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We discover a deep connection between the Fokker–Planck equation and the hypergeometric differential 
equation. The same applies to a nonlinear generalization of such equation.
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1. Introduction

In this paper we uncover the fact that the celebrated Fokker–
Planck (FP) equation [1]

∂ F

∂t
= − ∂

∂x
[K (x)F ] + Q

2

∂2 F

∂x2
(1.1)

exhibits a deep connection with a hypergeometric differential 
equation. In equation (1.1), F is the distribution function, K (x) is
the drift coefficient and Q is the diffusion coefficient (a positive 
quantity) [1]. The second term on the r.h.s. describes the effects 
of the fluctuating forces (diffusion term). Without it, (1.1) would 
describe deterministic motion (overdamped motion of a particle 
under the force K (x)). For the time being, we restrict ourselves to 
the case K = constant. A similar hypergeometric derivation applies 
to a nonlinear generalization of equation (1.1), in the spirit of the 
one discussed by Plastino and Plastino [2].

Note that Eq. (1.1) is not just the Fokker–Planck equation, but 
also (up to appropriate scaling of F ) encompasses all advection–
diffusion equations (sometimes called convection–diffusion or 
advection–dispersion equations), with K (x) = drift velocity and 
Q /2 = diffusion coefficient (see, for instance, [3] and references 
therein). The discussion given below is therefore more general in 
its application.

This papers continues a line of research initiated by uncover-
ing manifestations of hypergeometric equations in quantum equa-
tions [4].
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2. Deep connection between hypergeometric and Fokker–Planck
equations

The ordinary hypergeometric function F 2
1(a, b; c; z) is a special 

function represented by the hypergeometric series, that includes 
many other special functions as specific or limiting cases. It is 
a solution of a second-order linear ordinary differential equation 
(ODE). Many second-order linear ODEs can be transformed into 
this equation. Generalized hypergeometric functions include the 
confluent hypergeometric function (also called Kummer’s function) 
as a special case, which in turn has many particular special func-
tions as special instances, such as elementary functions, Bessel 
functions, and the classical orthogonal polynomials. In particular, 
Kummer’s function reads [4]

φ(a,b, z) =
∞∑

n=0

an

bn

zn

n! ; a, b ∈ R, (2.1)

with an , bn the Pochhammer symbols:

a0 = 1,an = a (a + 1) (a + 2) ... (a + n − 1); same for b. (2.2)

The confluent hypergeometric (or Kummer’s) function satisfies the 
second-order differential equation [4]:

zφ′′(a,b, z) + (b − z)φ′(a,b, z) − aφ(a,b, z) = 0, (2.3)

and has accordingly two linearly independent solutions. One of 
them will be connected to the Fokker–Planck equation.
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Eq. (2.3), for a = b, adopts the appearance

zφ′′(a,a, z) + (a − z)φ′(a,a, z) − aφ(a,a, z) = 0, (2.4)

where primes indicate differentiation with respect to z. Accord-
ingly [see (2.1)],

φ(a,a, z) = ez. (2.5)

Now, if we write z in the fashion

z = −(λt + x/λ), (2.6)

we have for the function φ

φ
[
a,a,−

(
λt + x

λ

)]
= e−(

λt+ x
λ

)
, (2.7)

where we express the new quantity λ in terms of an equation in-
volving the two ones K and Q entering Eq. (1.1)

λ3 + Kλ + Q

2
= 0. (2.8)

This equation for λ exhibits three solutions, one of them real and 
the other two complex. Since F in (1.1) is a normalized density 
function, the complex solutions are of no use to us.

Given that φ is such that

φ′′ = λ2 ∂2φ

∂x2
; φ′ = −1

λ

∂φ

∂t
≡ φ, (2.9)

Eq. (2.4) can be recast as

zλ2 ∂2φ

∂x2
+ aφ′ + z

λ

∂φ

∂t
− aφ = 0. (2.10)

Since φ′ = φ, (2.10) gets simplified to

λ3 ∂2φ

∂x2
+ ∂φ

∂t
= 0. (2.11)

According to (2.8), Eq. (2.11) becomes

−(Kλ + Q

2
)
∂2φ

∂x2
+ ∂φ

∂t
= 0. (2.12)

In addition, since φ verifies

λ
∂2φ

∂x2
= −∂φ

∂x
, (2.13)

we are led to the following expression for (2.12)

K
∂φ

∂x
− Q

2

∂2φ

∂x2
+ ∂φ

∂t
= 0, (2.14)

which is tantamount to

∂φ

∂t
+ ∂(Kφ)

∂x
− Q

2

∂2φ

∂x2
= 0, (2.15)

i.e., Fokker–Planck’s equation for K independent of x. Note that, by 
definition, (2.7) is a solution of (2.15).

3. Nonlinear Fokker–Planck equation [5]

Anomalous diffusion is exhibited in a variety of physical sys-
tems and is therefore the subject of much interest. It can be 
observed, for example, in general systems such as plasma flow, 
porous media, and surface growth, as well as in more specific 
situations such as cetyltrimethylammonium bromide micelles dis-
solved in salted water and NMR relaxometry of liquids in porous 
glasses [5]. The main characteristic of anomalous diffusion is the 
fact that the mean squared displacement is not proportional to 
time t but rather to some power of it. If the scaling is faster 
than t , then the pertinent system is superdiffusive while, if it is 
slower than t , it is subdiffusive. A nonlinear Fokker–Planck diffu-
sion equation has been proposed for those systems with correlated 
anomalous diffusion, beginning with [2] and followed afterward by, 
for instance, [6–9]. For an excellent overview, see [5].

For the ordinary hypergeometric function F 2
1(a, b; c; z) we have 

[10], using now three Pochhammer symbols,

F 2
1(a,b; c; z) ≡ F (a,b; c; z) =

∞∑
n=0

a(n)b(n)

c(n)

zn

n! ; (|z| < 1), (3.1)

where the series terminates if either a or b is a non-zero integer. 
A particularly important special case is

F (−m,b,b,−z) = (1 + z)m. (3.2)

Eq. (3.1) verifies [10]

z(1 − z)F ′′(α,β;γ ; z) + [γ − (α + β + 1)z]F ′(α,β;γ ; z)

− αβ F (α,β;γ ; z) = 0. (3.3)

This second-order equation has two independent solutions, and we 
will give a physical meaning to just one of these solutions.

If β = γ , then F satisfies [11]

F (−α,γ ;γ ;−z) = (1 + z)α. (3.4)

Focus attention now upon the function

f (x, t) =
[

1 + (q − 1)
(
λt + x

λ

)] 1
1−q

, (3.5)

where λ obeys (for K and Q both constants)

λ3 + Kλ + Q

2
= 0. (3.6)

We start now a rather lengthy discussion in order to derive 
Eqs. (3.16) and (3.19) below. Recourse to (3.4) allows one to write

F

[
1

q − 1
, γ ;γ ; (1 − q)

(
λt + x

λ

)]

=
[

1 + (q − 1)
(
λt + x

λ

)] 1
1−q

, (3.7)

and then

z = (1 − q)
(
λt + x

λ

)
. (3.8)

For β = γ , F [cf. (3.3)] adopts the appearance

z(1 − z)F ′′(α,γ ;γ ; z) + [γ − (α + γ + 1)z]F ′(α,γ ;γ ; z)

− αβ F (α,γ ;γ ; z) = 0. (3.9)

Since F verifies

F ′′ = λ2

(1 − q)2

∂2 F

∂x2
; F ′ = 1

λ(1 − q)

∂ F

∂t
, (3.10)

then (3.9) becomes

z(1 − z)
λ2

(1 − q)2

∂2 F

∂x2
+ qz

λ(1 − q)2

∂ F

∂t
+ γ (1 − z)F ′

− γ

q − 1
F = 0, (3.11)

and, adequately simplifying,
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(1 − z)λ3 ∂2 F

∂x2
+ q

∂ F

∂t
+ λγ

z
(1 − q)2

[
(1 − z)F ′ − 1

q − 1
F

]
= 0.

(3.12)

Again, since F fulfills

(1 − z)F ′ − 1

q − 1
F = 0, (3.13)

Eq. (3.12) becomes

(1 − z)λ3 ∂2 F

∂x2
+ q

∂ F

∂t
= 0, (3.14)

or, equivalently,

λ3 F (1−q) ∂
2 F

∂x2
+ q

∂ F

∂t
= 0, (3.15)

since F (1−q)(z) = 1 − z. Thus, we are in a position to cast (3.15) as

λ3 ∂2 F

∂x2
+ ∂ F q

∂t
= 0. (3.16)

Utilizing (3.6) we can recast things as

−
(

λK + Q

2

)
∂2 F

∂x2
+ ∂ F q

∂t
= 0. (3.17)

Remembering that F obeys

λK
∂2 F

∂x2
= −K

∂ F q

∂x
= −∂(K F q)

∂x
, (3.18)

we obtain from (3.17)

∂ F q

∂t
+ ∂(K F q)

∂x
− Q

2

∂2 F

∂x2
= 0, (3.19)

a nonlinear Fokker–Planck equation. If we set

• g = F q

• 2 − q∗ = 1/q,

we immediately ascertain that Eq. (3.19), expressed in terms of 
g and q∗ , coincides with the nonlinear FP discussed in [2] with 
regards to power-law q-entropies

∂ g

∂t
+ ∂(K g)

∂x
− Q

2

∂2 g2−q∗

∂x2
= 0. (3.20)

Consider now the stationary case (F independent of t) and assume, 
following Ref. [2], that K can depend upon x. Then, we have for 
(3.19)

∂(K (x)F q)

∂x
− Q

2

∂2 F

∂x2
= 0, (3.21)

whose solution is

F (x) =
[

1 + 2(q − 1)

Q
V (x)

] 1
1−q

, (3.22)

where dV (x)
dx = −K (x).

4. Conclusions

We have shown that the Fokker–Planck equation and its nonlin-
ear generalization [see, for instance, [2]] are contained within the 
structure of hypergeometric linear differential equations, for con-
stant drift K . The FP-extensions to general drifts K (x) have to be 
postulated like in the ordinary cases.
As seen also in [4], physical linear differential equations 
(Schrödinger, Klein–Gordon, Fokker–Planck) are contained in the 
confluent hypergeometric one (with two Pochhammer symbols), 
while its q-nonlinear counterparts appeal to the general hyper-
geometric equation (three Pochhammer symbols). Of the three 
parameters, the first is the so-called Tsallis’ nonextensivity param-
eter q [12]. This gives an answer to the long-standing question for 
the meaning of q [12].

We have displayed a general solution for the Ornstein–Uhlen-
beck equation of constant drift that possibly might be new, al-
though we cannot ascertain it.

We also give an exact solution of the nonlinear FP equation 
when F does not depend upon the time.

Appendix A. Separation of variables in the Ornstein–Uhlenbeck 
process K = −x

The Ornstein–Uhlenbeck (OU) process is a stochastic process 
that, loosely, describes the velocity of a massive Brownian parti-
cle under the influence of friction, represented by −x [13]. The 
OU process is stationary, Gaussian, and Markovian, being the only 
nontrivial evolution that satisfies these three conditions, up to al-
lowing for linear transformations of the space and time variables. 
We believe that this well-known process of linear drift [1] is worth 
revisiting for didactic purposes. We start with

∂ F

∂t
+ ∂(K F )

∂x
− Q

2

∂2 F

∂x2
= 0, (A.1)

F (x, t) = G(t)H(x), (A.2)

which leads to

1

G

∂G

∂t
= 1

H

[
Q

2

∂2 H

∂x2
− ∂(K H)

∂x

]
= −λ, (A.3)

with λ > 0. From here we are immediately led to

∂G

∂t
+ λG = 0, (A.4)

Q

2

d2 H

dx2
− d(K H)

dx
+ λH = 0. (A.5)

For the linear case K = −x we first obtain for G

G(t) = e−λt . (A.6)

Applying the Fourier transform to (A.5) we find

Q

2
α2 Ĥ + α

dĤ

dα
− λĤ = 0, (A.7)

where Ĥ is the Fourier transform of H of variable α. One solves 
(A.7) and gets

Ĥ(α) = |α|λe− Q α2
4 , (A.8)

and from (A.8) we encounter for H

H(x) = 1

2π

∞∫
−∞

|α|λe− Q α2
4 e−iαx dα. (A.9)

Thus we have for F the general expression

F (x, t) = 1

2π

∞∫
0

∞∫
−∞

λa(λ)e−λt |α|λe− Q α2
4 e−iαx dα dλ, (A.10)

where a(λ) must verify
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∞∫
0

a(λ) dλ = 1. (A.11)

Eq. (A.10) may have been obtained before, but we were unable to 
find such derivation in the vast FP-literature available to us.
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