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Abstract. It was found in [A. Plastino, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)] that classical
Tsallis theory exhibits poles in the partition function Z and the mean energy 〈U〉. These occur at a
countably set of the q-line. We give here, via a simple procedure, a mathematical account of them. Further,
by focusing attention upon the pole-physics, we encounter interesting effects. In particular, for the specific
heat, we uncover hidden gravitational effects.

1 Introduction

Generalized or q-statistical mechanics à la Tsallis has gen-
erated manifold applications in the last 25 years [1–11]1. It
has been shown (see for instance, [12–14]) that the Tsallis
q-statistics is of great importance for dealing with some
astrophysical issues involving self-gravitating systems [15].
Moreover, this statistics has proved its utility in varie-
gated scientific fields, with several thousands publications
and authors1, so that studying its structural features is
an important issue for physics, astronomy, biology, neurol-
ogy, economics, etc. [1,2]. The success of the q-statistics
reaffirms the well grounded notion asserting that there
is much physics whose origin is of purely statistical na-
ture (not mechanical). As a spectacular example, me men-
tion the application of q-ideas to high energy experimental
physics, where the q-statistics appears to adequately de-
scribe the transverse momentum distributions of different
hadrons [2,16–26].

In this work we show that as yet unexplored gravi-
tational effects characterize this q-theory on account of
divergences that, in some circumstances, emerge, within
the q-statistical framework, in both the mean energy and
the partition function.

Divergences are an important topic in theoretical
physics. Indeed, the study and elimination of divergences
of a physical theory is perhaps one of the most important
aspects of theoretical physics. The quintessential typical
example is the attempt to quantify the gravitational field,
which so far has not been achieved. Some examples of elim-
ination of divergences can be seen in references [27–34].

a e-mail: mariocarlosrocca@gmail.com
1 See http://tsallis.cat.cbpf.br/biblio.htm for a regu-

larly updated bibliography on the subject.

We will use here an extremely simplified version
of the ideas of [27–34] in connection with Tsallis
q-statistics [1,2]1, with emphasis in its applicability to
gravitational issues [12–14], in particular self-gravitating
systems [15]. We will see that the removal of the above
mentioned divergences leads to illuminating insights.

2 The divergences of q-statistics

As we have shown in [35], the q-partition function of the
classical Harmonic Oscillator (HO) in ν dimensions can
be written in the form

Z =
πν

Γ (ν)

∞∫

0

uν−1

[1 + β(q − 1)u]
1

q−1
du, (1)

where u refers to the phase space energy and β is the in-
verse temperature. The result of integral (1) is, according
to [36],

Z =
πν

[β(q − 1)]ν
Γ

(
1

q−1 − ν
)

Γ
(

1
q−1

) . (2)

This result is valid for q �= 1 and we have selected 1 ≤ q <
2. Of course, q = 1 is the Boltzmann statistics instance, for
which the q-exponential transforms itself into the ordinary
exponential function (and the integral (1) is convergent).
According to (2), the singularities (divergences) of (1) are
given by the poles of the Γ function that appears in the
numerator of (2), i.e., for

1
q − 1

− ν = −p for p = 0, 1, 2, 3, . . . ,
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or, equivalently, for

q =
3
2
,
4
3
,
5
4
,
6
5
, . . . ,

ν

ν − 1
,
ν + 1

ν
.

In a similar way, we have for the q-mean energy of the HO,

〈U〉 =
πν

Γ (ν)Z

∞∫

0

uν

[1 + β(q − 1)u]
1

q−1
du. (3)

The result of (3) is, using [36] once again,

〈U〉 =
νπν

Z[β(q − 1)]ν+1

Γ
(

1
q−1 − ν − 1

)

Γ
(

1
q−1

) , (4)

where we assume that Z is the physical partition function,
which has no singularities. In this case, the singularities
of (4) are given by:

1
q − 1

− ν − 1 = −p for p = 0, 1, 2, 3, . . . ,

or, equivalently,

q =
3
2
,
4
3
,
5
4
,
6
5
, . . . ,

ν + 1
ν

,
ν + 2
ν + 1

.

As usual [37], in terms of the so-called q-logarithms [1,2]
lnq(x) = x1−q−1

1−q , the entropy is cast in the fashion

S = lnq Z + Z1−qβ〈U〉 (5)

and it is finite if Z and 〈U〉 are also finite.
Our purpose here is then to derive, for the classical

HO, physical thermo-statistical variables Z, 〈U〉, and S,
by appropriately treating (regularizing) the above singu-
larities. As an illustration, we specify things for the cases
of dimensions one, two, three, and N .

3 The one-dimensional case

In one dimension Z is regular and 〈U〉 has a singularity
at q = 3

2 . For q �= 3
2 , Z and 〈U〉 can be easily evaluated.

The result is straightforward

Z =
π

β(2 − q)
, (6)

〈U〉 =
1

β(3 − 2q)
. (7)

According to (7), in the regular case, as 〈U〉 ≥ 0, one
should have q < 3

2 . At q = 3/2 we have a pole in the mean
energy, that we wish to investigate. Instead, when q = 3

2 ,
we have for Z

Z =
2π

β
, (8)

a regular value. Regularization is needed then only for 〈U〉.

3.1 Dealing with the divergence

In order to proceed with such regularizing procedure, the
main idea is to write 〈U〉 as a function of the dimension ν,
in the fashion

〈U〉 =
2ν+1νπν

Zβν+1
Γ (1 − ν), (9)

and carefully dissect this expression. First we recast
things as

〈U〉 =
2ν+1[ν − 1 + 1]πν

Zβν+1
Γ (1 − ν), (10)

and remember that (ν−1)Γ (1−ν) = −Γ (2−ν) to obtain

〈U〉 = − 1
πZ

(
2π

β

)ν+1

Γ (2 − ν)

+
1

πZ
(

2π

β

)2 (
2π

β

)ν−1

Γ (1 − ν). (11)

We realize that the first term of (11) is finite, while the
second one is singular for ν = 1 (the physical dimension
in this instance is unity). The trick here is to appeal to
a Taylor’s expansion, around ν = 1, of the third factor in
the second term, i.e., 2π

β

ν−1 = exp [(ν − 1) ln 2π
β ]. Notice

also that, from (8), Z = 2π
β . Accordingly, we have

〈U〉 = − 1
(2π2/β)

(
2π

β

)ν+1

Γ (2 − ν) + (2/β)

×
[
1+(ν − 1) ln

(
2π

β

)
+

(ν−1)2

2
ln2

(
2π

β

)
+. . .

]
Γ (1−ν).

(12)

We use now once again the fact that (ν − 1)Γ (1 − ν) =
−Γ (2 − ν) to write

〈U〉 = − 1
(2π2/β)

(
2π

β

)ν+1

Γ (2 − ν) + (2/β)

×
[
1−ln

(
2π

β

)
− (ν−1)

2
ln2

(
2π

β

)
+ . . .

]
Γ (2 − ν), (13)

and then, in the limit ν → 1, after cancellations and series’
terms that vanish, we are left with

〈U〉 = − 2
β

[
1 + ln

(
2π

β

)]
, (14)

that is to be regarded as the physical value of 〈U〉 [27–34]2.
Using now (5) we immediately get for S

S = ln 3
2

(
2π

β

)
−

√
2π

β

[
1 + ln

(
2π

β

)]
. (15)

2 The procedure we have employed here is usually called “di-
mensional regularization”.
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3.2 Direct proof of the existence of an upper bound
to the canonical bath’ temperature

Since the mean energy must be positive, according to (14)
the possible values of β are restricted by the constraint
β > 2πe, entailing T < 1/2πekB, with kB Boltzmann’s
constant. There is an upper bound to the physical tem-
perature, which cannot be infinite. This agrees with the
considerations made in [38]: q-statistics refers to systems
in thermal contact with a finite bath.

3.3 A fancier conjecture

On a more conjectural fashion, one is also reminded
here of the Hagedorn temperature. This is the temper-
ature at which ordinary matter is no longer stable and
would evaporate, transforming itself into quark matter,
a sort of boiling point of hadronic matter. This temper-
ature would exist on account of the fact that the ac-
cessible energy would be so high that quark-antiquark
pairs would be be spontaneously extracted from the vac-
uum. A putative system at such a high temperature is
able to accommodate any amount of energy because the
newly emerging quarks would provide additional degrees
of freedom. The Hagedorn temperature would thus be
unsurmountable [39].

4 The two-dimensional case

For two dimensions, Z has a singularity at q = 3
2 and 〈U〉

has singularities at q = 3
2 and q = 4

3 . Save for the case
of these singularities, we can evaluate their values of the
main statistical quantities without the use of dimensional
regularization. Thus, we obtain

Z =
π2

β2(2 − q)(3 − 2q)
, (16)

〈U〉 =
2

β(4 − 3q)
, (17)

S = lnq

[
π2

β2(2 − q)(3 − 2q)

]

+
[

π2

β2(2 − q)(3 − 2q)

]1−q 2
4 − 3q

. (18)

According to (17), in the regular case q < 4
3 .

4.1 The q = 3/2 pole

For q = 3
2 we must employ the treatment of the preceding

section, i.e., regularize, both Z and U . We start with Z.
From (2) we have

Z =
(

2π

β

)ν

Γ (2 − ν), (19)

which can be rewritten as

Z =
(

2π

β

)2 (
2π

β

)ν−2

Γ (2 − ν). (20)

With this form for Z, we can expand in Taylor’s series,

around ν = 2, the factor
(

2π
β

)ν−2

= exp [(ν − 2) ln 2π
β ],

noting also that (ν − 2)Γ (2 − ν) = −Γ (3 − ν), i.e.,

Z =
(

2π

β

)2

Γ (2 − ν)
[
1 + (ν − 2) ln

(
2π

β

)
· ··

]
, (21)

and thus we obtain the physical value of Z as

Z = −4π2

β2
ln

(
2π

β

)
. (22)

For U the situation is similar. From (4) we have

〈U〉 =
ν

Zπ

(
2π

β

)ν+1

Γ (1 − ν), (23)

where Z is given by (22). Proceeding in the same way
as we did in the one dimensional case, and omitting here
from intermediate steps, we rewrite 〈U〉 in the fashion

〈U〉 =
Γ (3 − ν)
Zπ(ν − 1)

(
2π

β

)ν+1

+
2
Zπ

(
2π

β

)3 (
2π

β

)ν−2
Γ (2 − ν)

1 − ν
, (24)

and we obtain the physical value of 〈U〉:

〈U〉 =
8π2

Zβ3
+

16π2

Zβ3
ln

(
2π

β

)
, (25)

so that replacing Z by the value given in (22) we have

〈U〉 =
2

β(ln β − ln 2π)
+

4
β

. (26)

From (26) we see that the possible values of β are given by
β > 2π. Again, a temperature’s upper bound is detected.

Now, from the physical values of Z and 〈U〉, as given
by equations (22) and (26), respectively, and from (5), we
find the physical value of S as

S = ln 3
2

[
4π2

β2
ln

(
β

2π

)]
+

[
4π2

β2
ln

(
β

2π

)]− 1
2

×
[

2
(lnβ − ln 2π)

+ 4
]

. (27)

4.2 The q = 4/3 pole

For q = 4
3 , Z is finite and 〈U〉 has a pole. The procedure

for finding their physical values is similar to that for the
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case q = 3
2 . For this reason, we only indicate the results

obtained for Z, 〈U〉, and S. One finds

Z =
9π2

2β2
, (28)

〈U〉 =
6
β

[
ln

(
β

3π

)
− 1

2

]
, (29)

S = ln 4
3

(
9π2

2β2

)
+

(
9π2

2β2

)− 1
3

[
6 ln

(
β

3π

)
− 3

]
. (30)

From equation (29) we see that the possible values of β
are given by the constraint β > 3π

√
e.

5 The three-dimensional case

In three dimensions, Z has poles at q = 3
2 and q = 4

3

while 〈U〉 exhibits them at q = 3
2 , q = 4

3 , and q = 5
4 .

Consequently, after regularization, we have

Z =
π3

β3(2 − q)(3 − 2q)(4 − 3q)
, (31)

〈U〉 =
3

β(5 − 4q)
. (32)

From (31) and (32) we obtain for the entropy

S = lnq

[
π3

β3(2 − q)(3 − 2q)(4 − 3q)

]

+
[

π3

β3(2 − q)(3 − 2q)(4 − 3q)

]q−1 3
5 − 4q

. (33)

In this case q should satisfy the condition q < 5
4 for the

mean energy to be a positive quantity.

5.1 The q = 3/2 pole

For q = 3
2 we have

Z =
(

2π

β

)ν

Γ (2 − ν). (34)

Proceeding as in the previous cases and making now
the Taylor’s expansion around ν = 3, Z acquires the
appearance

Z =
(

2π

β

)3
Γ (3 − ν)

2 − ν

[
1 + (ν − 3) ln

(
2π

β

)
+ . . .

]
.

(35)
From (35) it is easy to obtain the physical value of Z as

Z =
8π3

β3
ln

(
2π

β

)
. (36)

In a similar vein have for 〈U〉

〈U〉 =
1

β(ln β − ln 2π)
− 3

β
, (37)

and from (36) and (37)

S = ln 3
2

[
8π3

β3
ln

(
2π

β

)]
+

[
8π3

β3
ln

(
2π

β

)]− 1
2

×
(

1
ln β − ln 2π

− 3
)

(38)

with 2π < β < 2πe
1
3 . This entails that the system ex-

hibits positive entropy only for a small range of very high
temperatures.

5.2 The q = 4/3 and q = 5/4 poles

For q = 4
3 and q = 5

4 we give only the corresponding
results, since the calculations are entirely similar to those
for the case q = 3

2 . Thus, for q = 4
3 we have

Z =
27π3

2β3
ln

(
β

3π

)
, (39)

〈U〉 =
3

β(ln β − ln 3π)
− 9

β
, (40)

S = ln 4
3

[
27π3

2β3
ln

(
β

3π

)]
+

[
27π3

2β3
ln

(
β

3π

)]− 1
3

×
(

3
ln β − ln 3π

− 9
)

(41)

with 3π < β < 3πe
1
3 . This entails, again, that the system

exhibits positive entropy only for a small range of very
high temperatures.

For q = 5
4 :

Z =
32π3

3β3
, (42)

〈U〉 =
12
β

ln
(

β

4π

)
− 4

β
, (43)

S = ln 5
4

(
32π3

3β3

)
+

(
32π3

3β3

)− 1
4

[
12 ln

(
β

4π

)
− 4

]
,

(44)

with β > 4πe
1
3 .

6 The N-dimensional case

Repeating the calculation made for 2, 3 and 4 dimensions,
with more algebraic work we get for Z the expression:

Z ν−k+1
ν−k

=
(−1)k+1

k!Γ (ν − k)

[
(ν − k)π

β

]ν

ln
[
(ν − k)π

β

]
. (45)
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Here k = 0, 1, 2, 3 . . . , ν − 2, where ν is the dimension of
the space. And for 〈U〉:

〈U〉 ν−k+2
ν−k+1

=
(−1)k+1

k!Γ (ν − k)βZ

[
(ν + 1 − k)π

β

]ν

(46)

+
(−1)k+1ν

k!Γ (ν − k)βZ

[
(ν + 1 − k)π

β

]ν

× ln
[
(ν + 1 − k)π

β

]
(47)

where k = 0, 1, 2, 3 . . . , ν − 1.

7 Specific heats

We set k ≡ kB. For ν = 1, in the regular case we have for
the specific heat C:

C =
k

3 − 2q
, (48)

with q < 3
2 .

For ν = 2 one has

C =
2k

4 − 3q
, (49)

with q < 4
3 .

Finally, for ν = 3 one ascertains that

C =
3k

5 − 4q
, (50)

with q < 5
4 .

Specific heats at the poles

For ν = 1; q = 3
2

C = −2k(ln kT + ln 2π + 2), (51)

with kT < 1
2πe .

For ν = 2; q = 3
2

C =
2k

(ln kT + ln 2π)2
− 2k

(ln kT + ln 2π)
+ 4k, (52)

with kT < 1
2π .

For ν = 2 and q = 4
3 things become:

C = −6k

(
ln kT + ln 3π +

3
2

)
, (53)

with kT < 1
3π

√
e
.

For ν = 3; q = 3
2 ,

C =
k

(ln kT + ln 2π)2
− k

(ln kT + ln 2π)
− 3k, (54)

with 1

2πe
1
3

< kT < 1
2π .

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

−2

0

2

4

6

8

10

ν=1; q=3/2

kT

C
/k

Fig. 1. One dimension: specific heats at the pole versus tem-
perature T , plotted within the allowed temperature range.

0 0.02 0.04 0.06 0.08
−10

−5

0
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10

15

20

ν=2; q=3/2

ν=2; q=4/3

kT

C
/k

Fig. 2. Two dimensions: specific heats at the two poles versus
temperature T , plotted within the allowed temperature ranges
in the two cases.

For ν = 3 and q = 4
3 one has

C =
3k

(ln kT + ln 3π)2
− 3k

(ln kT + ln 3π)
− 9k, (55)

with 1

3πe
1
3

< kT < 1
3π .

Finally, for ν = 3 and q = 5
4

C = −12k

(
ln kT + ln 4π +

4
3

)
(56)

with kT < 1

4πe
1
3
.

Figures 1–3 plot the pole-specific heats within their
allowed temperature ranges, for one, two, and three di-
mensions, respectively. The most distinguished feature
emerges in the cases in which we deal with 〈U〉 – poles for
which Z is regular. We see in such a case that negative spe-
cific heats arise. Such an occurrence has been associated
to self-gravitational systems [15,40]. In turn, Verlinde has
associated this type of systems to an entropic force [41]. It
is natural to conjecture then that such a force may appear
at the energy poles.

http://www.epj.org
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0 0.05 0.1 0.15

0

50

100

150

200

ν=3; q=3/2
ν=3; q=4/3

ν=3; q=5/4

kT

C
/k

Fig. 3. Three dimensions: specific heats at the three poles ver-
sus temperature T . The vertical lines demarcate the allowed
temperature ranges in the three cases. Dashed lines are con-
tinuations of the C-values outside the domains of validity.

Notice also that temperature ranges are restricted.
There is a T -upper bound that one may wish to link to the
Hagedorn temperature (see above) [39]. In two and three
dimensions there is also a lower bound, so that the system
(at the poles) would be stable only in a limited T -range.

8 Discussion

In this work we have appealed to an elementary regular-
ization procedure to study the poles in the partition func-
tion and the mean energy that appear, for specific, discrete
q-values, in Tsallis’ statistics. We studied the thermody-
namic behavior at the poles and found interesting pecu-
liarities. The analysis was made in one, two, three, and N
dimensions. Amongst pole-traits we emphasize:

– We have proved that there is an upper bound to the
temperature at the poles, confirming the findings of
reference [38].

– In some cases, Tsallis’ entropies are positive only for a
restricted temperature-range.

– Negative specific heats, characteristic trait of self-
gravitating systems, are encountered.

Our physical results derive only from statistics, not from
mechanical effects. This fact reminds us of a similar oc-
currence in the case of the entropic force conjectured by
Verlinde [41].
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