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This paper focuses on the reformulation of the internal functions of
the performance-dependent failure criterion (PDFC) for concrete,
proposed by the authors, and its validation for different concrete
qualities and stress states. The PDFC predicts the maximum
strengths of plain concretes characterized by uniaxial compressive
strengths in the range of 20 to 120 MPa (2901 to 17,405 psi).
Concrete performance in this criterion is defined in terms of four
material features. Supported on an extensive experimental
database, they are reformulated in this work as a function of the
two parameters that most effectively describe the involved concrete
quality: fc′  and the so-called concrete performance parameter. The
objective definition of the involved concrete quality by means of
these two fundamental material parameters is also demonstrated.

The numerical validation analysis in this paper illustrates the
capabilities of the PDFC—when the internal functions as
described in this work are considered—to predict the maximum
strength properties of concretes of different qualities. Moreover, as
the experimental data considered in this analysis include biaxial
and triaxial test results on concrete specimens that involve a wide
spectrum of confining pressures and stress meridians, the results in
this work not only demonstrate the accuracy of the PDFC
dependent functions on all three stress invariants, but also their
variations with the involved quality.

Keywords: biaxial strength; biaxial stress; failure criterion; high-strength
concrete; normal-strength concrete; performance parameter; triaxial stress;
verification analysis; water-binder ratio.

INTRODUCTION
The current development of concrete technology allows

the fabrication of concretes with very high-strength
properties. This development has led to an extensive use
of high-strength concrete (HSC) in structural components
of high responsibility. Nevertheless, there are still many
unknown aspects demanding further comprehensive
analysis to fully understand the failure properties and
mechanics governing the response behavior of these
materials. From the theoretical and numerical
standpoints, the best demonstration of this need is the lack
of feasible material models and, moreover, strength
criteria to realistically predict concrete strength properties
not only in terms of the acting stresses but also of the
material quality involved.

Regarding concrete quality, currently one of the most
challenging items is the identification of accurate indicators
of this relevant material feature controlling the complex
variations of concrete strength properties in the stress
invariant space. Experimental evidence demonstrates that under
increasing concrete quality (when only defined by the uniaxial
compressive strength fc′), nonhomogeneous expansion of the
maximum strength surface takes place in both the meridian and
deviatoric views. The best indicator of this fact is the tensile-
compressive strength ratio. Instead of remaining constant, it
decreases for increasing fc′.  In the case of normal-strength

concrete (NSC), this ratio is approximately 10 to 15%,
whereas in the case of HSC, it ranges from 5 to 8%.

Regarding the influence of the stress state on concrete
maximum strength, further analysis is still required to
reproduce the complex dependency on this maximum
strength on the third invariant of the deviatoric stress tensor
and, particularly, the variation of this dependent function
with the involved concrete quality.

Most of the available three-dimensional (3-D) failure
criteria in the literature1-3 were developed for NSC, whereas
only a few are related to HSC.4,5 Although some of them are
able to accurately reproduce maximum strength surfaces of
NSC or HSC, severe limitations arise when their applications are
extended to cover both NSC and HSC. This is due to the
anisotropic evolution of the concrete maximum strength surface
with the involved material quality. Such anisotropic dependence
of the failure surface on the concrete quality cannot be reproduced
by only updating material parameters. It requires, in addition, the
identification of feasible indicators of the involved material quality
and the consideration of the appropriate evolution laws of the
concrete strength surface in terms of these quality indicators.

Only very few proposals of maximum strength criterion
are related to both NSC and HSC. One of them is by Seow
and Swaddiwudhipong,6 which takes into account an
extensive experimental database to define a normalized
maximum strength criterion valid for concretes of arbitrary
qualities. The resulting surface is the one that best fits the
considered experimental data points. Although it is easy to
implement, this maximum strength criterion6 may lead to a
considerable loss of accuracy in some cases.

A recent work by Folino et al.7 proposes the so-called
performance-dependent failure criterion (PDFC) that
describes the maximum strength surfaces of concrete
characterized by uniaxial compressive strengths in the range
of 20 to 120 MPa (2901 to 17,405 psi). Through one single
equation expressed as a function of the performance
parameter fc′ and three other material features—the tensile
strength, the biaxial compression strength, and a friction
parameter—the PDFC is able to reproduce the
inhomogeneous or nonregular variations of the concrete
maximum strength surface—in both the deviatoric and
meridian views—with the considered material quality.

One of the relevant features of the PDFC is the inclusion
of the so-called performance parameter that, together with
fc′, defines the involved concrete quality. The performance
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parameter is defined in terms of fc′ and the water-binder ratio
(w/b) to account for the concrete porosity that strongly
influences material quality.

In this work, based on an extensive experimental
database extracted from the literature, the internal
functions of the PDFC are reformulated to express all
material parameters related to material quality in terms of
both the performance parameter and fc′.  It is demonstrated
that the unambiguous definition of the involved concrete
quality requires the simultaneous consideration of both
material parameters.

This paper also evaluates the capability of the PDFC with
the internal functions as proposed in this work to reproduce
the dependence of the concrete maximum strength surface
on the involved concrete quality. Moreover, as experimental
results of biaxial and triaxial tests that activate a wide
spectrum of confining pressure and stress meridians are
considered, the good agreement between the PDFC strength
predictions and the experimental results demonstrates the
accuracy of this failure criterion to reproduce the strong
sensitivity of concrete maximum strength capacity regarding
variations of all three stress invariants.

RESEARCH SIGNIFICANCE
The extensive use of HSCs demands accurate failure

criteria that realistically reproduce concrete strength
variation with both stress state and performance. Although
the PDFC contributed to the solution of this demand, it has
an intrinsic complexity, as it is expressed in terms of four
material parameters. The research significance of this work
is the formulation of internal functions to express all material
features in terms of only two relevant parameters (fc′ and the
performance parameter) that, as demonstrated herein,
unambiguously define the concrete performance. 

The significance of this work is also to verify the PDFC
predictive capabilities when a wide spectra of stress states
and material performances are considered.

PERFORMANCE-DEPENDENT FAILURE 
CRITERION (PDFC)

The PDFC for concretes of arbitrary strength covers the
entire spectrum of concrete quality from NSC to HSC. It is
represented by two quadratic parabolas for the compressive
and tensile meridians with a common vertex on the hydrostatic
axis in the 3-D stress space defined by the Haigh Westergaard
stress coordinates. The dependence of the strength criterion on
the Lode angle θ follows the elliptical function of the five
parameters model by Willam and Warnke.3

The compressive and tensile meridians are fully defined in
terms of four material parameters: the uniaxial compressive
strength fc′, the uniaxial tensile strength ft′, the biaxial
compressive strength fb′, and the tangent to the compressive
meridian on the peak second invariant of the deviatoric stress
tensor that corresponds to the uniaxial compression test (so-
called m). Experimental evidence demonstrates that these
parameters appropriately and objectively define the concrete
quality.7 Figure 1 illustrates the tensile and compressive
meridians of concretes of different qualities according to the
proposed criterion.

This criterion is valid for plain concrete with uniaxial
compressive strengths fc′  in the range of 20 to 120 MPa
(2901 to 17,405 psi). It appropriately reproduces the
nonisotropic evolution of the concrete failure surface with
increasing strength performances or quality, as may be
observed by comparing Fig. 2(a) and (b).

The criterion is defined in the Haigh Westergaard stress
space in terms of the normalized (with respect to fc′ ) stress
coordinates ξ and ρ, which are functions of the first and
second invariant of the stress and deviatoric tensor,
respectively. According to this criterion, concrete failure
occurs when the normalized second Haigh Westergaard
stress coordinate ρ reaches the critical normalized shear
strength ρ*

(1)

In the deviatoric plane, the elliptic interpolation between the
compressive and tensile meridians ρc and ρt, respectively, by
Willam and Warnke3 is followed 

(2)

where

(3)

Thereby, θ is the Lode angle and e is the eccentricity,
defined as

(4)

The parabolic equation defining the meridian traces of the
PDFC results in
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Fig. 1—Compressive and tensile meridians predicted by
PDFC for different concrete qualities.
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(5)

The compressive meridian is obtained when

(6)

whereas the tensile meridian is obtained when

(7)

The coefficients A, Bc, Bt , and C in Eq. (5) to (7) defining
the shape of the maximum strength meridians account for the
involved material performance. A basic hypothesis in the
PDFC is that two normalized strengths—the uniaxial tensile
αt = ft′/fc′  and the biaxial compressive αb = fb′ /fc′ strengths—
together with the frictional parameter m (which
geometrically represents the tangent to the strength parabola
on the uniaxial compressive strength point) fully define the
shape of the quadratic maximum strength curves in both the
tensile and compressive meridians when they are expressed
in the normalized stress coordinates ξ and ρ. The dependent
functions of the coefficients A, Bc, Bt , and C in terms of m,
αt , and αb are

(8)

(9)

(10)
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A second relevant consideration of the PDFC is that the
friction m and the normalized strengths αt and αb depend, in
turn, on one fundamental mechanical property— fc′—and on
the most important hydrochemical feature of the cement
paste—that is, w/b. These two basic parameters fully and
unambiguously define the involved concrete performance
through the so-called performance parameter βP as follows

(12)

It varies between 0 and 1 and increases with the involved
performance or quality.

The coupling between the three variables in Eq. (12)—that
is, βP, fc′, and w/b—can be clearly recognized in Fig. 3,
which is based on an extensive database corresponding to the
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Fig. 2—Deviatoric views predicted by PDFC for extreme concrete qualities: (a) 20 MPa (2901 psi); and (b)
120 MPa (17,405 psi).

Fig. 3—Dependence of performance parameter on fc′ and w/b.
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experimental results of the maximum strengths of concrete
specimens. To demonstrate the dependence of the
performance parameter or the involved concrete quality in
both w/b and fc′, the influence of the first one is neglected.
Consequently, Eq. (12) turns to βP = fc′/1000, and the
performance parameter would only depend on fc′. When
plotting the relationship between these two, neglecting the
influence of w/b, the 3-D diagram of Fig. 3 gives rise to the
two-dimensional (2-D) diagram in Fig. 4. As expected, βP
cannot uniquely be defined by only fc′. Nevertheless, as in
most cases, w/b is unknown; the diagram in Fig. 4 allows the
definition of the spectrum of possible βP for each fc′. This
spectrum is bounded by the limiting curves defined as

(13)

(14)

They are expressed in terms of fc′ and are indicated by the
dashed lines in Fig. 4.

Therefore, βP can be unambiguously determined by Eq. (12);
or when the w/b is unknown, it can be selected from the
range of possible values defined by Eq. (13) and (14).

Once the parameters accounting for the material
performance (fc′  and w/b, or simply fc′  and βP) are
determined, the most appropriate internal functions relating
the material parameters (friction m and normalized strengths
αt and αb) with fc′  and βP still need to be defined. This is
done in the following sections. After substituting these
functions in the expressions of coefficients A, Bc, Bt , and C
(Eq. (8) to (11)), the PDFC only depends on fc′  and βP.
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COUPLING OF MATERIAL PARAMETERS
The PDFC maximum strength curve in the deviatoric view

is based on the elliptical description by Willam and Warnke3

that imposes the eccentricity e = ρt / ρc to be 0.50 ≤ e ≤ 1.00.
It may be demonstrated that this implies that the ratio
between the coefficients Bc and Bt must be

0.50 ≤ Bc /Bt ≤ 1.00 (15)

After replacing Bc and Bt in Eq. (15) by their expressions
in Eq. (9) and (10), the related constraints between the
material parameters m, αt, and αb are obtained. In other
words, the elliptic form of the deviatoric views of the
concrete maximum strength surface imposes a coupling
between the aforementioned material parameters. 

This constraint plays an important role in the calibration of
the final internal functions in terms of fc′  and βP.

INTERNAL FUNCTIONS DEPENDING ON 
CONCRETE PERFORMANCE

Based on several experimental results including both
biaxial and triaxial test results, the internal functions relating
the friction m and the normalized strengths αt and αb with fc′
and βP are redefined as follows

(16)

(17)

(18)

In Eq. (18), αbmin represents the minimum possible αb to
satisfy the constraint in Eq. (15).

PDFC IN BIAXIAL STRESS SPACE
In this paper, the calibration and evaluation of the predictive

capabilities of the PDFC include the consideration of concrete
specimens subjected to biaxial stress states. Therefore, it is
relevant to analyze the plots of the PDFC maximum strength
surface in this particular stress state.

Departing from known material parameters fc′  and βP
and based on evaluations of coefficients A, Bc, Bt, and C
by means of the internal functions Eq. (16) to (18), the
surface of the PDFC for the involved concrete
performance can be fully determined.

Figures 5(a) and (b) illustrate biaxial plots of the PDFC
corresponding to defined qualities βP and fc′.  As can be
observed, surface curvatures in the compression-compression
quadrant decrease for increasing fc′,  while remaining
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Fig. 4—Performance parameter in terms of fc′.
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practically unchanged in the tension-tension and
compression-tension regimes. This demonstrates the
capability of the PDFC to appropriately capture the
nonisotropic evolution of the maximum strength surface with
increasing concrete quality.

Figures 6(a) to (f) show the PDFC in the biaxial stress
space when the maximum, minimum, and medium values of
βP are considered for each selected fc′. The maximum and

minimum values of βP are determined by Eq. (13) and (14).
Comparing the plots in Fig. 5(a) and (b) and Fig. 6(a) to (f),
the following conclusions arise:
• The normalized biaxial tensile and, particularly,

compressive αb strengths increase when fc′ decreases.
Consequently, NSC is characterized by greater normalized
biaxial compressive strength αb than HSC. When non-
normalized plots are considered, however, the biaxial

Fig. 5—Biaxial failure curves predicted for different fc′ and βP medium values: (a) normalized
plot; and (b) non-normalized plot.

Fig. 6—Biaxial failure curves predicted for different βP values: (a) normalized curves for fc′ = 20 MPa (2901 psi); (b) normalized
curves for fc′ = 70 MPa (10,153 psi); (c) normalized curves for fc′ = 120 MPa (17,405 psi); (d) non-normalized curves for
fc′ = 20 MPa (2901 psi); (e) non-normalized curves for fc′ = 70 MPa (10,153 psi); and (f) non-normalized curves for fc′ = 120
MPa (17,405 psi).
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strengths of HSC (in the compressive-compressive regime)
are larger than those corresponding to NSC. 

• The variation range of the biaxial strength in the
compressive-compressive regime in the case of NSC
is greater than that corresponding to HSC.

• Concrete quality improvements through increments of
fc′ and/or βP lead to curvature reductions in the
maximum strength plots in the biaxial compressive
regime. This is valid for both NSC and HSC.

NUMERICAL VALIDATION OF PDFC PREDICTIONS 
OF CONCRETE MAXIMUM STRENGTHS

With the purpose of validating the PDFC for biaxial and
triaxial stress states, several experimental test data were extracted
from the literature and compared with the predicted strengths.

The biaxial strength experimental data in this paper were
extracted from the following:
• Kupfer et al.8: Concrete specimens 200 x 200 x 50 mm

(8 x 8 x 2 in.);
• Hussein and Marzouk9: Concrete specimens 150 x 150 x

40 mm (6 x 6 x 1.6 in.);
• Lee et al.10: Concrete specimens 200 x 200 x 60 mm

(8 x 8 x 2.4 in.);
• Lim and Nawy11: Concrete specimens 100 x 100 x

100 mm (4 x 4 x 4 in.);
• Ren et al.12: Concrete specimens 150 x 150 x 50 mm

(6 x 6 x 2 in.); and

• Hampel13: Concrete specimens 100 x 100 x 100 mm
(4 x 4 x 4 in.).

These tests include both NSC and HSC. Although the
specimen geometry, concrete age, and humidity conditions
when experiments were performed do not agree in the
considered tests, all of them were performed using similar
boundary conditions. The PDFC is valid for normalweight
concretes and, therefore, lightweight concretes are not
included in this predictive analysis.

The comparisons between predicted and experimentally
obtained failure strengths are presented in Fig. 7(a) to 11(c).
It should be noted that in these numerical evaluations, fc′
represents the mean uniaxial compressive strength of a
specimen of the same geometry and age as the ones tested
under biaxial loading.

The maximum relative errors of the PDFC predictions are
also indicated in these figures. Relative error is evaluated as:
error = (predicted value – test result)/test result.

For each set of data, the following procedure was followed: 
1. The value of fc′ was extracted as datum from the source paper.
2. (a) If the mixture proportion was explicitly detailed

in the paper, the w/b was determined, and then the
performance parameter was evaluated by Eq. (12); and
(b) if the w/b was unknown, then the performance
parameter was estimated as the mean value of the range
of possible βP defined by Eq. (13) and (14).

Fig. 7—Criterion predictions versus Kupfer et al.8 data: (a) fc′  = 19 MPa (2756 psi); (b) fc′  = 32 MPa (4569 psi); and (c) fc′  = 59
MPa (8557 psi).

Fig. 8—Criterion predictions versus Hussein and Marzouk9 data: (a) fc′  = 43 MPa (6193 psi); (b) fc′  = 74 MPa (10,689 psi); and
(c) fc′  = 97 MPa (13,996 psi).
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3. The coefficients A, Bc, Bt, and C were evaluated through
Eq. (8) to (11).

No extra calibration was performed for these analyses
and comparisons.

The following conclusions arise from the plots in Fig. 7(a)
to 11(c), which include 13 sets of data corresponding to
concretes in a range of uniaxial compressive strength
varying from 19 to 96.5 MPa (2756 to 13,996 psi).

• Good agreement between the predicted and experimentally
obtained concrete peak stresses may be observed for
the tension-tension quadrant, both for NSC and HSC.

• Good agreement between the predicted and
experimentally obtained concrete peak stresses may be
observed for the tension-compression quadrants, both
for NSC and HSC.

• The maximum relative error varied from 2.2 to 13.5%.

Fig. 10—(a) Criterion predictions versus Lim and Nawy11 data (fc′  = 82 MPa [11,937 psi]);
and (b) criterion predictions versus Ren et al.12 data (fc′= 52 MPa [7585 psi]).

Fig. 11—Criterion predictions versus Hampel13 data: (a) fc′  = 62 MPa (8872 psi); (b) fc′= 72 MPa (10,507 psi); and (c) fc′  =
94 MPa (13,663 psi).

Fig. 9—Criterion predictions versus Lee et al.10 data: (a) fc′  = 30 MPa (4395 psi); and
(b) fc′  = 39 MPa (5656 psi).
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• Maximum relative errors are always obtained, both in the
case of NSC and HSC, in the compression-compression
quadrant. In this sense, it can be observed from the results
in Fig. 7(a) to 11(c) that PDFC predictions of peak stresses
in this quadrant always overestimate the experimental
results. This is partially the consequence of the
smooth C1-continuity of the maximum strength surface
of the PDFC in the biaxial stress space. In other words, the
transition under the C1-continuity condition of the
maximum strength curve from the tensile-compression
quadrant and, moreover, from the first portion of the
compression-compression quadrant (that is, limited by
the ratio σ1/σ2 = 0.25) to the central portion of this
quadrant (0.25 < σ1/σ2 < 0.75), necessarily leads to
overestimations that vary between 2 and 13% of the
maximum strength. Nevertheless, taking into account
the large spectrum of considered experiments,
performed under different conditions and involving
different performances, the very high accuracy
obtained in other regions of the biaxial stress space, the
considerable advantage of the C1-continuity of the
maximum strength surface for numerical
implementations of the PDFC, and the involved
simplicity of this failure criterion for concretes of
arbitrary performance, the overall accuracy of the
obtained predictions in the case of biaxial stress states
can be considered as very promising.

The PDFC predictions of maximum strengths corresponding to
the triaxial experiments are presented in Fig. 12(a), (b), (c)
and Fig. 13(a), (b), and (c). Triaxial strength experimental data

were extracted from Chern et al.,14 Imran and Pantazopoulou,15

and Xie et al.4

In general, the accuracy of the maximum strength
prediction varies between 0.1 and 12%. Very good
agreements with the experimental results are obtained in the
low confinement regime; however, it can be clearly
recognized from the indicated figures that the relative error
increases (as well as the level of overestimation of the
experimental strengths) with the confinement level of the
involved stress state. As indicated previously, this is a
consequence of the C1-continuity condition imposed on the
maximum strength parabola of the PDFC while having
maximum accuracy in the uniaxial compression condition
(low confinement regime).

CONCLUSIONS
In this paper, the internal functions of the PDFC by Folino

et al.7 are reformulated based on an extensive experimental
database. Then, PDFC predictive capabilities of experimentally
obtained maximum strengths of concretes of arbitrary
performances subjected to both biaxial and triaxial stress
histories are analyzed. These involve stress states located in
all different quadrants of the biaxial stress diagram as well as
low and high confinement regions of triaxial stress states.

The PDFC criterion covers the entire spectrum of concrete
quality from NSC to HSC. It is represented by two quadratic
parabolas for the compressive and tensile meridians with a
common vertex on the hydrostatic axis in the stress space
expressed in terms of the Haigh Westergaard coordinates. The
dependence of the strength criterion on the Lode angle θ
follows the elliptical interpolation by Willam and Warnke.3

Fig. 12—Validation for triaxial test results: (a) Chern et al.14 data fc′  = 20 MPa (2901 psi); (b) Imran and Pantazopoulou15 data
fc′  = 28 MPa (4061 psi); and (c) Imran and Pantazopoulou15 data fc′  = 47 MPa (6817 psi).

Fig. 13—Validation for triaxial test results: (a) Imran and Pantazopoulou15 data fc′  = 73 MPa (10,588 psi); (b) Xie et al.4 data
fc′= 92 MPa (13,343 psi); and (c) Xie et al.4 data fc′  = 119 MPa (17,259 psi).
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The input data are reduced to only two material
parameters: the uniaxial compressive strength and the so-
called concrete performance parameter.

The conclusions drawn from this paper may be
summarized as follows:
• The strengths predicted by the PDFC for biaxial stress states

located in the compression-compression, compression-
tension, and tension-tension quadrants show good
agreement with the experimentally obtained peak stresses
in the biaxial tensile, tensile-compression, and low
level of the compressive-compressive quadrants.

• The accuracy of the PDFC decreases to approximately 87
to 96% in the zone of the biaxial compressive-
compressive quadrant limited by 0.25 < σ1/σ2 < 0.75.

• In the case of triaxial stress histories, the accuracy of the
PDFC predictions decreases to 88 to 95% when the stress
states activate very high confining pressures.

• The convexity condition included in the PDFC imposes
constraints between three of the material features regarding
quality—that is, the uniaxial tensile strength ratio αt, the
biaxial compressive strength ratio αb, and the tangent m to
the compressive meridian on the peak stress’s shear
component corresponding to the uniaxial compression test. 

• The criterion correctly reproduces the nonisotropic
changes in the concrete peak strength surface that take
place when increasing material quality is considered
(increasing uniaxial compressive strength property).

• The performance parameter takes into account the
influence of the particular concrete mixture on the
maximum strength surface.

• Therefore, the criterion permits the prediction of the
entire range of failure surfaces corresponding to a
given fc′ and different concrete mixtures.

The proposed criterion is being implemented as the
maximum strength surface in an inelastic constitutive model
for concretes,16 which consequently also depends on the
concrete performance.
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