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a b s t r a c t

For an accurate simulation of forming processes, it is of paramount importance to model
the different lubrication regimes that can develop at the contact interface. These might
vary from zone to zone of the forming piece, and from one regime to another, resulting
in forces of different nature and magnitude. In these cases, the use of the classical Coulomb
friction law will be clearly not sufficient to capture, in a suitable manner, the variety of
forces applied on the forming piece.

Objective of this paper is the development of a constitutive model for the contact inter-
face that is able to capture the different lubrication regimes. The load bearing capacity of
the contact interface is assumed to be the resultant of two mechanisms: dry friction arising
from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of
one, the other or both mechanisms is controlled by a parameter a that, in the proposed
model, depends on the current value of the sliding velocity V, the interfacial separation
D and the surface roughness rs. The functional relation defining a can be derived either
from experimental fitting of some parameters, which can be introduced into a predefined
analytical expression designed to reflect the variation of the different regimes, or from the
application of a sequential multiscale analysis through the use of microscale models.

The model is formulated with respect to a convected reference frame, so to make it ame-
nable for large deformation simulations. The numerical integration scheme of the resulting
initial constitutive value problem is presented and implemented into an explicit finite ele-
ment code. The mechanisms of the interface model have been separately tested and the
numerical results correlate well with the available experimental findings. Comparisons
with the Coulomb friction model are also provided. The applicability of the model for form-
ing simulations is then demonstrated by reproducing the manufacturing of a ridge on an
aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elas-
tomer and the fluid have been employed as pressure medium, and their performance has
been compared in terms of the stresses and deformations produced in the finished product.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In forming processes, the consideration of the tribological conditions at the interface between the die and the work piece
represents a fundamental concern of the whole process design. Given the high contact pressures and the large contact sur-
faces, very high friction forces are generated that might limit the relative movement between the workpiece and the die. This
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Fig. 1. Schematic representation of a traditional Stribeck curve, with indication of the lubrication regimes: DF (dry friction), MHL (Mixed Hydrodynamic
Lubrication), FHL (Full Hydrodynamic Lubrication).

Fig. 2. Schematic representation of the different lubrication regimes in function of the ratio D=rs . The quantities R1;R2 and R3 are characteristic values
dependent on the tribological system, marking the transition from one regime to another [3].In this picture, the surface roughness is shown amplified for
purpose of illustration.
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can lead to thinning of the expansion zone, failure bursting, and can jeopardise the surface integrity of the work piece, just to
mention few of the problems that might occur. The application of lubricants, as means to reduce the above effects, requires the
consideration of the different regimes that are expected to occur along the different forming zones, depending on the sliding
velocity, pressure and contact surface conditions, surface roughness, and interfacial separation between the surfaces. A pic-
torial representation of the friction behaviour of confined fluid thin lubricants is traditionally provided by the Stribeck curve,
depicted in Fig. 1, which shows the friction coefficient l as a function of the bulk fluid viscosity gb, the sliding speed V and the
film thickness D [1]. Even though this representation is not universally accepted as fully representative of the friction varia-
tion, with some researchers suggesting an improved Stribeck curve based on parameters easily accessible under engineering
conditions [2], what matter to note for the interface behaviour, is however the existence of three zones associated with dif-
ferent load bearing mechanisms of the contact interface. The three zones are referred to as boundary lubrication or dry-fric-
tion regime, mixed or partial lubrication regime and full thin lubrication regime.

Fig. 2 illustrates the different regimes, which are identified by characteristic values of the ratio of the interfacial separa-
tion D to the surface roughness, characterized by the standard deviation rs of the assumed Gaussian distribution of the
asperity heights.

For relatively thick lubricated surfaces the resistance to motion is determined by the lubricant bulk viscosity gb. In pres-
ence of high pressure load and low sliding velocity, the surface asperities penetrate the lubrication layer, are separated by
each other only by films of molecular thickness, and lubrication is said to be under boundary conditions or dry friction. The
lubrication regime between these two is referred to as mixed lubrication regime and in this case, the tangential force applied
to the surface depends on both the solid contact asperities and the interstitial lubricant.

The knowledge of the friction map for the tribological system that one is examining permits the assessment of different
type of actions applied on the moving surfaces. The Stribeck curve, or likewise any boundary friction map that reflects accu-
rately the energy dissipation in the interface [2], provides therefore a constitutive formulation for the forces transmitted
through the contact interface. Their use, in place of Coulomb friction with viscous regularization for lubricated contacts,
has been since advocated for the numerical simulations of those processes where there is need to account judiciously for
the different tribological conditions that can arise [4,2].

In spite of the several experimental and theoretical studies that have been performed to date to elucidate and to model the
different mechanisms responsible of each of the above regimes, the actual use of such friction maps for numerical simulations
of forming processes appears not yet having been fully explored. While it is unanimously recognized, especially for lubricants
not having a fast relaxation process, the need of improving the modelling of the contact interface, the current body of works on
this subject focuses on only one or the other feature of the complex friction mechanism. Finite element simulations of sheet
metal forming processes carried out in [5], for instance, employ a model of dry friction where only the ploughing and adhesion
mechanisms of the boundary layer are taken into account (see also [6] for another model accounting for these mechanisms),
whereas the authors in [7] explore, mainly from the computational point of view, the use of rate-and-state dependent friction
laws to model dry-friction in the context of large deformation problems. A mixed lubrication model for deep drawing processes,
which accounts for the contact area evolution based on some available asperity flattening mechanisms has been developed in
[8], whereas [9] presents finite element simulations of sheet metal forming processes using the mixed hydrodynamic lubrica-
tion model proposed in [10], which combines the Greenwood Williamson model for the normal contact pressure [11] and the
film thickness solution of the hydrodynamic lubrication model of Moes [12,13] for fully flooded smooth rigid line contacts.
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The above studies provide valuable insight in the physics and modelling of the different friction mechanisms. Neverthe-
less, they appear limited in the scope for real applications, and are generally computationally demanding. Aim of this work is
to propose a simple model, in the framework of large deformations following [14,7], which goes beyond the Coulomb friction
law, in the sense that it accounts for the different lubrication regimes as described above, and can be easily used for the pre-
liminary design of large scale applications.

The model proposed in this work adopts the load sharing assumption introduced in [15,16] which consists of taking the
action applied on the lubricated contact surfaces as a convex combination of the load bearing contributions deriving from the
dry friction and the full hydrodynamic lubrication mechanisms. The contribution of each of the two mechanisms is captured
through a variable a that depends on the interfacial separation D, the sliding velocity V and surface roughness. The functional
relation that gives a could be defined either from experiments or, as application of a sequential multiscale analysis, a could
be computed using microscale models for the interface. In this manner, the proposed model retains the simplicity of a phe-
nomenological approach and, meanwhile, it includes more refined information with a fraction of cost of lower computational
demand, compared to a genuinely on-fly multiscale analysis. The latter would indeed require a multiscale analysis at each
point of the slave element which is projection of the master node, making prohibitive the simulation of large scale compu-
tations for real applications, such as in forming processes.

After this brief introduction, the following Section 2 describes the constitutive model for the contact interface, illustrating
and discussing the constitutive assumptions for each of the contributing mechanisms. The load sharing assumption is intro-
duced to describe the friction conditions in the mixed lubrication regime, with the definition of the constitutive parameter a.
Section 3 presents the adopted scheme for the numerical integration of the constitutive equations, in view of its implemen-
tation into the explicit FE code STAMPACK�, particularly suitable for metalforming processes simulations [17,18]. The selec-
tion of an explicit FE code was dictated by the observation that, for such type of simulations, explicit codes represent still the
first choice in industrial applications. This is because of their lower computational cost, which scales almost linearly with the
problem size, and of the relative ease for the implementation of the contact constraints in large deformations [19]. A real
industrial application for the design of a ridge on an aluminum tube for the cosmetic industry is then carried out and dis-
cussed in Section 4. This study is preceded by two numerical examples where the single components of the contact interface
are tested and validated against experimental results. In the final Section 5, conclusions on this work are drawn.

2. Constitutive model for dry, mixed and fully lubricated contact

This section describes the constitutive model for the contact interface by defining one constitutive equation for the nor-
mal contact pressure tN and one for the tangential traction tTðX; tÞ. These constitutive equations relate tN and tTðX; tÞ to their
respective kinematic dual variables and to possible internal variables. For their formulation, the contributing contact mech-
anisms, either derived from dry friction, or from the hydrodynamic action of the lubricant or from both, are taken into ac-
count. The constitutive equations are formulated in a reference frame convected with the deformation of the bodies in
contact. Also, in the following, it will be assumed that the evaluation of the normal contact pressure is decoupled from
the evaluation of the tangential traction, and that the system is sufficiently large to be self–averaging. The latter assumption
means that an effective dependence of the static variables on the macroscopic primary variables, such as time, irreversible
sliding distance and sliding velocity, can be postulated.

2.1. Contact kinematics

The kinematic relations describing the two-body large deformation contact problem are formulated by assuming that the
boundaries of the two bodies are smooth and by using a convected reference frame as described in [20,14,21]. Standard nota-
tion given in [20,14] is thus followed. This is next succinctly summarized with the purpose of introducing the relevant nota-
tion, see also Fig. 3. Let B1 and B2 denote the two bodies that come into contact, and denote by x ¼ u1

t ðXÞ and y ¼ u2
t ðYÞ the

corresponding deformation mappings at time t 2 I, with I ¼ ½0; T� the time interval of interest. The boundary Ci of each body,
for i ¼ 1;2, can be partitioned in three parts: Ci

u;C
i
r and Ci

c . The parts Ci
u and Ci

r have prescribed displacements and tractions,
respectively, whereas Ci

c , is the part of the boundary that is expected to come into contact with the other body at a certain
instant t 2 I. On Cc both the contact and friction conditions must be formulated [22].

For any X 2 B1, the physical requirement of impenetrability and compression interaction between the two bodies will be
expressed in terms of the gap function gðX; tÞ i.e. the distance of x 2 u1

t ðC
1
c Þ to u2

t ðC
2
c Þ defined as
gðX; tÞ ¼ �m � u1
t ðXÞ �u2

t ð�YÞ
� �

; ð2:1Þ
where �Y is the point of the initial configuration whose image by u2
t is �y, with �y ¼ u2

t ð�YÞ being the closest point of u2
t ðC

2
c Þ to

x ¼ u1
t ðXÞ and m the outward normal to the surface u2

t ðC
2
c Þ at �y. A basis sa can then be constructed at each contact point �y by

evaluating the partial derivatives of the deformation field u2
t with respect to the convective coordinates na, at the coordinates

�na of the point �YðX; tÞ.
The relative displacement between the two bodies in contact is then given by
gTðXÞ ¼
Z t

ts

_�na sads; ð2:2Þ
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Fig. 3. Basic notation for the kinematics of the two-body large deformation problem with parametrization of the contact surfaces in terms of the local
convective coordinates. In this formulation, a basis ta ¼ W2

0;a of the tangent manifold associated with each point X of the initial configuration and
parametrized by nðX; tÞ is defined. The basis ta is then convected with the point as it moves and gives sa ¼ W2

t;a , vector basis of the tangent manifold of the
current configuration. The symbol W2

t denotes the parametric representation of the manifold u2
t ðC

2
c Þ at the time instant t [20,23,21], whereas W2

t;a represents
the partial derivative of W2

t with respect to the curvilinear coordinate na .
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where ts is the time instant when the two surfaces come into contact, t is the current time instant, and _�na is the time deriv-
ative of the curvilinear coordinate na evaluated at �YðX; tÞ. The tangential relative velocity is computed as the Lie derivative of
the tangential slip distance gT with respect to the surface velocity v ¼ v2 with v2 ¼ d

dt u
2
t ð�YðX; tÞÞ. This derivative is shown to

be equal to the time derivative of gT in the convective current base sa [14], i.e.
Fig. 4.
surface
LvgT ¼ _�na sa: ð2:3Þ
Remark 2.1. In the case of rough contact surfaces, the kinematic contact relations defined above can still be used, with the
meaning that now such quantities refer to the mean surfaces of the asperity heights distribution, with such mean surfaces
assumed to be smooth. The surface roughness can then be taken into account through the following relation
D ¼ g � h1 � h2; ð2:4Þ
where D is the current interfacial separation (or film thickness), and h1 and h2 define the roughness profile of surface 1 and
surface 2 with respect to the mean surfaces of their respective asperity heights distributions, with hi > 0 if corresponding to
elevation. Fig. 4 displays the definition and the relation between these quantities [3,24]. h
2.2. Load sharing assumption

The formulation of the constitutive model for the contact interface in terms of LvgT requires the definition of the dual
variable of LvgT which is the tangential traction tTðX; tÞ. Noting that LvgT is a vector resolved in terms of the spatial bases
sa, it is shown in [14] that tTðX; tÞ is obtained by resolving the Piola nominal contact traction TðX; tÞ at X 2 C1

c , in terms of the
spatial bases sa, that is,
TðX; tÞ ¼ �tNðX; tÞm þ tTðX; tÞ; ð2:5Þ
Sketch of the surface roughness with indication of the geometrical gap g, heights hi of the asperities evaluated with respect to their respective mean
s, and interfacial distance D (film thickness), with hi > 0 if it relates to elevation.
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where m is the outward normal to u2
t ðC

2
c Þ at �y (normal to the spatial bases sa), tN is the nominal contact pressure (positive if

compressive), and tT is the spatial frictional traction. Since the frictional traction tT lies in the tangent space of u2
t ðC

2
c Þ at �y, it

can be expressed in the convective current base sa as follows
tTðX; tÞ ¼ ttaðX; tÞsa; ð2:6Þ
where sa ¼ mabsb represents the dual basis to sb. The coefficients mab ¼ sa � sb and mab ¼ sa � sb are referred to as metric coef-
ficients and characterize metric properties of the deformed configuration. Because of (2.6), a contact law relating the tangen-
tial part of T to the tangential relative velocity (2.3) will therefore provide a spatial formulation of the frictional contact (for
further details, refer to [20] and [14, pag 120]).

The constitutive model for the interface is therefore obtained by formulating one constitutive equation for tN and one for
tT . Given that under mixed lubricated conditions the mechanisms that contribute to the contact interface bearing derive
from the hydrodynamic force of the lubricant and from the contact force at the solid asperities, an additive load sharing
assumption, as proposed by [15,16], is made for both the evaluation of the total nominal contact pressure, and the total nom-
inal tangential traction. This means that the total nominal pressure is assumed to be given as
tN ¼ tnom
N;DF þ tnom

N;HL ð2:7Þ
and an alike relation holds for the total nominal tangential traction which is stated in the form
tT ¼ ð1� aÞtT;DF þ atHL; ð2:8Þ
(refer to [25, Eq. (15) and Eq. (32)] where analogous relations are also given). In Eq. (2.7), tnom
N;DF is the nominal normal pressure

resulting from the contact of the solid asperities, whereas tnom
N;HL is the nominal normal lubricant pressure. This relation holds

for all the lubrication regimes, given that tnom
N;HL ¼ 0 when only the dry friction is active, and tnom

N;DF ¼ 0 when only the hydro-
dynamic lubrication regime is active. For the mixed hydrodynamic regime, both the actions will be present. Eq. (2.7) has
been written in terms of the nominal pressure, i.e. of the pressure referred to the unit nominal area. In this manner, it is pos-
sible to quantify the relative importance of the two mechanisms through the definition of the coefficient a 2 ½0;1� (whose
reciprocal is called scaling factor in [15,16]), given as the ratio of tnom

N;DF to tN , i.e. a ¼ tnom
N;DF=tN . The coefficient a depends on

the relative sliding velocity jLvgT j and on the interfacial separation D. For its evaluation, see discussion below in Section 2.5.
Once a is known, one can then evaluate the total nominal tangential traction through Eq. (2.8) where tT;DF is the tangential
friction at the solid asperities and tT;HL is the tangential stress applied by the lubricant.

Following the above assumptions, the constitutive equation for the contact interface is therefore obtained by giving con-
stitutive relations for tnom

N;DF ; t
nom
N;HL; tT;DF and tT;HL.

Remark 2.2. The concept of load sharing is relatively straightforward; the two bearing mechanisms are assumed to act in
parallel and, in its simplest form, are considered to be one independent to the other. A detailed analysis should include an
interaction between the two mechanisms, of the type fluid–solid interaction, especially when surface deformations play a
relevant influence on the fluid pressure. The concept, as here used, is, nevertheless, quite consolidated in the literature as
first approximation, and represents the underlying assumption in many studies on mixed hydrodynamics lubrication
[26,25,27,28]. h
2.3. Normal pressure: Evaluation of tnom
N;DF

Within the proposed framework, different constitutive equations can be used for tnom
N;DF , according, for instance, to the

geometrical type of contact (point or line contact), and the type of contact surfaces (rough hard surface on smooth hard
surface; rough soft surface on smooth hard surface; rough hard surface on rough hard surface; rough hard surface on
rough soft surface; rough soft surface on rough soft surface; smooth soft surface on smooth soft surface). One is mainly
looking for an expression that relates tnom

N;DF to D which is generally obtained by applying the relevant contact mechanics
theory (see for instance [29,11,30–32]) or by experiment [33–35]. For the modelling of the mixed lubrication regime,
the constitutive equation for tnom

N;DF ¼ tnom
N;DFðDÞ can range from its simplest form, with a linear dependence on D of the type

given by Eq. (2.12) below, for instance, to a more elaborated one such as the one given in [30] or in [11], where different
mechanical aspects of the contact are taken into account. Next, for illustrative purpose, the Greenwood and Williamson
model introduced in [11] is recalled. According to this model, the nominal normal pressure at the asperities, referred
to the nominal area, is given by
tnom;WG
N;DF ¼ 2

3
nbrs

ffiffiffiffiffi
rs

b

r
E0

1ffiffiffiffiffiffiffi
2p
p

Z 1

D=rs

s� D
rs

� �3=2

exp � s2

2

� �
ds; ð2:9Þ
where the effective modulus E0 is such that 1=E0 ¼ ð1� m2
1Þ=E1 þ ð1� m2

2Þ=E2, with E1 and E2 the Young modulus, and m1 and m2

the Poisson’s ratios, of the two surfaces in contact, whereas n; b and rs are parameters characterizing the surface roughness.
In particular, n ½m�2� represents the asperities density, b ½m� the average radii of the asperities and rs ½m� the standard



Fig. 5. Variation of tnom
N;DF as given by Eq. (2.13) using the Greenwood and Williamson contact model and the penalty given by Eq. (2.12).
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deviation of the heights distribution of the summits, assumed of Gaussian type [11]. The upper integration limit in (2.9) is
replaced with the finite adimensional value R3 ¼ Dmax=rs that marks the transition from the mixed lubrication to the full
hydrodynamic lubrication1, hence
1 Dma
tnom;WG
N;DF ¼

2
3 nbrs

ffiffiffiffi
rs
b

q
E0 1ffiffiffiffi

2p
p

R R3
D=rs

s� D
rs

� �3=2
exp � s2

2

� �
ds for 0 6 D

rs
6 R3;

0 for D
rs
> R3:

8<
: ð2:10Þ
As given by Eq. (2.10), tnom;WG
N;DF is defined also for negative values of D. To avoid such values for D, which would violate the

impenetrability constraint, a penalty method is employed, which is here enforced through the constitutive equation [34].
This can be done as an exterior penalty method, which is the manner that is commonly used in practice, or as barrier method
[34]. An instance of enforcement through the barrier method is given by considering the following function
tnom;pen
N;DF ¼ �� log

D
rsR1

� �	 
2

þ
; ð2:11Þ
with R1 ¼ Dmin=rs and haiþ :¼ maxfa;0g, whereas with an exterior penalty, where small negative values of D would be in this
case allowed, one assumes
tnom;pen
N;DF ¼ KN �

D
rs

	 

þ
; ð2:12Þ
with � and KN being the respective penalty factors. The regularized nominal normal contact pressure is then defined as
tnom
N;DF ¼ tnom;WG

N;DF þ tnom;pen
N;DF : ð2:13Þ
Fig. 5 displays tnom
N;DF , as given by Eq. (2.13), using (2.10) with: Dmax ¼ 250 � 10�9 m;n ¼ 2:5 � 1010 m�2; b ¼ 10 � 10�6 m,

rs ¼ 0:2 � 10�6 m and E0 ¼ 1:50 � 1011 N=m2 taken from [26], and (2.12) with KN ¼ 1 � 1010 N=m2.

2.4. Normal pressure: evaluation of tnom
N;HL

The lubricant hydrodynamic normal pressure tnom
N;HL should be obtained by the solution of the Reynolds equation which

represents a dimensional reduction of the Navier–Stokes equations for thin film viscous flow. The Reynolds equation is, in
general, a free boundary problem for the possible occurrence of cavitation, which is coupled to the deformation of the sur-
faces, in the case of elastohydrodynamic lubrication. Several solution methods have been advanced in the literature. The ana-
lytical solutions, currently available, have been obtained for particular geometry and mainly for full film hydrodynamic
conditions, by neglecting the solid surfaces deformation, [1,36], whereas the numerical methods [37,38,3,39] and the
approximate solutions [12,10] contemplate more general cases and apply to elastohydrodynamic, as well, where also the
x , defined in the following, is the value of the film thickness such that the FHL is realized for any value of the sliding velocity V.
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deformation of the surfaces is taken into account. In this paper, an approximate solution is considered, which represents for
some aspects a further simplification of the one proposed by [12,10]. By assuming that cavitation does not occur and that
enough lubricant is supplied to the contact (condition known as fully flooded lubrication as opposite to starved lubrication),
an approximation for the fluid pressure in the full hydrodynamic regime is proposed in the form
Fig. 6.
Dmax ¼
tnom
N;HL ¼ dgb

jLvgT j
D

: ð2:14Þ
In (2.14), the parameter d depends on the geometry of the tribological system whereas the bulk viscosity gb is assumed in
this paper to be constant with respect to the pressure and temperature. This approximation appears quite reasonable. The ana-
lytical solutions of the Reynolds equation for the simplified geometry reported in [1] show indeed for tnom

N;HL a functional depen-
dence on the sliding velocity jLvgT j and on the interfacial separation D of the type given in (2.14). Furthermore, relations of the
type (2.14) have also been contemplated in [40,41] concerning with the well posedeness of the lubricated contact problem.

Remark 2.3. Notice that due to the assumption of no-cavitation, one will need to check that the computed normal fluid
pressure does not drop below the so-called cavitation pressure. h
2.5. Normal pressure: Coefficient a and evaluation of tN

The coefficient a 2 ½0;1�, defined in Section 2.2, weights the lubricant and the solid asperities contact mechanisms to the
global loading bearing capacity of the contact interface. By definition, a characterizes the mixed hydrodynamic regime and is
introduced as a constitutive relation which must be evaluated for the tribological system that one is examining once the cor-
responding Stribeck curve is known. The Stribeck curve can be obtained either from the experiments [26], or from compu-
tation by using multiscale models as in [26,10,25]. For the purpose of demonstrating the viability of this approach based on
the use of the parameter a, a relatively simple analytical expression for a, from [42], is next taken into account,
a ¼
min hD�Dminiþ

Dmax�Dmin
; 1

� �
if jLvgT j < f hDmax�Diþ

hD�Dminiþ
;

1 if jLvgT jP f hDmax�Diþ
hD�Dminiþ

;

8<
: ð2:15Þ
with Dmax and Dmin the maximum and minimum film thickness for which one has the pure viscous and the pure frictional
regime, respectively, for any value of the sliding velocity, whereas f is a parameter that must be determined by fitting exper-
imental results. The evaluation of f is discussed in the next Section. The term
VcrðDÞ :¼ f
hDmax � Diþ
hD� Dminiþ

; ð2:16Þ
displayed in Fig. 6 for convenience, denotes, by its same definition, a critical velocity which marks the transition from the
mixed regime to the pure viscous one. In agreement with the general experimental evidence described in Section 1, Eq.
Variation of the critical velocity Vcr as defined by Eq. (2.16). For purpose of illustration, Eq. (2.16) has been plotted for f ¼ 1;Dmin ¼ 3=10 and
7=10.



(a) (b) (c)
Fig. 7. Graph of the function a as given by Eq. (2.15), along with the cross sections for: ðaÞ V ¼ 0; ðbÞ V ¼ 0:5; and ðcÞ V ¼ 1. For purpose of illustration, Eq.
(2.15) has been plotted for f ¼ 1;Dmin ¼ 3=10 and Dmax ¼ 7=10.
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(2.15) implies that: ðiÞ the pure frictional behaviour (a ¼ 0) will occur when D 6 Dmin for any value of the sliding velocity
jLvgT j; ðiiÞ the pure viscous behaviour (a ¼ 1) is obtained when D P Dmax for any value of jLvgT j, or when, for any given
D > Dmin, there holds jLvgT j > VcrðDÞ; ðiiiÞ the mixed lubrication regime (a 2�0; 1½) will occur for the other combinations of
jLvgT j and D. Fig. 7 displays the graph of aðjLvgT j; DÞ.

For completeness, the total nominal normal pressure can then be computed as follows:
tN ¼

tnom
N;DF for D=rs 6 R1;

tnom
N;DF ðD=rsÞ

aðD=rs ;jLv gT jÞ
for R1 6 D=rs 6 R3;

tnom
N;HL for D=rs P R3;

8>><
>>: ð2:17Þ
where R1 ¼ Dmin=rs and R3 ¼ Dmax=rs.
2.6. Evaluation of f

The assumption here is that one knows the Stribeck curve or the boundary lubrication map for the tribological system
that one is considering. As already mentioned beforehand, such curves can be obtained either from experiments or through
the use of microscale models of the contact interface such as in [10,26,28,25]. In the following the boundary lubrication map
discussed in [2] is used as point of case. This map displays the tangential force as function of the sliding velocity and is
parameterized with respect to the lubricant thickness D. A typical behaviour is displayed in Fig. 8, adapted from [2], where
one must identify the points ðVi;DiÞ corresponding to the transition to the FHL regime, and the values of Dmax and Dmin. For
the points marked in Fig. 8, observe that, as expected, as Di increases, Vi decreases. The parameter f is then obtained by the
best fit of the function (2.16) to such experimental data.



Fig. 8. Boundary lubrication map adapted from [2] with indication of the points ðVi;DiÞ for the evaluation of f.
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2.7. Tangential stress: Evaluation of tT;DF

For the evaluation of the dry friction component of the tangential stress, any solid friction law, describing the friction be-
tween the solid asperities, can be used. Here, a rate-and-state friction constitutive equation [43–45] has been considered
within the framework of non-associative plasticity [46]. Following a standard formalism, the additive decomposition of
the total slip gT is adopted,
gT ¼
Z t

ts

_ne;a þ _�np;a
� �

sads ¼ ge
T þ gp

T ð2:18Þ
and a state variable h introduced, which accounts for the current state of the interface. The tangential stress tT;DF is assumed
to be proportional to tN;DF but, at variance of Coulomb friction law, the friction coefficient l depends on the plastic slip rate
Lvgp

T and on the state variable h. The resulting slip criterion is then given by
F ¼ jtT;DF j � lðLvgp
T ; hÞtN;DF ; ð2:19Þ
where l is taken to be of the following form
lðLvgp
T ; hÞ ¼ f ðLvgp

T ; hÞl0ðLvgp
TÞ: ð2:20Þ
The term f ðLvgp
T ; hÞ is introduced in order to have a creep alike behaviour for l, as shown by experiments initially carried

out on rock friction [43], and subsequently on the contact between different surfaces [47–50]. Such creep behaviour is attrib-
uted to the complex dynamics of the interfacial asperities on the microscale [47,51]. By assuming for f ðLvgp

T ; hÞ the
expression
f ðLvgp
T ; hÞ ¼ 1þm ln 1þ h

jLvgp
T j

D0

� �
; ð2:21Þ
and for the evolution of the state variable h the equation
_h ¼ 1� h
jLvgp

T j
D0

; ð2:22Þ
one can note that a change of Lvgp
T induces a delay in l for the attainment of the corresponding value. The delay depends on

the evolution of h and is controlled by the constants m and D0, with D0 the internal length over which tT;DF varies in response
to changes of Lvgp

T , whereas m controls the rate of this change.
The term l0ðLvgp

TÞ models the steady-state friction coefficient; for Lvgp
T constant, and t !1, from (2.22) one obtains

h! D0=jLvgp
T j, so that lðLvgp

T ; hÞ ! l0ðLvgp
TÞ). The term l0 is modelled by the following function, displayed in Fig. 9,
l0 ¼
lk þ ðls � lkÞ exp 1þ A2

v
hjLv gp

T j�D0=s0i2þ�A2
v

� �
if jLvgp

T j 6 Av þ D0=s0;

lk otherwise;

8<
: ð2:23Þ



Fig. 9. Variation of the coefficient l0 as given by Eq. (2.23). The sliding velocity has been referred here to as slipping velocity to strengthen that V is the
plastic slip rate, that is, V ¼ jLv gp

T j.
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with ls and lk the static and kinetic friction coefficients, respectively, and s0 the characteristic time, introduced in [52,53],
over which, on average, the microcontacts are refreshed. The parameter Av denotes the value of the velocity at which l0 at-
tains the kinetic value lk. The constitutive model is completed by introducing an ‘elasto-perfect plastic’ type regularization
of the friction law, corresponding to (2.18), with
tT;DF ¼ KT ge
T ð2:24Þ
and by giving the loading/unloading conditions in the standard Kuhn–Tucker form
F 6 0; _kF ¼ 0; _k P 0: ð2:25Þ
Remark 2.4. The parameter KT that enters (2.24) has the meaning of a penalty factor [14] that has been introduced to
regularize the multivalued structure of the Coulomb-like friction law for the computation of tT;DF . h

Remark 2.5. At variance of the Dieterich–Ruina model [43,44], the expression of lðV ; hÞ given by Eq. (2.20) is defined also for
vanishing values of the sliding velocity V. Such expression for lðV ; hÞ has also been considered in [50]. A different expression
for describing low-velocity friction, used in forming processes, has instead been given in [54] in the form
l ¼ aasinh
V

2V0
exp

l0 þ b lnðV0h=D0Þ
a

� �� �
; ð2:26Þ
where the parameters a; b;V0 and l0 have the same meaning as in the Dieterich-Ruina model. By inspection of the Dieterich-
Ruina model [43,44], of Eq. (2.20) and of Eq. (2.26) the following observations can be drawn: as V ! 0, the Dieterich-Ruina
model is not defined; Eq. (2.26) as V ! 0 delivers l! 0; the expression (2.20), considered in this paper, gives as
V ! 0;l! ls. In this case, one realizes also for V ¼ 0 a logarithmic dependence of l with the time, as confirmed by exper-
iments in [50,55,56], while for the Dieterich-Ruina model this behaviour is related only to V – 0. h
Remark 2.6. Also in [7] it is recognized the breakdown of the Dieterich-Ruina friction model for vanishing sliding velocity,
making it not suitable for forming processes. A different rate-and-state friction law is therein proposed, which is well defined
as V ! 0 and gives a finite value different from zero. h
2.8. Tangential stress: Evaluation of tT;HL

The tangential stress applied by the lubricant in the full hydrodynamic condition is given by
tT;HL ¼ gbLvgT=D; ð2:27Þ
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corresponding to a Newtonian viscous material, where LvgT=D denotes the shear strain rate. Note that tT;HL enters (2.8) with
a, hence from (2.15), one has that for D 6 Dmin, atT;HL ¼ 0, and this holds also for D! 0. Furthermore, it is worth noting that
(2.27) accounts for only the lubricant shearing due to the relative motion of the surfaces, while it neglects the geometric tan-
gential action, due to variation of D, and the so-called rolling action, due to variation of the normal pressure. This approx-
imation is generally acceptable for smooth plane surfaces [13].

For convenience, the basic equations defining the initial value constitutive problem for the contact interface are summa-
rized in Box 1.
Box 1 Initial value constitutive problem for the contact interface

a ¼ min hD�Dminiþ
Dmax�Dmin

; 1
� �

if jLvgT j < VCRðDÞ;
1 if jLvgT jP VCRðDÞ;

(
;

tnom
N;DF ¼ 2

3 nbrs

ffiffiffiffi
rs
b

q
E0 1ffiffiffiffi

2p
p

R R3
D=rs

s� D
rs

� �3=2
exp � s2

2

� �
ds þ KNh�Diþ, for D=rs 6 R3,

tnom
N;HL ¼ dgb

jLv gT j
D for D=rs P R3,

tN ¼
tnom

N;DF for D=rs 6 R1;
tnom
N;DF ðD=rsÞ

aðD=rs ;jLv gT jÞ
for R1 6 D=rs 6 R3;

tnom
N;HL for D=rs P R3:

8><
>:

gT ¼ ge
T þ gp

T ,

tT;DF ¼ KT ge
T ,

Lvgp
T ¼ _k tT;DF

jtT;DF j
,

F ¼ jtT;DF j � lðLvgp
T ; hÞtnom

N;DF 6 0, _k P 0 _kF ¼ 0,

lðLvgp
T ; hÞ ¼ f ðLvgp

T ; hÞl0ðLvgp
TÞ ,

f ðLvgp
T ; hÞ ¼ a 1þm ln 1þ h

jLv gp
T j

D0

� �h i
,

l0 ¼
lk þ ðls � lkÞ expð1þ A2

v
hjLv gp

T j�D0=s0i2þ�A2
v
Þ if jLvgp

T j 6 Av þ D0=s0;

lk otherwise;

(

_h ¼ 1� h
jLv gp

T j
D0

,

tT;HL ¼ gbLvgT=D,

tT ¼ ð1� aÞtT;DF þ atT;HL:
3. Numerical integration algorithm

For the numerical integration of the constitutive equations presented in Section 2, the major difficulty lies in the integra-
tion of the constitutive relations modelling the tangential action of the dry friction component. The evaluation of the normal
contact pressure, on the other hand, is obtained by simply performing a function evaluation, given that both tN;DF and tN;HL

have been assumed to depend on the current value of the primary variable with no dependence on the contact interface his-
tory. Given, however, the similarity of the dry-friction formulation to rate-independent plasticity, the numerical techniques
Fig. 10. Node-to-segment discretization of the contact interface.



9996 M. Luege et al. / Applied Mathematical Modelling 37 (2013) 9985–10006
employed in classical plasticity can be suitably applied. As a result, also here an operator splitting algorithm is employed. In
the predictor step only the elastic-type relations are considered, whereas in the corrector step the rate equations, which are
approximated by a one step backward Euler scheme, are solved taking the results of the predictor step as the initial condi-
tions. This section gives the algorithmic details for the implementation into the FE code STAMPACK� [57] used to perform
the numerical simulations in Section 4. Since the equations of the motion of the two bodies in contact are solved in this code
by an explicit scheme [17,18,58,19], only the procedure for the update of the stresses, for the evaluation of the forces through
the interface element, is necessary and therefore is herein illustrated.
3.1. The incremental constitutive value problem

For the geometric discretization of the 2d contact interface, the node-to-segment approach has been adopted. This relies
on the introduction of the master–slave concept in the current configuration. Fig. 10 displays the node-to-segment contact
element with the corresponding geometrical quantities. The kinematical variables are computed by assuming that each di-
crete slave node x, comes into contact with the master segment 1–2 with end nodes y1 and y2. The master segment is then
parametrized by the convective coordinates n. The gap distance gN and the tangent vector can also be computed. For the full
details of this approach, one can refer to [34] Chapter 9 and the references therein. Within the displacement driven solution
of the contact problem, associated with an active set strategy to define the active contact constraints, the state of the contact
interface at tn and the incremental variables Dgnþ1 and DgT;nþ1, are assumed to be known at the point �y. To update the
interface state at tnþ1, one needs to identify first the type of lubrication regime that occurs. This is achieved by evaluating
anþ1 through (2.15), with Dnþ1 computed in terms of gnþ1, and LvgT jnþ1 computed by finite difference approximation of
(2.3), i.e.
LvgT jnþ1 �
DgT;nþ1

Dt
¼

�nb
nþ1 � �nb

n

 �
Dt

sb; nþ1: ð3:1Þ
If anþ1 ¼ 1, the full hydrodynamic conditions are realized, with a pure viscous behaviour of the interface, that is,
tnþ1

N;DF ¼ 0 and tnþ1
T;DF ¼ 0, while tnþ1

N;HL and tnþ1
T;HL are obtained from (2.14) and (2.27), respectively, using the approximation

(3.1). If anþ1 < 1, the dry-friction component needs also to be evaluated by solving the following system of nonlinear alge-
braic equations:
Given :
gT;n; gp

T;n; hn; kn;

DgT;nþ1;

Find : ge
T;nþ1; Dgp

T;nþ1; hnþ1; Dk; tnþ1
T;DF ;

Such that :

gT;nþ1 ¼ gp
T;n þ Dgp

T;nþ1 þ ge
T;nþ1; ðaÞ

tnþ1
T;DF ¼ KT ge

T;nþ1; ðbÞ

hnþ1 ¼ hn þ Dt 1�m hnþ1
D0

jDgp
T;nþ1 j
Dt

� �
; ðcÞ

Dgp
T;nþ1 ¼ Dk

tnþ1
T;DF

jtnþ1
T;DF j

; ðdÞ

F nþ1 < 0; Dk > 0; DkF nþ1 ¼ 0; ðeÞ

������������������������������

ð3:2Þ
where
F nþ1 ¼ jtnþ1
T;DF j � lnþ1tþ1

N ð3:3Þ
and
lnþ1 ¼ f hnþ1;
Dgp

T;nþ1

Dt

 !
l0

Dgp
T;nþ1

Dt

 !
; ð3:4Þ
with the functions f and l0 given by (2.21) and (2.23), respectively, whereas tnþ1
N;DF is obtained from (2.13) in terms of the

given gnþ1.
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Remark 3.1. In applying Eq. (2.9) to compute tnþ1
N;DF , the assumption Dnþ1 ¼ gnþ1 will be made. This means that the surface

roughness profile is assumed to be rigid. Eq. (2.9) will be, therefore, applied at the different time instants tn with the values of
n; b and rs characterizing the initial surface roughness. A rigorous evaluation of tN;DF should rather account for the surface
roughness with the deformation. For a more detailed discussion on this subject, one can refer to [24] where such influence
has been nevertheless analysed for the deformations produced by the lubricant pressure. h
3.2. The dry-friction traction update algorithm

For the solution of (3.2), a predictor–corrector scheme can be used, as illustrated in [34]. In the predictor step, one sets the
trial Dgp

T;nþ1 ¼ 0, i.e. one assumes stick condition, and evaluates the elastic trial traction
tnþ1;trial
T;DF ¼ KTðgT;nþ1 � gp

T;nÞ ð3:5Þ
and the friction criterion
F trial
nþ1 ¼ jt

nþ1;trial
T;DF j � ltrial

nþ1tnþ1
N;DF ; ð3:6Þ
where from (2.20), (2.21) and (2.23) one obtains
ltrial
nþ1 ¼ ls: ð3:7Þ
If F trial
nþ1 6 0, the elastic trial state with
tnþ1
T;DF ¼ tnþ1;trial

T;DF ; Dk ¼ 0; Dgp
T;nþ1 ¼ 0 and hnþ1 ¼ hn þ Dt ð3:8Þ
is solution of (3.2), otherwise one needs to compute the corrected state by projecting tnþ1;trial
T;DF onto the friction criterion. In

turn, this means to find Dgp
T;nþ1 so that F nþ1 ¼ 0 is met, with F nþ1 expressed below in terms of the only scalar Dk. Following

standard arguments on the return mapping algorithm [59,60], Eq. (3.2)ðbÞ can be re-written as
tnþ1
T;DF ¼ tnþ1;trial

T;DF � KTDk
tnþ1

T;DF

jtnþ1
T;DF j

ð3:9Þ
which, for Dk > 0, yields
jtnþ1;trial
T;DF j ¼ jtnþ1

T;DF j þ KTDk ð3:10Þ
and
tnþ1
T;DF

jtnþ1
T;DF j
¼

tnþ1;trial
T;DF

jtnþ1;trial
T;DF j

: ð3:11Þ
Since there holds
jDgp
T;nþ1j ¼ Dk; ð3:12Þ
one can explicitly solve hnþ1 with respect to Dk by using (3.2)ðcÞ which gives
hnþ1 ¼
hn þ Dt
1þ DtDk

D0

: ð3:13Þ
This expression, replaced into (2.21), along with (2.23), permits lnþ1 to be expressed in terms of only Dk, so that the con-
dition F nþ1 ¼ 0 reads as
F nþ1ðDkÞ ¼ jtnþ1;trial
T;DF j � KTDk� 1þm ln 1þ hn þ Dt

1þ DtDk
D0

Dk
D0

 !" #
l0ðDkÞtnþ1

N;DF ¼ 0: ð3:14Þ
The solution of (3.14), obtained by applying, for instance, Newton’s method, allows one then to compute the frictional slip
Dgp

T;nþ1 from
Dgp
T;nþ1 ¼ Dk

tnþ1;trial
T;DF

jtnþ1;trial
T;DF j

ð3:15Þ
and to obtain the traction update from (3.9) after accounting for (3.11).
The complete algorithm is summarized in Box 2.
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Box 2. Numerical Integration Algorithm
ble 2
ut para

a1

1:3
Given :
gT;n; gp

T;n; hn; kn;

gnþ1; DgT;nþ1; Dt;

Compute :
a gnþ1;

DgT;nþ1
Dt

� �
from Eq: 2:15;

tnþ1
N;HL ¼ g jDgT;nþ1 j

DtD ; tnþ1
T;HL ¼ gb

DgT;nþ1
Dt ;

IF

a ¼ 1;
tnþ1

N;DF ¼ 0; tnþ1
T;DF ¼ 0;

knþ1 ¼ kn; gp
T;nþ1 ¼ gp

T;n; hnþ1 ¼ hn þ Dt;

ELSE

tnþ1
N;DF from Eq: 2:13 with Dnþ1 ¼ gnþ1;

�Predictor step
ttrial;nþ1

T;DF ¼ KTðgT;nþ1 � gp
T;nÞ;

�Check for slip criterion
F trial

nþ1 ¼ jt
nþ1;trial
T;DF j � lst

nþ1
N;DF ;

IFF trial
nþ1 6 0;

tnþ1
T;DF ¼ tnþ1;trial

T;DF ; Dk ¼ 0; Dgp
T;nþ1 ¼ 0; hnþ1 ¼ hn þ Dt;

ELSE
�Corrector step
Solve forDk : F nþ1ðDkÞ ¼ 0 from Eq: 3:14

Dgp
T;nþ1 ¼ Dk

tnþ1;trial
T;DF

jtnþ1;trial
T;DF

j
;

tnþ1
T;DF ¼ tnþ1;trial

T;DF � KTDk
tnþ1;trial

T;DF

jtnþ1;trial
T;DF j

;

hnþ1 ¼ hnþDt
1þDtDk

D0

;

END
END
4. Numerical examples

Three numerical examples are presented in this section. In the first two examples, the dry friction and the lubricated con-
tact component of the constitutive contact model are tested separately, by looking at the contact between an elastomer and a
Fig. 11. Model problem for an elastomer sliding on a hard smooth surface (glass).

meters for the Ogden hyperelastic model.

l1 [N/m2] a2 l2 [N/m2] a3 l3 [N/m2] K [N/m2]

6:3 � 106 5:0 1:3 � 104 �2:0 �1:0 � 105 1:0 � 109

Table 1
Parameters used to characterize the roughness of the elastomer contact surface (values taken from [26]).

n, [m-2] b [m] rs [m] E0 [N/m2]

2:5 � 1010 10 � 10�6 0:2 � 10�6 1:5 � 1011



Table 3
Input parameters for the contact model.

ls lk Av [m/s] Av þ D0=s0 [m/s]

2:5 0:3 1 � 10�3 2:5

Fig. 12. Variation of the friction coefficient with the sliding velocity for the contact conditions of dry friction between an elastomer and a smooth surface.
The experimental results are taken from [61].

Fig. 13. Variation of the tangential stress tT versus the sliding velocity V.
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smooth surface. Such pair of contacting surface represents the tribological system used in the third example which reports
on the numerical simulation, in the cosmetic industry, of the stamping of a ridge on an aluminum tube using the technique of
the hydroforming process with an elastomer as pressure medium. Comparisons with the process that uses the fluid pressure
medium are also made.

4.1. Dry friction between an elastomer and a smooth surface

In this section, the sliding between an elastomer and a slightly wavy glass surface. in dry conditions is analysed. The elas-
tomer is assumed to have a rough flat interface with roughness of Gaussian type characterized by the values listed in Table 1,
whereas the glass surface is assumed to be smooth. The FE model used for the numerical simulations is shown in Fig. 11.
Plane strain conditions are assumed. The elastomer is discretized using plane strain quadrilateral elements with four Gauss
points for the numerical integration, whereas the glass is modelled by line elements, wherein the dry friction contact con-
ditions are imposed.

For the elastomer, a quasi-incompressible hyperelastic material model with the following Ogden type strain energy has
been used
W ¼
X3

p¼1

lp

ap

�kap
1 þ �kap

2 þ �kap
3 � 3

 �
þ 1

2
KðJ � 1Þ2; ð4:1Þ



Fig. 14. Variation of the effective viscosity geff ¼ tT D=V with respect to the shear strain rate V=D for different lubricant thicknesses.

Fig. 15. Variation of the tangential contact stress with respect to the shear strain rate V=D for different lubricant thicknesses.
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where ki, for i ¼ 1;2;3, are the singular values of the deformation gradient F ¼ $u, i.e. ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eigðFT FÞ

q
; J ¼ k1k2k3, and

�ki ¼ ki=J1=3. The parameter K and ðap;lpÞ, for p ¼ 1; 2; 3 are material constants given in Table 2, whereas Table 3 reports
the material parameters used to define the rate-and-state equation describing the dry friction component of the contact
model.

For comparison, also the classical Coulomb friction law with the following values of the friction coefficient lS ¼ 2:5 and
lK ¼ 0:3 has been implemented. The values used for the static and kinetic friction coefficient are taken from the experimen-
tal results obtained originally by Grosch [61] for rubber sliding on polished stainless steel, and reproduced lately by Barquins
& Roberts in [62] and Pinnington in [63]. Such experiments show that the rubber friction coefficient increases with the slid-
ing speed and the surface smoothness. The viscoelastic properties of the rubber also influence its frictional behaviour and
two distinct source of friction can be observed: the first one originates from interfacial adhesion, which is the only source
of friction present between smooth surfaces; the second one is due to the energy losses arising from the deformation of
the rubber surface by the surface asperities. All these mechanisms are summarized in the all-one Coulomb friction
coefficient.

The rubber element and the sliding surface are initially in contact with a constant pressure p applied to the rubber,
whereas the lower flat surface is subjected to a linear increasing velocity V.

The values of l computed with the proposed model and the Coulomb friction law are displayed in Fig. 12, as a function of
the sliding velocity V. For comparison, the experimental values of l, taken from [61], have also been reported. The exami-
nation of the numerical results with the new contact model show that one can identify three type of variations: In the first
one, the coefficient l increases up to a value equal to 2:5, which coincides with ls. Such value of l remains then constant as V
increases up to the critical value Av . At such value of V, l starts to decrease. For the decreasing branch, the inspection of
Fig. 13, which displays the concomitant variation of the tangential stress tT , shows oscillations in the values of tT . These oscil-
lations were seen from the computation to be due to a sequence of stick (Dgp

T ¼ 0) and slip (Dgp
T – 0) steps, as a result of oscil-

lations in the corresponding values of the normal pressure tN . These, in turn, arise because of the softening of the constitutive
law l ¼ lðVÞ. In the third phase, which occurs when V crosses the value Av þ D0=s0, the coefficient l attains the constant
value lk. At variance of the Coulomb friction law, the proposed model correlates quite well with the experimental results
of [61]. Using Coulomb friction, once sliding starts, there is an abrupt change in the value of l to the value of the kinetic
friction coefficient lk. Such discontinuity is accompanied by only negligible oscillations of tT . This behaviour does not reflect,
however, what is observed in the experiments [61].



Fig. 16. Stamping tools for the forming process of a ridge with the tube hydroforming technique.

Fig. 17. Finite element model for the stamping of the ridge in the case of ðaÞ an elastomer forming process (EF process), and ðbÞ the fluid pressure forming
process (FPF process).

Table 4
Material constants for the elastomer: ða1;l1Þ Ogden’s parameters; K bulk modulus; s retardation time which enters the definition of the evolution law for the
variables be and beq ; v rel ¼ l1=lv1 ¼ a1=av1 ratio of the nonviscous to viscous Ogden hyperelastic parameters; ry yield stress.

a1 l1 [N/m2] K [N/m2] s [s] vrel ry [N/m2]

3:10 1:05 � 106 1:0 � 1010 720:0 0:55 1:2 � 106

Table 5
Model parameters for the contact at the elastomer/tube interface.

ls lk D0=s0 [m/s] D0 [m] m Av [m/s] gb [Ns/m2]

0:6 0:1 0:3 1:0 � 10�6 10:0 � 10�2 2:5 0:3
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4.2. Sliding between two lubricated nominally flat surfaces

For the same system depicted in Fig. 11, in this example the lubricated component of the model is tested and compared
with the experimental results taken from [2,64]. The finite element model used for the numerical simulations and the load-
ing scheme is the same as the one applied in the previous example, with a normal pressure p ¼ 3:0E6 Pa applied to the upper
surface and maintained constant throughout the test, while the lower surface is displaced transversally at linear increasing
velocity V.

For the setting of this experiment, the data from [2,64] are employed (see Fig. 3 of [2] and Fig. 12 of [64] with correspon-
dent comments). The contact interface is lubricated with a polymer melt polybutadien PBD7000 with gb ¼ 4 Ns=m2 at
T ¼ 28 �C. The behaviour of the lubricant is assessed for four different values of D, that is, for
D ¼ 10 nm; D ¼ 30 nm; D ¼ 180 nm and D ¼ 250 nm, whereas Dmax and Dmin are taken equal to 250 nm and to 0 nm, respec-
tively. The bulk viscosity gb is assumed to be constant with temperature and pressure.

In order to compare with the experiments reported in [64], the results of the numerical simulations are displayed in
Fig. 14 by plotting, for the different values of D, the effective viscosity geff , introduced in [2] and defined as geff ¼ tT D=V , with
respect to V=D. This representation, referred to as boundary lubrication map in [2], is argued to be more representative of the
Stribeck curve.

For D ¼ 10 nm and low velocities, from (2.15) one gets that a ¼ 0:05, and the interface presents a behaviour that is similar
to the one obtained by using the Coulomb friction law with constant l, given that geff varies as D=V , i.e. geff � D=V , which



D=0                                         D=180 nm                                      D=250 nm

Fig. 18. Maximum principal stresses in the tube produced during the elastomer forming pressure, and for different lubrication thickness:
D ¼ 0 nm;D ¼ 180 nm and D ¼ 250 nm.

Fig. 19. Contact forces fc y and fc x applied to the nodes of the elastomer-aluminium interface at three time instants: 8:0 � 10�4 s;1:0 � 10�3 s and 1:2 � 10�3 s
and for different lubrication thicknesses.
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Fig. 20. Maximum principal stresses in the tube produced during the fluid pressure forming process solved with three different meshes for the assessment
of the numerical simulation accuracy.

Fig. 21. Maximum effective plastic strain ��p in the metallic tube for the different interface behaviour of the elastomer/tube in the EF process, and in the case
of the FPF process, at the time instant t ¼ 0:17. Recall that ��p is related to the accumulated plastic strain.
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then means that tT � constant. As the sliding velocity increases, the effective viscosity geff decreases until getting the value gb

for V > VcrðDÞ, which corresponds to the realization of the FHL conditions.
For the other values of D, one has, as expected, a shift towards the pure viscous behaviour, in the sense that for values of V

lower than the previous case, geff soon takes on the value gb, that is, the interface presents a DF and MHL behaviour only for a
small range of values of V.

For completeness, the variation of tT with V=D is displayed in Fig. 15.

4.3. Stamping process of a ridge on an aluminum tube

The hydroforming technology is widely used today in the production of low cost and lightweight components for the
automotive, aerospace and household industries compared with traditional forming processes. Among the hydroforming
processes, the tube hydroforming technology presents several advantages, such as weight reduction, improved part strength
and stiffness, and lower tooling cost [65].

In its simplest scheme, this technology consists of a combined loading of compression forces at the tube ends as well as an
hydrostatic internal pressure applied by a viscous medium. These loads expand the tube and lead to the alignment of the
tube wall with the outside surface of the die cavity.

Tube hydroforming processes are traditionally realized using a fluid as pressure medium, and only quite recently, the use
of elastomer to apply the forming pressure is emerging as a valuable alternative, for reducing the leakage and for an easier
handling in the prototype production of small number of parts [66].

In this section the finite element modelling of a ridge on an aluminum tube by the tube hydroforming process is dis-
cussed. In the forming process, illustrated in Fig. 16, the two punches are moved at constant velocity against the viscous
pressure media that pushes the aluminum tube into the die cavity. In order to ease the forming process, a blankholder ap-
plies either a linearly increasing force or is constrained to have the same displacement as the punches. The process completes
when the ridge is completely formed and the punches are released to return to their original configuration. The present sim-
ulations are performed considering both a polyurethane elastomer with hardness A65 (hereafter, referred to as elastomer
forming process, EF process in shorthand) and a fluid as viscous pressure media (hereafter, referred to as fluid pressure form-
ing process, FPF process in shorthand), and their performance is compared.

Given that the hydroformed sections are generally subjected to high thickness variation, it is very important to have the
control of the lubrication conditions that determine the actions applied onto the components and the tool surfaces. This is in



Fig. 22. Comparison of the time history for the displacement along x of the node 801 during the elastomer and the fluid pressure forming process.
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order to avoid material failures and excessive localized material thinning during the process. Different lubrication thick-
nesses have therefore been considered in the simulations and carefully analysed.

Fig. 16 shows the geometrical model used in the simulations: Die cavity radius Rd ¼ 8:635 mm; Aluminum cylinder inner
radius Rc ¼ 8:235 mm with thickness t ¼ 0:38997 mm; Elastomer radius Re ¼ 8:235 mm. The finite element model is dis-
played in Fig. 17 where axisymmetric 4–node bilinear isoparametric elements have been used. Fig. 17ðaÞ shows the FE model
for the EF process, whereas Fig. 17ðbÞ depicts the FE model for the FPF process. In the FPF process, the fluid pressure is treated
as a follower load, and is applied according to a linear time variation up to pmax ¼ 1:55 � 108 N=m2. The blankholder load is
P ¼ 10 N.

In the EF process, because of higher pressures involved, one needs to account for the nonlinear stress–strain response of
the elastomer, as well as of its damping, rate–independent hysteresis and quasi–incompressibility. For these reasons, the vis-
co-hyperelastic model with associative plasticity and large deformations developed in [67] has been employed. The model
assumes the multiplicative split F ¼ FeFi ¼ FeqFp, and, correspondingly, a free Helmhotz energy of the type
W ¼ WeqðJ�2=3FeqFT
eqÞ þWeðJ�2=3FeFT

e Þ þWvðJÞ; ð4:2Þ
with, in the case of this example,
Wv ¼
K
2
ðJ � 1Þ2; We ¼

l1

a1

X3

i¼1

�ka1
e;i ; and Weq ¼

lv1

av1

X3

i¼1

�kav1
eq;i ; ð4:3Þ
with J ¼ k1k2k3; ki singular values of F; ke;i and keq;i singular values of Fe and Feq, respectively, and, in general, �k ¼ J�1=3k. Evo-
lution laws also must be given for be ¼ J�2=3FeFT

e and beq ¼ J�2=3FeqFT
eq; for more details, the work [67] must be referred to. The

material constants used for the model, with Von Mises perfect plasticity, are given in Table 4. The aluminum tube has been
modelled as an elastic–perfectly plastic material with Prandtl–Reuss evolution law, assuming E ¼ 6 � 1010 N=m2; m ¼ 0:33 and
ry ¼ 1:20 � 108 N=m2.

As for the contact conditions, in the EF process, these must be enforced at the elastomer/tube interface and at the tube/die
interface when the ridge starts forming, whereas for the FPF process, the contact conditions must be assigned only at the
tube/die interface. The model of this paper has been applied only to describe the elastomer/tube interface with the values
listed in Table 5, whereas a Coulomb friction law with ls ¼ 2:5 and lk ¼ 0:01 has been employed for the tube/die interface
in both the processes. The penalty parameters KN and KT have been taken both equal to 1 � 108 N=m2.

In the simulations, three lubrication thicknesses have been considered for the elastomer/tube interface:
D ¼ 0 nm; D ¼ 180 nm and D ¼ 250 nm whereas the values of Dmin and Dmax have been taken equal to 0 nm and 250 nm,
respectively.

In order to appreciate the importance of the different types of lubrication interfaces in an EF process, Figs. 18 and 19 de-
pict the stress distribution map and the contact forces applied to the nodes of the elastomer-aluminium interface, respec-
tively. The dry friction interface exhibits slightly higher stresses near the ridge, being there the location of higher friction.
The contact forces fc y along the y direction, which coincides roughly with the direction of the interface, are smoothed with
the introduction of the lubricant layer and increase during the forming process. The contact forces fc x, as opposite, do not
display sensible variations with the type of interface. The distribution of the maximum principal stresses obtained during
the FPF process and with different FE meshes, is also shown in Fig. 20 for the assessment of the accuracy of the simulation.
By comparison, the map of the maximum principal stresses produced during the FPF process exhibits slightly lower values,
but their distribution is less uniform than that produced during the EF process. As measure of the permanent deformations
produced during the two processes, Fig. 21 compares the maximum value of the effective plastic strain ��p in the metallic
tube, where ��p ¼

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3D�p : D�p

p
with the sum over the time increments. While the FPF process produces for ð��pÞmax a low-

er value than the one obtained with the EF process, the value produced using the EF process with a FHL interface is
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comparable with the one obtained using the FPF process. Finally, the displacement of the node 801, located on the outer sur-
face of the metallic tube that displaces within the die cavity, is used to monitor the evolution of the whole process and to
express a qualitative assessment on its regularity. Examination of Fig. 22 shows that the EF process realizes a smoother evo-
lution than the FPF process, given that the latter displays alternate steep displacement variations and large slips.

By conclusion, the FPF process apparently produces lower stresses and lower plastic deformations in the tube, but the
corresponding values obtained with the EF process with lubricated interfaces are however comparable, with moreover
the additional benefit of realizing a smoother distribution of stresses and smoother process evolution.
5. Summary and Conclusions

A constitutive model for contact interface that accounts for the different lubrication regimes during a forming process, has
been proposed in this paper. The model defines the load bearing capacity of the interface as a combination of the solid con-
tact at the asperities and the lubricant action on the wet surfaces. The contribution of each of the two mechanisms is quan-
tified by a constitutive coefficient a that depends on macroscopic state variables, namely the lubricant thickness D and the
sliding velocity LvgT . The constitutive relation that defines a can be obtained either from an experimental Stribeck curve for
the tribological system that one is examining, or from a sequential multiscale analysis where microscale models are used to
describe the interface behaviour. In this paper, a simple though effective representation of a has been employed, which is
able to capture nevertheless the salient features of a Stribeck curve.

A numerical algorithm for the solution of the initial value constitutive problem has been developed and implemented in
an explicit FE code for applications to forming processes. The relevance of the model has been demonstrated by testing some
basic tribological systems. The numerical results presented good agreement with experiment. Comparisons with the Cou-
lomb friction law have also been made showing, in the cases that have been examined, the limits of the Coulomb model.
A real industrial application for the stamping of a ridge on a metallic tube using the technique of hydroforming has been
carried out and used to compare the performance of an elastomer forming process and of the fluid pressure forming process.
It was demonstrated that while the FPF process produces lower stresses and lower plastic deformations in the tube, the EF
predicts smoother distribution of stresses and a smoother process evolution, so to render the EF a viable alternative to the
FPF process.

In summary, the numerical simulations presented in this paper show that for reliable numerical simulation of a forming
process, where different lubrication regimes can develop and therefore different type of loads can be applied on the forming
piece, the use of contact interface models with more physics are necessary as opposite to the Coulomb friction law, and can
be developed with relative ease, at least for first analysis. It is also recognized that the accuracy of the proposed model can be
improved, within this same framework, through a more refined definition of the constitutive relation for a by using micro-
scale models. This will be object of future research.
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