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Abstract We present a quantum version of the generalized (4, ¢)-entropies, intro-
duced by Salicri et al. for the study of classical probability distributions. We establish
their basic properties and show that already known quantum entropies such as von
Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, consti-
tute particular classes of the present general quantum Salicrd form. We exhibit that
majorization plays a key role in explaining most of their common features. We give
a characterization of the quantum (%, ¢)-entropies under the action of quantum oper-
ations and study their properties for composite systems. We apply these generalized
entropies to the problem of detection of quantum entanglement and introduce a dis-
cussion on possible generalized conditional entropies as well.

Keywords Quantum entropies - Majorization relation - Entanglement detection

1 Introduction

During the last decades a vast field of research has emerged, centered on the study of
the processing, transmission and storage of quantum information [ 1-4]. In this field,the
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need of characterizing and determining quantum states stimulated the development
of statistical methods that are suitable for their application to the quantum realm [5—
8]. This entails the use of entropic measures particularly adapted for this task. For
this reason, quantum versions of many classical entropic measures started to play an
increasingly importantrole, being von Neumann entropy [9] the most famous example,
with quantum versions of Rényi [10] and Tsallis [11] entropies as other widely known
cases. Many other examples of interest are also available in the literature (see, for
instance, [12-14]).

Quantum entropic measures are of use in diverse areas of active research. For
example, they find applications as uncertainty measures (as is the case in the study
of uncertainty relations [15-20]); in entanglement measuring and detection [21-
27]; as measures of mutual information [28-31]; and they are of great importance
in the theory of quantum coding and quantum information transmission [1,2,32—
34].

The alluded quantum entropies are nontrivially related, and while they have many
properties in common, they also present important differences. In this context, the
study of generalizations of entropic measures constitutes an important tool for study-
ing their general properties. In the theory of classical information measures, Salicrd
entropies [35] are, up to now, the most generalized extension containing the Shan-
non [36], Rényi [10] and Tsallis [11] entropies as particular examples and many others
as well [37-40]. But a quantum version of Salicrd entropies has not been studied yet
in the literature. We accomplish this task by introducing a natural quantum version
of the classical expression. Our construction is shown to be of great generality and
contains the most important examples (von Neumann, and quantum Rényi and Tsallis
entropies, for instance) as particular cases.

We show that several important properties of the classical counterpart are preserved,
whereas other new properties are specific of the quantum extension. In our proofs, one
of the main properties to be used is the Schur concavity, which plays a key role, in
connection with the majorization relation [25,41] for (ordered) eigenvalues of density
matrices. Our generalization provides a formal framework which allows to explain
why the different quantum entropic measures share many properties, revealing that
the majorization relation plays an important role in their formal structure. At the same
time, we give concrete clues for the explanation of the origin of their differences.
Furthermore, the appropriate quantum extension of generalized entropies can be of
use for defining information-theoretic measures suitable for concrete purposes. Given
our generalized framework, conditions can then be imposed in order to obtain families
of measures satisfying the desired properties.

The paper is organized as follows. In Sect. 2, we give a brief review of (classical)
Salicri entropies, also known as (&, ¢)-entropic forms. Our proposal and results are
presented in Sect. 3. In Sect. 3.1 we start proposing a quantum version of the (4, ¢)-
entropies using a natural trace extension of the classical form, followed by the study
of its Schur concavity properties in Sect. 3.2. Then, in Sect. 3.3, we study further
properties related to quantum operations and the measurement process. In Sect. 3.4 we
discuss the properties of quantum entropic measures for the case of composite systems
focusing on additivity, sub and superadditivity properties, whereas applications to
entanglement detection are given in 3.5. Sect. 4 contains an analysis of informational
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quantities that could be derived from the quantum (%, ¢)-entropies. Finally, in Sect. 5,
we draw some concluding remarks.

2 Brief review of classical (%, ¢)-entropies

Inspired by the work of Csiszar [42], Salicru et al. [35] defined the (h, ¢)-entropies:

Definition 1 Letus consider an N-dimensional probability vector p = [p; --- pn]’ €
[0, 11V with ZlNzl pi = 1. The so-called (4, ¢)-entropy is defined as

N
Hpg)(p) = h(Zqﬁ(pi)), )

i=1

where the entropic functionals h : R+ R and ¢ : [0, 1] — R are such that either:
(1) & is increasing and ¢ is concave, or (ii) & is decreasing and ¢ is convex. The
entropic functional ¢ is assumed to be strictly concave/convex, whereas # is taken to
be strictly monotone, together with ¢ (0) = 0 and h(¢ (1)) = 0.

We notice that in the original definition [35], the strict concavity/convexity and
monotony characters were not imposed. These considerations will allow us to deter-
mine the case of equality in some inequalities presented here. The assumption ¢ (0) = 0
is natural in the sense that one can expect the elementary information brought by a
zero-probability event to be zero. Also, an appropriate shift in z allows to consider
only the case h(¢ (1)) = 0, thus not affecting generality, while giving the vanishing
of entropy (i.e., no information) for a situation with certainty.

The (h, ¢)-entropies (1) provide a generalization of some well-known entropies
such as those given by Shannon [36], Rényi [10], Havrda—Charvat, Dar6czy or Tsal-
lis [11,37,38], unified Rathie [39] and Kaniadakis [14], among many others. In Table 1
we list some known entropies and give the entropic functionals 4 and ¢ that lead to
these quantities. Notice that the entropies given in the table enter in one (or both) of the
special families determined by entropic functionals of the form: h(x) = x and ¢ (x)
concave [40], or h(x) = SO and ¢ (x) = x“ [19]. Indeed, the so-called ¢-entropy

-«
(or trace-form entropy) is defined as

N
Ha.g)(p) = D ¢(pi), )
i=1

where ¢ is concave with ¢ (0) = 0, whereas the ( f, «)-entropy is defined as

1 N
Foa(p)=1—f (Z p,f"), 3)
i=l

where f is increasing with f(1) = 0, and the entropic parameter « is nonnegative
and o # 1. With the additional assumption that f is differentiable and f/(1) = 1, one
recovers the Shannon entropy in the limit o« — 1.
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Table 1 Some well-known particular cases of (i, ¢)-entropies

Name Entropic functionals Entropy

Shannon h(x) =x, ¢(x)=—xlnx H(p)=—->;pilnp;

Rényi hn) = P9, () = x Re(p) = 2= n (3 p)
Tsallis h(x) = %, P(x) =x% Ta(p) = ﬁ (Z; pi“ — 1)
Unified h(x) = ﬁ H(x) =x" EX(p) = s (2 p7)° — 1]
Kaniadakis hx) =x, $(x) = L S =3, p,-"”z—’(p}+ ‘

As recalled in Ref. [19], the (4, ¢)-entropies share several properties as functions
of the probability vector p:

e H, 4)(p) is invariant under permutation of the components of p. Hereafter, we
assume that the components of the probability vectors are written in decreasing
order.

o Hyg)([p1 -+ pn 01 = Hap.g)([p1 - -+ pn1): extending the space by adding
zero-probability events does not change the value of the entropy (expansibility
property).

e H, 4) decreases when some events (probabilities) are merged, that is,
Haug)([p1 p2 p3 - pnI)=Hapg)([p1 + p2 p3 --- pyl’). This is a conse-
quence of the Petrovi¢ inequality that states that ¢(a + b) < ¢(a) + ¢ (b) for a
concave function ¢ vanishing at 0 (and the reverse inequality for convex ¢) [43,
Th. 8.7.1], together with the increasing (resp. decreasing) property of .

Other properties relate to the concept of majorization (see e.g. [44]). Given two prob-
ability vectors p and g of length N whose components are set in decreasing order,
it is said that p is majorized by ¢ (denoted as p < ¢), when X', pi < D7, ¢
forallm=1,...,N — 1 and Z,N=1 pi = ZlN:l gi. By convention, when the vectors
do not have the same dimensionality, the shorter one is considered to be completed
by zero entries (notice that this will not affect the value of the (4, ¢)-entropy due
to the expansibility property). The majorization relation allows to demonstrate some
properties for the (h, ¢)-entropies:

e It is strictly Schur concave: p < ¢ = Hu,¢)(p)>Hau,¢)(q) with equality if
and only if p = ¢. This implies that the more concentrated a probability vec-
tor is, the less uncertainty it represents (or, in other words, the less information
the outcomes will bring). The Schur concavity of H, ¢) is consequence of the
Karamata theorem [45] that states that if ¢ is [strictly] concave (resp. convex),
then p — > ; ¢(p;) is [strictly] Schur concave (resp. Schur convex) (see [44,
Chap. 3, Prop. C.1] or [46, Th. I1.3.1]), together with the [strictly] increasing
(resp. decreasing) property of /.

o Reciprocally, if H ¢)(p)=>H,¢)(g) for all pair of entropic functionals (4, ¢),
then p < ¢. This is an immediate consequence of Karamata theorem [45] (recip-
rocal part) which states that if for any concave (resp. convex) function ¢ one has
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and ZIN=1 pi = ZZN=1 qi (see also [44, A.3-(iv), p. 14 or Ch. 4, Prop. B.1] or [46,
Th. I1.3.1)).
e It is bounded:

1 1
0 < Hng)(p) Sh(llpllo¢(m)) <h (N¢>(N)), “

where || p||o stands for the number of nonzero components of the probability vector.
The bounds are consequences of the majorization relations valid to any probability
vector p (see e.g. [44, p. 9, Egs. (6)—(8)])

1 17 1 1 ! ,
N N lpllo Ipllo

together with the Schur concavity of Hj_ ¢). From the strict concavity, the bounds
are attained if and only if the inequalities in the corresponding majorization rela-
tions reduce to equalities.

From the previous discussion, we can see immediately that the (4, ¢)-entropies
fulfill the first three Shannon—Khinchin axioms [47], which are (in the form given in
Ref. [48]) (i) continuity, (ii) maximality (i.e., it is maximum for the uniform probability
vector) and (iii) expansibility. The fourth Shannon—Khinchin axiom, the so-called
Shannon additivity, is the rule for composite systems that is valid only for the Shannon
entropy (notice that there are other axiomatizations of Shannon entropy, e.g., those
given by Shannon in [36] or by Fadeev in [49]). A relaxation of Shannon additivity
axiom, called composability axiom, has been introduced [48,50]; it establishes that
the entropy of a composite system should be a function only of the entropies of the
subsystems and a set of parameters. The class of entropies that satisfy these axioms
(the first three Shannon—Khinchin axioms and the composability one) is wide [51] but
nevertheless can be viewed as a subclass of the (4, ¢)-entropies.

It has recently been shown that the (%, ¢)-entropies can be of use, for instance, in the
study of entropic formulations of the quantum mechanics uncertainty principle [18,
19]. They have also been applied in the entropic formulation of noise—disturbance
uncertainty relations [52]. Our aim is to extend the definition of the (4, ¢)-entropies
for quantum density operators and study their properties and potential applications in
entanglement detection.

3 Quantum (%, ¢)-entropies
3.1 Definition and link with the classical entropies

The von Neumann entropy [9] can be viewed as the quantum version of the classical
Shannon entropy [36], by replacing the sum operation with a trace. We recall that for an
Hermitian operator A = ». a; |a;){a;|, with |a;) being its orthonormal eigenvectors
in " and a; being the corresponding eigenvalues, one has ¢ (A) = >, ¢ (a;) la;)(ail,
and the trace operation is the sum of the corresponding eigenvalues (i.e., Tr ¢ (A) =
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Zi ¢ (a;), where Tr stands for the trace operation). In a similar way to the classical
generalized entropies, we propose the following definition:

Definition 2 Let us consider a quantum system described by a density operator p
acting on an N-dimensional Hilbert space HY , which is Hermitian, positive (that is,
0>0), and with Tr p = 1. We define the quantum (%, ¢)-entropy as follows

Hg,g)(p) = h (Tr ¢(p)), )

where the entropic functionals h : R +— R and ¢ : [0, 1] — R are such that either:
(1) & is strictly increasing and ¢ is strictly concave, or (ii)  is strictly decreasing and
¢ is strictly convex. In addition, we impose ¢ (0) = 0 and h(¢ (1)) = 0.

The link between Egs. (1) and (5) is the following. Let us consider the density
operator written in diagonal form (spectral decomposition) as p = ZlN: 1 i lei) (eil,
with eigenvalues A; > 0 satisfying vazl A; = 1, and being {|e,-)}lN: | an orthonormal
basis. Then, the quantum (/, ¢)-entropy can be computed as

H,¢)(0) = Hp,g) (). 6)

This equation states that the quantum (%, ¢)-entropy of a density operator p, is nothing
but the classical (&, ¢)-entropy of the probability vector A formed by the eigenvalues of
p. Notice that despite the link between the quantal and the classical entropies defined
from a pair of entropic functionals (%, ¢), we keep a different notation for the entropies
(H and H, respectively) in order to distinguish their very different meanings.

The most relevant examples of quantum entropies, which are the von Neumann
one [9], quantum versions of the Rényi, Tsallis, unified and Kaniadakis entropies [13,
27,53,54], and the quantum entropies proposed in Refs. [12,55], are clearly particular
cases of our quantum (%, ¢)-entropies (5).

In what follows, we give some general properties of the quantum (%, ¢)-entropies
(the validity of the properties for the von Neumann entropy is already known, see for
example [3,25,56-58]). In our derivations, we often exploit the link (6). With that
purpose, hereafter we consider, without loss of generality, that the eigenvalues of a
density operator p are arranged in a (probability) vector A, with components written
in decreasing order.

3.2 Schur concavity, concavity and bounds

One of the main properties of the classical (i, ¢)-entropies, namely the Schur con-
cavity, is preserved in the quantum version of these entropies:

Proposition 1 Let p and p’ be two density operators, acting on H" and HN ' respec-
tively, and such that p < p'. Then

Hn.0)(0) = Hing) (0, @)
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with equality if and only if either p' = UpUT, or p = Up'U", for any isometric
operator U (i.e., U'U = I), where U stands for the adjoint of U. Reciprocally, if
Eq. (7) is satisfied for all pair of entropic functionals, then p < p’.

Proof Let A and 1 be the vectors of eigenvalues of p and p’, respectively, rearranged
in decreasing order and adequately completed with zeros to equate their lengths. By
definition, p < p’ means that A < A" (see [25, p. 314, Eq. (12.9)]). Thus, the Schur
concavity of the quantum (/, ¢)-entropy (and the reciprocal property) is inherited
from that of the corresponding classical (%, ¢)-entropy, due to the link (6). From the
strict concavity or convexity of ¢ and thus the strict Schur concavity of the classical
(h, ¢)-entropies, the equality holds in (7) if and only if A’ = A, that is equivalent to
have either p’ = UpU™ (when N < N')or p = Up’U" (when N’ < N).

As a direct consequence, the quantum (%, ¢)-entropy is lower and upper bounded,
as in the classical case:

Proposition 2 The quantum (h, ¢)-entropy is lower and upper bounded

1 1
0 <Hpgp(p) <h (rankp ) (rank,o)) <h (N¢ (ﬁ)) , (8)

where rank stands for the rank of an operator (the number of nonzero eigenvalues).
Moreover, the lower bound is achieved only for pure states, whereas the upper bounds
are achieved for a density operator of the form p = % Zlﬂil le;){e;| for some ortho-

normal ensemble {|e,~)}iﬂi » With M = rank p in the tightest situation and M = N in
the other one (in the latter case, necessarily p = %I N, being Iy the identity operator

in HN).

Proof Let A be the vector formed by the eigenvalues of p. Clearly rank p = ||A]|o,
so that the bounds are immediately obtained from that of the classical (%, ¢)-entropy,
due to the link (6). Moreover, in the classical case H, ¢)(A) = 0 if and only if
A=[10--- 0], thatis p = |¥)(¥| is a pure state. On the other hand, the upper

1 1 !
bounds are attained if and only if A = |:M v 0--- O:| , with M = rank p or

e ———
M
M = N.

The classical (&, ¢)-entropies and their quantum versions are generally not concave.
We establish here sufficient conditions on the entropic functional & to ensure the
concavity property of the quantum (%, ¢)-entropies. We notice that, with the same
sufficient conditions, the classical counterpart is also concave:

Proposition 3 [fthe entropic functional h is concave, then the quantum (h, ¢)-entropy
is concave, that is, for all 0 < w < 1,

Hp,¢)(wp + (1 — @)p) = oHapg)(p) + (1 — ©) Hip ) (0)). 9)
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Proof Letus firstrecall the Peierls inequality (see [25, p. 300]): if ¢ is a convex function
and o is an Hermitian operator acting on ", then for any arbitrary orthonormal basis
{l ﬁ)}N the following inequality holds

i=1’

Tro(o) ZZ¢((ﬂ|U|ﬁ))- (10)

Consider 0 = wp + (1 — w)p’ = >, Aile;){e;| written in its diagonal form, h
decreasing and ¢ convex. Then

Trp(o) = D ¢i)=D ¢(eilole)
=> " ¢(eillop + (1 —w)p'l |e;)
<D ¢eilple)+(1—w) D" d((eilolei)) [¢ being convex]

i i
<oTr¢(p) + (1—w) Tré(p) [due to Peierls inequality].

Notice that in the case ¢ concave, these two inequalities are reversed. Thus, one finally
has

h(Trgp(o)) > h (a) Tro(p) + (1 —w) Trqb(,o')) [/ being decreasing]
> wh(Tr¢(p)) + (1 — w) h(Trp(p’)) [assuming h concave].

Notice that in the case /4 increasing, the first inequality holds, and the second inequality
holds as well, from concavity of & (with equality valid when 7 is the identity function).
Making use of Definition 2, the proposition is proved in both cases, under the condition
that the entropic functional % is concave.

Note also that for the class of (f, «)-entropies, the concavity of % is equivalent
to that of ﬁ Moreover, for the von Neumann and quantum Tsallis entropies, the
conditions of Proposition 3 are satisfied, and it is well known that these entropies have
the concavity property. For quantum Rényi entropies, the concavity property holds
for 0 < a < 1 as consequence of Proposition 3, but for « > 1 the proposition does
not apply (see [25, p. 53] for an analysis of concavity in this range for classical Rényi
entropies). For the quantum unified entropies, the concavity property holds in the range
of parameters r < l ands < l orr > I and s > 1 as consequence of Proposition 3,
which complements the result of Ref. [13] and improves the result of Ref. [53].

It is interesting to remark that using the concavity property given in Proposition 3,
it is possible to define in a natural way, for & concave, a (Jensen-like) quantum (%, ¢)-
divergence between density operators p and o/, as follows:

/

p+p 1
Jing) (p: ') = Hang) ( ) =5 [Hop () +Hangy(0H], (1)

which is nonnegative and symmetric in its arguments. This is similar to the construction
presented in Ref. [40] for the classical case, and offers an alternative to the quantum
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version of the usual Csiszar divergence [42,55]. It can be shown that for pure sates
|) and |v") the quantum (&, ¢)-divergence (11) takes the form

L+ [y ly) l—IWIW)I})' (12)
2 2

Jag) (WY WL W) W'l) = Hing) ([

Indeed, the square root of this quantity in the von Neumann case [h(x) = x, ¢p(x) =
—x In x] provides a metric for pure states [59]. Notice that the right-hand side of
Eq. (12) is a binary (4, ¢)-entropy. Other basic properties and applications of the
quantum (%, ¢)-divergence are currently under study [60].

3.3 Specific properties of the quantum (%, ¢)-entropy

We recall that the quantum entropy of a density operator equals the classical entropy of
the probability vector formed by its eigenvalues. In other words, considering a density
operator as a mixture of orthonormal pure states, its quantum entropy coincides with
the classical entropy of the weights of the pure states. This is not true when the density
operator is not decomposed in its diagonal form, but as a convex combination of
pure states that do not form an orthonormal basis. The quantum (4, ¢)-entropy of an
arbitrary statistical mixture of pure states is upper bounded by the classical (&, ¢)-
entropy of the probability vector formed by the mixture weights:

Proposition 4 Let p = zlﬁil pilviY (Vi be an arbitrary statistical mixture of pure
states ;) (Y|, with p; > 0 and Z,Ai1 pi = L. Then, the quantum (h, ¢)-entropy is
upper bounded as

H.4)(0) < Hpnp)(P), (13)

where p = [p1 --- pm].

Proof First, we recall the Schrodinger mixture theorem [25, Th. 8.2]: a density operator
in its diagonal form p = ZZN=1 Milei)(ei| can be written as an arbitrary statistical

mixture of pure states p = Zlﬁil pil¥i)(¥il|, with p; > 0 and Zlﬁil pi = 1, if and
only if, there exist a unitary M x M matrix U such that

N
Vi) =D Uij/aj lej). (14)
j=1

As a corollary, one directly has [61]

p = B2, (15)

@ Springer



G. M. Bosyk et al.

where B;; = |U; j|2 are the elements of the M x M bistochastic matrix! B. From
the lemma of Hardy, Littlewood and Pélya [25, Lemma 2.1] or [44, Th. A.4], this is
equivalent to the majorization relation p < A. Therefore, from (6) and the Schur con-
cavity of the classical (%, ¢)-entropy, we immediately have H;, ¢y (0) = Hg ) (M) <
Hn,¢)(p).

The previous proposition is a natural generalization of a well-known property of
von Neumann entropy. One can also show that a related inequality holds:

Proposition 5 Let {|ey) }l]<V=1 be an arbitrary orthonormal basis of " and, for a given
density operator p acting on HY, let us denote by pF (p) the probability vector with
elements p,f (p) = (ex|plek), that is, the diagonal elements of p related to that basis.
Then

Hi.0)(P) < Hag) (P" (0)). (16)

Proof The decomposing of p in the basis {|ex) },]:’:1 has the form p= Z/IXI:I pr.1lex){erl
where the diagonal terms are py = p,f (p). The Schur—Horn theorem [25, Th. 12.4]
states that the vector pZ(p) of the diagonal terms of p is majorized by the vector
A of the eigenvalues of p. Thus, from the Schur concavity property of the classical
(h, ¢)-entropy, we have Hiy ¢y (p) = Hn,g)(A) < Hang) (P (0))-

We consider now the effects of transformations. Among them, unitary operators
are important since the time evolution of an isolated quantum system is described by
a unitary transformation (i.e., implemented via the action of a unitary operator on the
state). One may expect that a “good” entropic measure remains unchanged under such a
transformation. This property, known to be valid for von Neumann and quantum Rényi
entropies [62] among others, is fulfilled for the quantum (%, ¢)-entropies, and evenin a
slightly stronger form, i.e., for isometries. We recall that an operator U : H"N > HY /
is said to be isometric if it is norm preserving. This is equivalent to UTU = I. On
the other hand, an operator is then said to be unitary if it is both isometric and co-
isometric, that is, both U and U are isometric. When U : HY +— HN (both Hilbert
spaces having the same dimension) is isometric, it is necessarily unitary (see e.g. [63]).

Proposition 6 The quantum (h, ¢)-entropy is invariant under any isometric transfor-
mation p — UpU " where U is an isometric operator:

Hi0)(UpU") = Hy ) (). (17)

Proof Let us write p in its diagonal form, p = lezl Xilei)(ei]. Clearly, UpUT =
lezl Al fi)(fil, where | f;) = Ule;) withi = 1, ..., N, form an orthonormal basis
(due to the fact that U is an isometry). Since p and UpU T have the same eigenvalues,
and thus, using Eq. (6), we conclude that they have the same (k, ¢)-entropy.

1 1t is assumed that M >N, otherwise p is completed with zeros; when M > N, the remaining N — M
terms that do not appear in Eq. (14) are added in order to fulfill the unitary of U and A is to be understood as
completed with zeros (for more details, see the proof of the Schrodinger mixture theorem [25, pp. 222-223]).
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When dealing with a quantum system, it is of interest to estimate the impact of a
quantum operation on it. In particular, one may guess that a measurement can only
perturb the state and, thus, that the entropy will increase. This is also true for more
general quantum operations. Moreover, one may be interested in quantum entropies
as signatures of an arrow of time: to this end one can see how the value of an entropic
measure changes under the action of a general quantum operation. More concretely,
let us consider general quantum operations represented by completely positive and
trace-preserving maps &, expressed in the Kraus form £(p) = Z,{il Ak ,oAz (with
{AZAk} satisfying the completeness relation Zf: 1 AZAk = I). It can be shown that
the behavior of entropic measures depends nontrivially on the nature of the quantum
operation (see e.g. [25, Sec. 12.6]). For example, a completely positive map increases
the von Neumann entropy for every state if and only if it is bistochastic, i.e., if it is also
unital ({AkAZ} also satisfies the completeness relation), so that the operation leaves
the maximally mixed state invariant. This is no longer true for the case of a stochastic
(but not bistochastic) quantum operation. What can be said of the generalized quantum
(h, ¢)-entropies? This is summarized in the following:

Proposition 7 Let £ be a bistochastic map. Then, the quantum operation p +— E(p)
can only degrade the information (i.e., increase the (h, ¢)-entropy):

Hn,¢)(0) < Hin,g)(E(p)) (18)
with equality if and only if E(p) = UpU" for a unitary operator U.

Proof From the quantum Hardy-Littlewood—P6lya theorem [25, Lemma. 12.1],
E(p) < p, so that the proposition is a consequence of the Schur concavity of the
quantum (%, ¢)-entropy (Proposition 1). Let us mention that an isometric operator
can define a bistochastic map only if it is unitary.

This is a well-known property of von Neumann entropy, when dealing with pro-
jective measurements AxA; = 8k ;Ax [3, Th. 11.9]. It turns out to be true for the
whole family of (4, ¢)-entropies, and in a more general context than projective mea-
surements. However, as we have noticed above, generalized (but not bistochastic)
quantum operations can decrease the quantum (%, ¢)-entropy. Let us consider the
example given in [3, Ex. 11.15, p. 515]. Let p be the density operator of an arbitrary
qubit system, with nonvanishing quantum (%, ¢)-entropy, and consider the generalized
measurement performed by the measurement operators A; = |0)(0] and A> = |0)(1]
(a completely positive map, but not unital). Then, the system after this measurement
is represented by E£(p) = [0)(0]p]0)(0] + |0)(1]p|1)(0] = |0)(0| with vanishing
quantum (%, ¢)-entropy.

Note that Proposition 5 can be viewed as a consequence of Proposition 7. Indeed, it is
straightforward to see that the set of operators E = {|ex)(ex|} defines the bistochastic
map E(p) = Z,Icvzl p,f(,o)lek)(ek|. Thus, Proposition 5 can be deduced applying
successively Propositions 7 and 4.

In the light of the previous discussions and results, we can reinterpret Proposition 5
as follows: the quantum (%4, ¢)-entropy equals the minimum over the set of rank-one
projective measurements of the classical (%, ¢)-entropy for a given measurement and
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density operator. Indeed, we can extend the minimization domain to the set of rank-
one positive operator valued measurements (POVMs).” As a consequence, we can
give an alternative (and very natural, from a physical perspective) definition for the
(h, ¢)-entropies.

Proposition 8 Let E be the set of all rank-one POVMs. Then
H,.9)(p) = min Hg) (" () 19)
EcE

where pE(p) is the probability vector for the POVM E = {Ek},{(:1 given the density
operator p, i.e., p,f(p) = Tr(Exp).

Proof Let us consider an arbitrary rank-one POVM E = {Ek},{;1 and consider the

1
positive operators Ay = A}: = E; . Let us then define

K 1 é K
Ex(p) = EpE} —Zpk( ) — Z PE (o) 19k) (i,
k=1 TrEkszz k=

where we have used the fact that Ey, is rank-one, so its square root can be written in the
1
form E kz = |ex)(ex| (with |ex) not necessarily normalized), allowing us to introduce

the pure states |y) = lex)

. From the completeness relation satisfied by the POVM,
(exlex) 2
Eg(p) is then a doubly stochastic map. Thus, applying successively Proposition 7 and

Proposition 4 we obtain

H.p)(0) < Hisip E(0)) = Hin) (P 0))

Since E is arbitrary, we thus have
H, 4)(p) < min H, ¢) (PE(/O)) .
EcE

Consider then Enj, = {|ek)(ek|},]<V:1 where {|ek)},1(\’:] is the orthonormal basis that
diagonalizes p. Thus

Hp 4) (PE'"i" (,0)) =Hg ¢)(p) < ‘,}Eﬁ H, g (PE(,O)) < Hg¢) (pE'"i" (P)) ,

which ends the proof.

We notice that the alternative definition of quantum (4, ¢)-entropy given in this
proposition cannot be extended to any POVM. The following counterexample shows
this impossibility. Let us consider the density operator p = IWN with N > 2 even,

2 Recall that a POVM is a set {E, 1} of positive definite operators satisfying the resolution of the identity
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N

and the POVM E = {E|, E;} formed by the positive operators £ = Z?: | lei)(eil

and Er = vaz%ﬂ le;)(e;|, where {|e,~)}lN=1 is an arbitrary orthonormal basis of H™ .

Thus, we obtain p£(p) = [% %]t and consequently from the Schur concavity and
the expansibility of the classical (h, ¢)-entropy we have Hg, ¢y (0) = h (N¢ (#)) -
1 (2¢ (3)) = Heng) (" (0)).

3.4 Composite systems I: additivity, sub and superadditivities, and bipartite
pure states

We focus now on some properties of the quantum (/, ¢)-entropies for bipartite quan-
tum systems A B represented by density operators acting on a product Hilbert space
Hap = HXA ® HgB. Specifically, we are interested in the behavior of the entropy
of the composite density operator pA8, with reference to the entropies of the density
operators of the subsystems,? p4 = Trp p48 and pB = Try p48.

Now, we give sufficient conditions for the additivity property of quantum (4, ¢)-
entropies:

Proposition 9 Let p4 ® p® be an arbitrary product density operator of a composite
system AB, and p” and p® the corresponding density operators of the subsystems. If,

for(a,b) € (0, 11>and (x, y) € [min {4)(1), Na¢ (NLA)}, max {¢(1)7 Nag (NLA)”

X [min {¢(1), Np¢ (NLB)} , max {¢(1), Np¢ (NLB)}] ¢ and h satisfy the Cauchy
functional equations either of the form (i) ¢ (ab) = ¢p(a)b + ap(b) and h(x + y) =
h(x) + h(y), or of the form (ii) ¢ (ab) = ¢ (a)¢ (b) and h(xy) = h(x) + h(y). Then
the (h, ¢)-entropy satisfies the additivity property

Hn.¢) (PA ® ,OB) = H,¢) (,OA) +Hg g (pB) (20)

Proof In case (i), by writing the density operators p“ and p? in their diagonal forms,
it is straightforward to obtain

¢(pA®pB)=¢(pA)®pB+pA®¢(pB),

3 By definition, the partial trace operation over B, Trp : HXA ® 'HgB — 'HXA, is the unique linear
operator suchthat Trpg X4 ®Xp = (Trp Xp)X 4 forall X 4 and X p actingon HZA and HgB ,respectively.
For instance, let us consider the bases {|e?)}?/:A1 and {|e1,3 >}1/y£1 of HXA and H]gB respectively, and the
product basis {|elA) ® |e?)} of HIZXA ® HgB . Let us denote by pg ?’j’ the components in the product basis
of an operator pAB acting on HXA ® Hgg . Thus, the partial trace over B of pAB gives the density operator
of the subsystem A, pA =Trp ,oAB, whose components are ,olAi, = Zj plf}?,j in the basis {|e§4>}.
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and thus

(10 (0 51) = 10 () + 10 7))
(1 4°) 1 1o ()

where we used Tr p4 = 1 = Tr p®. Similarly, for case (ii),
¢ (pA ® pB) =¢ (pA) ®¢ (pB)
and thus

(10 5 7)) = 1 () 0 5)) = (0 () 0 1 ()

The domains where the functional equations have to be satisfied are, respectively, the
domain of definition of ¢ and the image of Tr ¢ (see Proposition 2).

Note that, on the one hand, in case (i) the functional equation for ¢ can be recast as
g(ab) = g(a) + g(b) with g(x) = x_1¢>(x). Thus, ¢ (x) = cixInx and h(x) = cx
with cjcp < 0 are entropic functionals that are solutions of the functional equa-
tions (i).* These solutions lead to von Neumann entropy, which, as it is well known, is
additive (see e.g. [56,57]). On the other hand, in case (ii), ¢ (x) = x* and h(x) = clnx
withO <o < landc¢ > Oora > 1 and ¢ < O are entropic functional solutions. This
is the case for the Rényi entropies, which are also known to be additive (see e.g. [62]).
In general, however, (h, ¢)-entropies are not additive, for instance quantum unified
entropies (including quantum Tsallis entropies) do not satisfy this property for all the
possible values of the entropic parameters [13,53]. For the (not so general) quantum
(f, a)-entropies, we can give necessary and sufficient conditions for the additivity
property:

Proposition 10 Let p ® p® be an arbitrary product density operator of a composite
system AB, and p* and p® the corresponding density operators of the subsystems.
Then, for any a > 0, the additivity property

F(fa) (PA ® PB) =Fo) (PA) +Fta (pB) 1)

holds ifand onlyif f (xy) = f(x)+f(y) for(x, y) € [min{l, Ny~*}, max{l, N} *}]
x [min{l, N5}, max{l, Ny “}].

4 Notice that the Cauchy equations g(x +y) = g(x) + g(»), g(xy) = g(x) + g(y) and g(xy) = g(x)g(»)
are not necessarily linear, logarithmic or power type, respectively, without additional assumptions on the
domain where they are satisfied and on the class of admissible functions (see e.g. [43,64]). But, recall
that the entropic functionals /& and ¢ are continuous and either increasing and concave, or decreasing and
convex.
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Proof The ‘if’ part is a direct consequence of Proposition 9 where ¢ (x) = x“ and
h(x) = {E—);) satisfy the Cauchy equations of condition (ii).

Reciprocally, if F /) is additive, we necessarily have that f (Tr (04)” Tr (p5)*) =
f (Tr (pA)a) + f (Tr (,oB)a) for any pair of arbitrary states. Denoting x = Tr (pA)a
and y = Tr (p%)® and analyzing the image of Tr p* for any density operator acting
on H", we necessarily have f(xy) = f(x) 4+ f(y) over the domain specified in the

proposition, which ends the proof.

Notice that, if f is twice differentiable, one can show that f is proportional to
the logarithm thus, among the quantum ( f, «)-entropies, only the von Neumann and
quantum Rényi entropies are additive.

As we have seen, the (h, ¢)-entropies are, in general, nonadditive. However, as
suggested in [65], two types of subadditivity and superadditivity can be of interest. One
of them compares the entropy of p4% with the sum of the entropies of the subsystems
p4 and p® (global entropy vs sum of marginal-entropies), and the other one compares
the entropy of pA% with that of the product state p ® p? (global entropy vs product-of-
marginals entropy). The general study of subadditivity of the first type, Hy, ) (045) <
H, g (p™) + H, ¢ (p®), is difficult, even if one is looking for sufficient conditions
to insure this subadditivity. Although it is not valid in general, there are certain cases
for which it holds. For example, it holds for the von Neumann entropy [57], quantum
unified entropies for a restricted set of parameters [13,53], and quantum Tsallis entropy
with parameter greater than 1 [65,66]. On the other hand, it is possible to show that
only the von Neumann entropy (or an increasing function of it) satisfies subadditivity
of the second type, provided that some smoothness conditions are imposed on ¢. This
is summarized in the following:

Proposition 11 Let pA® be a density operator of a composite system AB, and p*
and p® the corresponding density operators of the subsystems. Assume that ¢ is twice
differentiable on (0, 1). The (h, ¢)-entropy satisfies

H, ¢ (,OAB) < Hg,¢) (,OA ® ,OB) (22)

if and only if H, ¢) is an increasing function of the von Neumann entropy, given by
¢(x) = —xInux.

Proof The proof is based on two steps:

e First, an example of a two qutrit diagonal system acting on a Hilbert space > @ H?3
is presented, for which it is shown that Hyj, 4) cannot be subadditive, with the
exception of certain functions ¢’ satisfying a given functional equation.

e Next, under the assumptions of the proposition, the functional equation is solved,
and it is shown that all the entropic functionals ¢ for which we could not conclude
on the subadditivity of Hy, 4, can be reduced to the case ¢(x) = —xInx and h
increasing.
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Step 1 Consider the composite two qutrit systems acting on a Hilbert space H> @ H>,
of the form

p*% = pt @ pP —¢(100)(00] + [11)(11] — [10)(10] — [01)(01])
with

pA =al0)(0] + a|1)(1] + (1 —a —a)|2)(2|
and p® =510)(0] + BI1Y(1] + (1 —b— B)]2)(2]

where {|0), [1), |2)} is an orthonormal basis for 1>, |ij) = |i) ® |j), the coefficients
(a, a, b, B) in the set

D={a,a,b,8: O0<a,b<l AN O<a<l—a A 0<pB<1-0b}
and c in the interval
Coapp = [ — 1 4+ max {ab, af, 1 —aB, 1 — ab}, min {ab, af, 1 —aB, 1 — ab}].
Let us now recall the Klein inequality [25, Eq. (12.7)] for concave ¢,

Trp(p) —Trg(o) < Tr((p —0) ¢/(0)),

the reversed inequality holds for convex ¢. If the Klein inequality is applied to p =
p4 @ pP and o = pAB, for (a,b) € (0, 1)? (such that Ca,a,b,p 1s not restricted to
{0}),and c € Ca’a,a, »,p (where * denotes the interior of a set), we obtain for concave ¢,

Tro (" @ p%) = Trg (p*%) < cgla,ab.B.0), (23)
and the reversed inequality for convex ¢, where
gla,a,b,B.c)=¢'(ab—c)+¢'(ap—c) =@ (aB+c) —¢'(ab+c). (24

Assume that there exists (x, u, y,v) € D such that g(x,u,y,v,0) # 0. From the
continuity of ¢’, function g is continuous, and thus there exists a neighborhood Vy C
Co'x,u,y,l, of 0 such that function ¢ +— g(x, u, y, v, ¢) has a constant sign on V. As
a conclusion, ¢ — ¢ g(x, u, y, v, ¢) does not preserve sign on Vj. This allows us to
conclude from (23) that when ¢ is concave (resp. convex), Tr ¢ (p4?) can be higher
(resp. lower) than Tro(p? ® pb). Together with the increasing (resp. decreasing)
property of &, it is then clear that if g (a, «, b, B, 0) is not identically zero on the domain
D, then H(;,,¢) cannot be subadditive in the sense global vs product of marginals.
Step 2 1f g(a, o, b, B,0) =0 on 13, then ¢’ satisfies the functional equation

¢’ (ab) + ¢'(aB) — ¢’ (aB) — ¢’ (ab) =0, (25)
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and one cannot use the previous argument to decide if Hyj, ¢) is subadditive or not. In
order to solve this riddle we follow [67, § 6], where a similar functional equation is
discussed. By fixing (a, b) € (0, 1)2, differentiating identity (25) with respect to «
and multiplying the result by o, we obtain

af¢" (@) = abd”(@b) for (o, B) € (0, 1—a)x (0, 1—b).

This means that x ¢” (x) is constant for x € (0, (1 —a) max{b, 1 —b}),forall (a, b) €
(0, 1)2. Thus, x ¢” (x) is constant for x € (0, 1). In other words, ¢ is necessarily of
the form ¢(x) = —A x Inx + px + v. Due to the continuity of ¢, this is valid on the
closed set [0, 1]. Since Tr p = 1, one can restrict the analysis to « = 0 (this value can
be put in v, leaving the entropy unchanged). Moreover, this constant does not alter the
concavity or convexity of ¢ and thus can be put in /& [without altering its monotonicity
and, thus, the sense of the inequalities between Hy, 4) (,oAB ) and Hy ¢) (,oA ® pB )
either]. To ensure strict concavity (convexity) of ¢, one must have A > 0 (resp. > < 0)
and thus, without loss of generality, A can be rejected in /. Finally, one can rapidly
see that ¢ (x) = —x In x satisfies the identity (25).

As a conclusion, under the assumptions of the proposition, when Hy ) is not an
increasing function of the von Neumann entropy, it cannot be subadditive. Recipro-
cally, the von Neumann entropy is known to be subadditive (see e.g. [56,57]), and this
remains valid for any increasing function of this entropy, which finishes the proof.

Notice that neither Rényi nor Tsallis entropies satisfy this subadditivity for any
entropic parameter except for @ = 12 (i.e., von Neumann entropy). As a consequence,
from Propositions 10 and 11, we obtain that, except for the von Neumann case (and the
zero-parameter entropy), Rényi entropies do not neither satisfy usual subadditivity in
terms of Hp, ¢y (p48) and H,g) ) +H ¢ (p?®) (as in the classical counterpart [68,
Ch.IX, §6]). In addition, the counterexample used in the proof of the proposition allows
us to conclude that the same nonsubadditivity also holds for the classical counterpart
of (h, ¢)-entropies.

Regarding both types of superadditivity, it is well known that the von Neumann
entropy does not satisfy neither of them. Here, we extend this factto any (%, ¢)-entropy,
as summarized in the following:

Proposition 12 Let p48 be a density operator of a composite system AB, and p*
and p® the corresponding density operators of the subsystems. The (h, ¢)-entropy is
nonsuperadditive in the sense that

Ho,g) (pAB) > Hong) (pA ® pB) and (26)

Hng) (PAB) = Hng) (PA) +Hag) (PB) 27)

are not satisfied for all states.

5 For = 0 this subadditivity is also satisfied, but note that in this special case, ¢ is not continuous and
moreover does not fulfill the conditions of the proposition.
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Proof Let us consider the two qubit diagonal system acting on H> ® H>:
A _ 1
P =§(|00)(00|+I11>(11|),

which gives ,oA = 172 = pB. In this case, we have H(;,’q;)(,oAB) = h (2¢(%)),
Hip0)(0%) + Hing) (p8) = 21 (2¢(3)) and H g (04 ® ) = h (4¢(3)), such
that Hi ) (048) < Hin gy (0?) + Hing) (08) (due to the positivity of the entropies)
and H(h,q;)(,oAB) < H(h,q;)(,oA ® p®) (due to the Schur concavity property).

For the case of von Neumann entropy, it is well known that the entropy of subsystems
of a bipartite pure state are equal (see e.g. [3, Th. 11.8-(3)],). We extend this result to
any quantum (%, ¢)-entropy.

Proposition 13 Ler |) be a pure state of a composite system AB and p? =
Trg | V) (Y| and p® = Tr4 | W) (| the corresponding density operators of the subsys-

tems. Then
Hng) (PA) = Hgn.g) (PB) : (28)

Proof From the Schmidt decomposition theorem [25, Th. 9.1], any pure state |Y) €
HXA ® HgB can be written under the form

N
W) = > Vailel!) ® lef), (29)
i=1

where {|el‘.“)}f\’:"1 and {|elB )}f\’:’j1 are two orthonormal bases for HXA and Hgf’, respec-
tively, and N < min { N4, Np}. The density operators of the subsystems are then

N N
pt =D "hile!) el and  pP =" hilef)ef), (30)
i=1 i=1

so that the first N eigenvalues A; are equal, the remaining ones being zero. Therefore,
using the expansibility property, both have the same quantum (%, ¢)-entropy.

3.5 Composite systems II: entanglement detection

Now, we consider the use of quantum (4, ¢)-entropies in the entanglement detection
problem. As with the classical entropies, one would expect that the quantum entropies
of density operators reduced to subsystems were lower than that of the density operator
of the composite system. We show here that this property turns out to be valid for
separable density operators. We recall that a bipartite quantum state is separable if it
can be written as a convex combination of product states [69], that is,0

6 Equivalently, the pure states hﬂ,ﬁ,‘)(w,ﬁ\ and II//,E )(1//,5 | can be replaced by mixed states defined on HA
and H5, respectively [70].
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M M
P88 =D o UMWl @ ) (WS with @, >0and > w, =1. (31)
m=1 m=1

For bipartite separable states, we have the following:

Proposition 14 Let p‘é‘g) be a separable density operator of a composite system AB,
and let p* and p® be the corresponding density operators of the subsystems. Then

H.¢) (,Oég,) > max {H(h,¢) (,OA) » Hong) (,OB)} ; (32)
for any pair of entropic functionals (h, ¢).

Proof This is a corollary of a more general criterion of separability given in Ref. [70]
(also given in [25, B.4, p. 386]), based on majorization. Indeed, from that criterion, a
separable density operator p’g‘g) and the reduced density operators p? and p® satisfy
the majorization relations

pg‘i < ,oA and Pég; < pP. (33)

Inequality (32) is thus a consequence of the Schur concavity of Hyj ¢), proved in
Proposition 1.

It is worth mentioning that the majorization relations (33) do not imply the sepa-
rability of the density operator [25,70] and thus (33) is a sufficient condition for the
derivation of (32). In other words, some pair(s) of entropic functionals (%, ¢) and a
density operator of the composite system violate (32).

Proposition 14 was proved originally for von Neumann entropy [21], and later on
for some other quantum entropies such as the Rényi, Tsallis, and Kaniadakis ones
(see e.g. [12,22-24,27] or [25, B.5, p. 387]). Remarkably, this property turns out to
be fulfilled by any quantum (k, ¢)-entropy.

As an example we use Proposition 14 in the case of (f, o)-entropies, in order to
verify its efficiency to detect entangled Werner states of two qubit systems. Werner
density operators are of the form [69] or [25, Eq. (15.42), pp. 382-383]:

pAB :a)|lI/_)(lI/_|+(l—a))i—4, (34)

where |¥ ™) = \%(lOO) — |11)) is the singlet state, |0) and |1) are eigenstates of the
Pauli matrix o, and w € [0, 1]. It is well known that Werner states are entangled if and
only if w > % The density operators of the subsystems are p4 = 12—2 = p?. Therefore,
following Proposition 14 for an ( f, o)-entropy, we can assert that the Werner states
are entangled if the function

73057+ (52)) - )

, a#1

Zro(0) = a—1 (35)
3(1 —w)In(1 — w) + (1 4+ 3w)In(1 + 3w)
7 —In2, a=1
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Fig. 1 Contour plot of function Zj, 4 (w) versus o and «, as given in Eq. (35). To the right of the dashed

line (at w = %), the Werner states (34) are entangled, while to its left they are separable. The solid line
corresponds t0 Z 7,y (@) = 0 and limits two situations: to the right where Z ¢, (@) is positive and the
criterion allows to conclude that the states are entangled, and to the left where nothing can be said about
the states

is positive. Note that, since f is increasing, the sign of Z s, does not depend on the
choice of f, so that we can take f(x) = Inx without loss of generality. Figure 1 shows
a contour plot of Zjy o (w) versus w and «. The dashed line represents the boundary
between the entangled situation (@ > %) and the separable one (v < %), and the
solid line distinguishes the situation Zyq(w) > 0 (to the right) from the situation
Z 1,4 (w) < O (to the left). It can be seen that, in this specific example, the entropic
entanglement criterion is improved when « increases. This can be well understood
noting that, when « — 00, Zip (@) — In (#) that is positive if and only if
w > %, i.e., if and only if the Werner states are entangled.

This simple illustration aims at showing that the use of a family of (k, ¢)-entropies
instead of a particular one, or playing with the parameter(s) of parametrized (k, ¢)-
entropies, allows one to improve entanglement detection.

Naturally the majorization entanglement criterion is stronger than the entropic one.
Indeed, for the example given above, the majorization criterion detects all entangled
Werner states. However, there are situations where the problem of computation of the
eigenvalues of the density operator happens to be harder than the calculation of the
trace in the entropy definition (at least for entropic functionals of the form ¢ (x) = x",
with n integer). Moreover, from the converse of Karamata theorem (see Sect. 2), the
majorization criterion becomes equivalent to the entropic one when considering the
whole family of (h, ¢)-entropies. This allows us to expect that the more “nonequiva-
lent” entropies are used, the better the entanglement detection should be.

Another motivation for the use of general entropies in entanglement detection is
that, in a more realistic scenario, one does not have complete information about the
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density operator, so the majorization criterion, and consequently the entropic one
can not be applied. It happens usually that one has partial information from mean
values of certain observables. In that case, one needs to use some inference method
to estimate the density operator compatible with the available information. One of the
more common methods for obtaining the least biased density operator compatible with
the actual information, is the maximum entropy principle [71] (MaxEnt for brevity).
That is, the maximization of von Neumann entropy subject to the restrictions given
by the observed data. However, this procedure can fail when dealing with composite
systems, as shown in Ref. [72]. Indeed, MaxEnt using von Neumann entropy can
lead to fake entanglement, which means that it predicts entanglement even when there
exists a separable state compatible with the data. In Ref. [12] it was shown that, using
concave quantum entropies of the form Hq,¢)(0) = Tr(¢(p)), it is possible to avoid
fake entanglement when the partial information is given through Bell constraints.

Now we address the following question that arises in a natural way. Is it possible to
use the constructions given above to say something about multipartite entanglement?
As the number of subsystems grows, the entanglement detection problem becomes
more and more involved, even for the simplest tripartite case (see e.g. [73—75]). Indeed,
for a multipartite system, one has to distinguish between the so-called full separability
and many types of partial separability (see e.g. [76] and references therein). Here, we
briefly discuss a possible extension of Proposition 14 for fully separable states. The
definition of full multipartite separability for L subsystems acting on a Hilbert space
Hr = ®1 | H,;" is a direct extension of (31), that is,

M
pFu]lSep ZwM|wAl Al|®®|w,ﬁL)(1//;2L|, Witha)m 20and Za)m: 1
m=1
(36)
For multipartite fully separable states, we have the following:

Proposition 15 Let 'OFullSep be a fully separable density operator of an L-partite sys-

tem, and let pA1, ..., pAL be the corresponding density operators of the subsystems.
Then

Aq..A
H(h’¢) ('OFlIJHSe[I;) > max {H(h,q)) (,OAI) e, H(h~¢) (pAL)} , 37
for any pair of entropic functionals (h, ¢).

Proof The majorization relations (33) for separable bipartite states are mainly based
on the Schrodinger mixture theorem, so that (33) can be generalized to the multipartite
case in a direct way [70]. Let us consider the fully separable density operator (36),
written in a diagonal form as p;‘&ii'séé = > ; Ailei){ei|. On the one hand, from the
Schrodinger mixture theorem, there exists a unitary matrix U such that

Vailei) =D Umi/om W) ® - @ [Ya) @ - ® [YraL). (38)

On the other hand, let pA = 3" @, [N (21| be the density operator of the Ith
subsystem and its diagonal form p4/ = > j Alj. |elj)(elj |. Using again the Schrodinger
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mixture theorem, there is a unitary matrix V' such that
A I !
Jou 'y =D Vi Jak1eh). (39)
J

Substituting (39) into (38), left-multiplying the result by its adjoint and using the
orthonormality, (e§-|elj,) = 4;;» and (e;|e;r) = §;;, we obtain

A= B, (40)
with B!, = 3, 0 Uz Ui V5V Tl ! [¥,)). Following similar arguments

as in the bipartite case [70, Th. 1], it is straightforward to show that B! is a bistochastic
matrix and thus that A < A'. Finally, using the Schur concavity of H,¢), we obtain

H, ¢ (péﬂll‘i'sé;) > Hy.¢)(p™) for any 1, and thus inequality (37).

Some interesting problems to be addressed are the application of this proposition
to particular multipartite states, as well as the extension of the generalized entropic
criteria to different types of partial separability. These points and related derivations
are beyond the scope of the present contribution and will be the subject of future
research.

4 On possible further generalized informational quantities

How to obtain useful conditional entropies and mutual informations based on gener-
alized entropies is an open question and there is no general consensus to answer it,
even in the classical case (see e.g. [52,77-79] for different proposals). Here, we first
discuss briefly two possible definitions of classical conditional entropies and mutual
informations, based on (%, ¢)-entropies. We then proceed to obtain quantum versions
of those quantities.

4.1 A generalization of classical conditional entropies and mutual informations

Let us consider a pair of random variables (A, B) with joint probability vector pAZ,
ie., pé‘f = Pr[A = a, B = b], and let us denote by p# and p® the corresponding

marginal probability vectors, namely p = 3", pA% and p? = >, p2'%. From Bayes
rule, the conditional probability vector for A given that B = b, pAl?, is defined by

AB
p . o .
pAb — “—1’;’ (and analogously for pZ1%). For the sake of convenience, in this section,
Py

we indifferently denote Hy, ) (A, B) or Hyp ¢)( pAB) (and similarly for the marginals).

In order to define a conditional (&, ¢)-entropy of A given B, one possibility is
to take the average of the (, ¢)-entropy of the conditional probability pA!” over all
outcomes for B (in a way similar to the Shannon entropy [36], or also to the Rényi
and Tsallis entropies, as in Refs. [78,79]). This leads to the following:
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Definition 3 Let us consider a pair of random variables (A, B) with joint probability
vector pA8. We define the 7-conditional (%, ¢)-entropy of A given B as

H{J 4, (AIB) = D" pf Hing ("), 41)
b

From Definition 3, one can thus define a “7-mutual information’ as
Jn,¢)(A; B) = Hing)(A) — Hiy, ¢)(A|B) (42)

However, except when 4 is concave, there is no guarantee that 7, 4)(A; B) is non-
negative (see Proposition 3). Besides, this quantity is not symmetric in general.

An alternative proposal is to mimic the chain rule satisfied by Shannon entropy,
H(A|B) = H(A, B) — H(B), and thus to define a conditional entropy as follows:

Definition 4 Let us consider a pair of random variables (A, B) with joint probability
vector pAB. We define the Z-conditional (i, ¢)-entropy of A given B as

H}, 4 (A|B) = Hgyg) (A, B) — Hipg)(B). (43)

It can be shown that this quantity is nonnegative from Petrovi¢ inequality [43,
Th. 8.7.1] together with the appropriate increasing or decreasing behavior of & (see
also the properties of the (&, ¢)-entropies, Sect. 2).

From Definition 4, one can define a symmetric “Z-mutual information” as

Zing)(A; B) = Hipp)(A) — H£,¢,)(A|B) = Hn,¢)(A) + Hpg)(B) — Hng) (A, B).

(44)
Notice that J,,¢)(A; B) and Z, 4)(A; B) coincide in the Shannon case, i.e., for
h(x) = x,¢(x) = —xInx, but they are different in general. Besides, like

Tin,¢)(A; B), Ln.4)(A; B) can also be negative.

Other alternatives have been proposed in specific contexts, such as for Tsallis [52,
77,78] or Rényi entropies [62,79-81], but a unified point of view is still missing and
the question remains open.

4.2 From classical to quantum generalized conditional entropies and mutual
informations

Let pA8 be the density operator of a quantum composite system AB, and let IT5 =
{HB} be a local projective measurement acting on HNB, e, HBHB = 8~~/175

and ZNB H B ~Ny- The density operator relative to that measurement is given by
1018 p*? 1omn?

A|HB 17. o B AB AP _ Iy pr 1917
Zp p~  where p; =Tr(IQI7 p”7)and p™"/ = U@ pAF) -
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We define the quantum version of (41) for A conditioned to the local projective
measurement /75 acting on B, as

H , (AlBpns) Zp,H(h¢)( ”f). (45)

This quantity has been proposed for trace-form entropies in [82]. One can obtain an
independent quantum conditional entropy taking the minimum over the set of local
projective measurement in (45), which leads to the following:

Definition 5 Let p4% be the density operator of a quantum composite system AB,
and let I72 be a local projective measurement acting on B. We define the quantum
J-conditional (h, ¢)-entropy of A given B as

Hy, ¢)(A|B) = m1n H(h é) (AlBps). (46)

Now, we propose the quantum version of the mutual information (42) as

T (n.9)(A; B) = Hng) (PA) H] , (AlB). 47)

Notice that if & is concave, then J (;,4)>0, but its nonnegativity is not guaranteed in
general (see Proposition 3).

Another possibility is to extend the standard definition of the quantum conditional
entropy to (h, ¢)-entropies, which leads to the quantum version of (43):

Definition 6 Let p4? be the density operator of a quantum composite system AB,
and p? be the corresponding density operator of subsystem B. We define the quantum
7Z-conditional (h, ¢)-entropy of A given B as

H{, ) (A1B) = Hovg) (0*%) = Hog) (o). (48)

Notice that, contrary to the classical case, these quantities are not necessarily pos-
itive, except when pA2 is separable, as we have precisely shown in Proposition 14.
On the other hand, one can propose a quantum version of (44), as follows

Ln,¢)(A; B) = H ) (pA) +Hg, g (PB> —H,g) (,OAB) . (49)

Note, however, that there is no guarantee of nonnegativity of these quantities in general
(see discussion before Proposition 12).

Unlike the classical case, the quantum mutual informations (47) and (49) are differ-
ent even for the von Neumann case, and this difference is precisely the origin for the
notion of quantum discord [83]. However, attempting to extend the definition of quan-
tum discord through a direct replacement of von Neumann entropy by a generalized
(h, ¢)-entropy fails in general (see e.g. [84,85]).

Unfortunately, all the quantities given in this section remain as formal definitions
until one does not provide a complete study of their properties. This task lies beyond
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the scope of the present work and is currently under investigation [60] (see [86] for a
different approach of the development of quantum information measures).

5 Concluding remarks

We have proposed a quantum version of the (4, ¢)-entropies first introduced by Sali-
cru et al. for classical systems. Along Sect. 3 we have presented our main results and
definitions. Indeed, after the definition of quantum (%, ¢)-entropy given in Eq. (5), we
have derived many basic properties related to Schur concavity and majorization, valid
for any pair of entropic functionals z and ¢ with the proper continuity, monotonic-
ity and concavity properties established in Definition 2. Next, we have discussed the
properties of the (%, ¢)-entropies in connection with the action of quantum operations
and measurements. And later we have extended our study for the case of composite
systems, focusing on important properties like additivity and subadditivity, and dis-
cussing an application to entanglement detection. Besides, in Sect. 4, an attempt to
deal with generalized conditional entropies and mutual informations was presented,
although it deserves deeper development, which is beyond our present scope.

The first advantage of our general approach has to do with the fact that many
properties of particular examples of interest (such as von Neumann and quantum
Rényi and Tsallis entropies) can be studied from the perspective of a unifying formal
framework, which explains in an elegant fashion many of their common properties. In
particular, our analysis reveals that majorization plays a key role in explaining most
of the common features of the more important quantum entropic measures.

Remarkably enough, we have shown that many physical properties of the known
quantum entropies, such as preservation under unitary evolution, and being nonde-
creasing under bistochastic quantum operations, hold in the general case. This is a
signal indicating that our proposal yields new entropy functions which may be of
interest for physical purposes. This kind of study can also be of use in applications
to the description of quantum correlations, as we have seen in Sect. 3.5 for the case
of bipartite entanglement; in the case of multipartite systems, we have also discussed
a possible extension of the entropic entanglement criterion, however restricted to
fully separable states. Finally, we mention that the present proposal may also have
applications to quantum information processing and the problem of quantum state
determination, because it allows for a more general systematization of the study of
quantum entropies.
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