(pz0) = 0,

the normalization constant is

c =

√
2

z0R4|J∆−1(pz0)|
. (A.13)

By taking into account that |AµAµ| ∼ z2|Aµ|2 and |hµνhµν | ∼ z4|hµν |2 the vector and

tensor normalizations are obtained in a similar way.

A.2 Details of the planar limit

As we have seen, in the axial gauge we set Az = 0, and after proposing a solution of the

form Aµ = fµ(z)eik·x the Einstein-Maxwell equations of motion for the massless vector

coming from the boundary become

iq · ∂zA = 0 , ∂2
zAµ −

1

z
∂zAµ − q2Aµ + qµq ·A = 0 , (A.14)

where the contraction stands for v · w = ηµνvµwν . The first equation implies that q · A
is a constant in terms of the z variable. For normalizable modes, as Aµ(z → 0) → 0 this

simply implies that q ·A = 0, and we can forget about it in the second equation, as we have

done before.29 However, if we want Aµ to describe an R-current excitation coming from

the boundary, we can no longer ignore this constant because of the boundary condition

Aµ(z → 0)→ nµe
iq·x ⇒ q ·A|z=0 = q · n eiq·x = const. . (A.15)

The full non-normalizable solution takes the form

Aµ =

[
cµqzK1(qz) +

(q · n)qµ
q2

]
eiq·x , (A.16)

and imposing the boundary condition leads to

cµ = nµ −
(q · n)qµ

q2
. (A.17)

Recall that in the Lorentz gauge one obtains cµ = nµ (and Az 6= 0). Now, writing the

current as Jm = iQ(φI∂mφ
?
X − φ?X∂mφI) the interaction action evaluated on-shell in the

gauge that we consider is

SAφφ = iQ
∫
d10x

√
−gAmJm = iQ

∫
d10x

√
−gAµJµ

= iQ
∫
d10x

√
−gφIφ?XAµ (2Pµ + qµ) ,

29This is important since this constant term would yield much more complicated solutions in the mas-

sive case.
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which represents a term coming from the Bessel function and another from the z-constant

terms of Aµ.

The former gives exactly the z integrand of the Lorentz case z∆J∆−2(s1/2z)K1(qz),

and noting that the contraction is

cµ (2Pµ + qµ) =

(
nµ −

(q · n)

q2
qµ

)
(2Pµ + qµ) = 2n ·

(
P +

q

2x

)
, (A.18)

it leads to the same contribution as in [2]. This means that the other term must vanish,

and it is what happens. Since A does not fall down rapidly with z in the bulk, one cannot

use the asymptotic behavior for the ingoing state, which means that the z-integral is of

the form ∫ z0

0
dz zJ∆−2(s1/2z)J∆−2(Pz) =

z0

s− P 2

[
sJ∆−3(s1/2z0)J∆−2(Pz0)− PJ∆−2(s1/2z0)J∆−3(Pz0)

]
. (A.19)

J∆−2 must vanish at z0, which proves that the constant term that appears in the axial

gauge does not contribute to the structure functions.

B Double and triple Bessel function integrals

The following are known definite integrals that we use in this work. They come from the

Bessel functions Jµ(x) and Kµ(x) which are present in all the non-asymptotic solutions of

free fields in the AdS5 × S5 space.

• For vertices between three normalizable states we can use a semi-empirical distribu-

tion [40]:∫ ∞
0

zJ∆1−2(M1z)J∆2−2(M2z)J∆3−2(M3z)dz ≈[
cos

(
π(∆3 −∆1 −∆2 + 2

2

)
+ sin

(
π(∆3 −∆1 −∆2 + 2)

2

)]
×δ(M3 − (M1 +M2))

2
√
M1M2

+

[
cos

(
π(∆3 − |∆1 −∆2|+ 2)

2

)
+ sin

(
π(∆3 − |∆1 −∆2|+ 2)

2

)]
×δ(M3 − (|M1 −M2|)

2
√
M1M2

. (B.1)

• For the same vertices with two equal states∫ ∞
0

zJ0(az)Jν(bz)Jν(cz)dz =
1

bc
√

2π sin(v)
P

1
2

ν− 1
2

(cos(v)) , (B.2)

if |b − c| < a < b + c or zero otherwise. P βα (x) represents the associated Legendre

function and we have defined cos(v) ≡ b2+c2−a2

2bc .
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• For vertices between two normalizable states and a non-normalizable perturbation

coming from the boundary∫ ∞
0

zρ−1Jλ(az)Jµ(bz)Kν(cz)dz =
2ρ−2aλbµc−ρ−λ−µ

Γ(λ+ 1)Γ(µ+ 1)
Γ

(
ρ+ λ+ µ− ν

2

)
(B.3)

× Γ

(
ρ+ λ+ µ+ ν

2

)
F4

(
ρ+ λ+ µ− ν

2
,
ρ+ λ+ µ+ ν

2
;λ+ 1, µ+ 1;−a

2

c2
,−b

2

c2

)
where in this equation F4 is the fourth Appell series of hypergeometric functions.

This formula is valid if Re(ρ+ µ+ λ) > Re(ν) and Re(c) > |Im(a)|+ |Im(b)|.

• For the same vertices with a normalizable state which is approximated by its asymp-

totic expansion

∫ ∞
0

zρKµ(az)Jν(bz)dz = 2ρ−1

(
b

a

)ν
a−ρ−1

Γ
(
ν+ρ+µ+1

2

)
Γ
(
ν+ρ−µ+1

2

)
Γ(ν + 1)

× F
(
ν+ρ+µ+1

2
,
ν+ρ−µ+1

2
, ν+1, − b

2

a2

)
. (B.4)

This equation is valid if Re(a± ib) > 0 and Re(ν + λ+ 1) > |Re(µ)|.

For ρ = ∆, ν = ∆−2, µ = 1, a = q and b =
√
s, we have that F (∆,∆−1,∆−1,− s

q2 ) =

(1 + s
q2 )−∆ and we recover the result of equation (2.26).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett.

88 (2002) 031601 [hep-th/0109174] [INSPIRE].

[2] J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge / string duality, JHEP

05 (2003) 012 [hep-th/0209211] [INSPIRE].

[3] R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string

duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].

[4] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in

AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019

[hep-th/0611122] [INSPIRE].

[5] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in

AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B 767

(2007) 327 [hep-th/0611123] [INSPIRE].

[6] L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming

the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

[7] R.C. Brower, M.J. Strassler and C.-I. Tan, On the eikonal approximation in AdS space,

JHEP 03 (2009) 050 [arXiv:0707.2408] [INSPIRE].

– 38 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.88.031601
http://dx.doi.org/10.1103/PhysRevLett.88.031601
http://arxiv.org/abs/hep-th/0109174
http://inspirehep.net/search?p=find+EPRINT+hep-th/0109174
http://dx.doi.org/10.1088/1126-6708/2003/05/012
http://dx.doi.org/10.1088/1126-6708/2003/05/012
http://arxiv.org/abs/hep-th/0209211
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209211
http://dx.doi.org/10.1088/1126-6708/2007/12/005
http://arxiv.org/abs/hep-th/0603115
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603115
http://dx.doi.org/10.1088/1126-6708/2007/08/019
http://arxiv.org/abs/hep-th/0611122
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611122
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.007
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.007
http://arxiv.org/abs/hep-th/0611123
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611123
http://dx.doi.org/10.1088/1126-6708/2007/09/037
http://arxiv.org/abs/0707.0120
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0120
http://dx.doi.org/10.1088/1126-6708/2009/03/050
http://arxiv.org/abs/0707.2408
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2408


J
H
E
P
0
4
(
2
0
1
6
)
1
1
3

[8] R.C. Brower, M.J. Strassler and C.-I. Tan, On The Pomeron at Large ’t Hooft Coupling,

JHEP 03 (2009) 092 [arXiv:0710.4378] [INSPIRE].

[9] L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron

at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].

[10] L. Cornalba and M.S. Costa, Saturation in Deep Inelastic Scattering from AdS/CFT, Phys.

Rev. D 78 (2008) 096010 [arXiv:0804.1562] [INSPIRE].

[11] C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep Inelastic Scattering in

Holographic AdS/QCD Models, Nucl. Phys. Proc. Suppl. 199 (2010) 97 [arXiv:0910.1309]

[INSPIRE].

[12] L. Cornalba, M.S. Costa and J. Penedones, Deep Inelastic Scattering in Conformal QCD,

JHEP 03 (2010) 133 [arXiv:0911.0043] [INSPIRE].

[13] L. Cornalba, M.S. Costa and J. Penedones, AdS black disk model for small-x DIS, Phys. Rev.

Lett. 105 (2010) 072003 [arXiv:1001.1157] [INSPIRE].

[14] E. Koile, S. Macaluso and M. Schvellinger, Deep Inelastic Scattering from Holographic

Spin-One Hadrons, JHEP 02 (2012) 103 [arXiv:1112.1459] [INSPIRE].

[15] E. Koile, S. Macaluso and M. Schvellinger, Deep inelastic scattering structure functions of

holographic spin-1 hadrons with Nf ≥ 1, JHEP 01 (2014) 166 [arXiv:1311.2601] [INSPIRE].

[16] J.-H. Gao and Z.-G. Mou, Structure functions in deep inelastic scattering from gauge/string

duality beyond single-hadron final states, Phys. Rev. D 90 (2014) 075018 [arXiv:1406.7576]

[INSPIRE].
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