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Abstract Subterranean rodents inhabit closed tunnel

systems that are hypoxic and hypercapnic and buffer

aboveground ambient temperature. In contrast to other

strictly subterranean rodents, Ctenomys talarum exhibits

activity on the surface during foraging and dispersion and

hence, is exposed also to the aboveground environment. In

this context, this species is a valuable model to explore

how the interplay between underground and aboveground

use affects the relationship among basal metabolic rate

(BMR), cold-induced maximum metabolic rate (MMR),

shivering (ST), and non-shivering thermogenesis (NST). In

this work, we provide the first evidence of the presence of

NST, including the expression of uncoupling proteins in

brown adipose tissue (BAT), and shivering thermogenesis

in Ctenomys talarum, a species belonging to the most

numerous subterranean genus, endemic to South America.

Our results show no differences in BMR, cold-induced

MMR, and NST between cold- (15 �C) and warm- (25 �C)

acclimated individuals. Furthermore, thermal acclimation

had no effect on the expression of mitochondrial uncou-

pling protein 1 (UCP1) in BAT. Only cytochrome c oxi-

dase (COX) content and activity increased during cold

acclimation. When interscapular BAT was removed, NST

decreased more than 30 %, whereas cold-induced MMR

remained unchanged. All together, these data suggest that

cold-induced MMR reaches a maximum in warm-accli-

mated individuals and so a probable ceiling in NST and

UCP1 expression in BAT. Possible thermogenic mecha-

nisms explaining the increase in the oxidative capacity,

mediated by COX in BAT of cold-acclimated individuals

and the role of ST in subterranean life habits are proposed.

Keywords Aerobic capacity � Cold-induced maximum

metabolic rate � Non-shivering thermogenesis �
Brown adipose tissue � Uncoupling proteins

Introduction

Assessing how energy is processed to maintain a constant

body temperature is one of the most important issues in the

study of energetics of endotherms. Maintenance of body

temperature in fluctuating thermal environments is among

the essential traits of mammals and birds. The emergence

of endothermy allowed individuals to cope with challeng-

ing environments (Bennett and Ruben 1979), and the

expansion of their distribution.

The aerobic capacity model proposes that thermoregu-

latory capacity arose in different groups of vertebrates as a

side effect of selection for increased energy metabolism

and not as a main selective factor (Bennett and Ruben
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1979). A key point of this hypothesis is that aerobic

metabolism appears to be linked to basal metabolism

(Sadowska et al. 2005, but see Gębczyński and

Konarzewski 2009). As a result of the relationship between

MMR and BMR, an increment in the sustained aerobic

capacity would have lead to high BMRs, allowing physi-

ological thermoregulation and, hence endothermy (Hayes

and Garland 1995). Therefore, an essential point to be

considered to evaluate the aerobic capacity model of evo-

lution of endothermy (Bennett and Ruben 1979) is to

understand the relationship between maximum metabolic

rate (MMR) and basal metabolic rate (BMR). Although the

precise relationship between BMR and MMR is not fully

understood, some cellular and sub-cellular mechanisms

(e.g. membrane-related processes in both cell and mito-

chondria membrane), seem to link both variables (Hulbert

and Else 1999; Else and Hulbert 2003; see also Hulbert and

Else 2005, for a review). In this regard, Wunder and

Gettinger (1996) defined MMR as the addition of BMR,

shivering (ST), and non-shivering thermogenesis (NST).

Jansky (1973) suggested that ST is less efficient than NST,

because heat is produced by the muscles at the periphery of

the body, where conductance is higher. On the other hand,

NST has been proposed to be a more plastic element in the

machinery of heat production (Cannon and Nedergaard

2004), responding rapidly to cold acclimation (Jansky

1973). For placental mammals, there is evidence that

NST occurs in brown adipose tissue (BAT; Cannon and

Nedergaard 2004). BAT is a highly vascularized tissue

showing a high number of mitochondria and respiratory

enzymes and almost destined exclusively to metabolic heat

production.

The activation of BAT depends on the presence of

norepinephrine (NE), which is released by sympathetic

nervous system. NE produces a fall in mitochondrial

membrane potential mediated by uncoupling proteins

(UCP). Particularly, UCP1 short-circuits the electron

transport chain circuit producing heat, alternatively to the

storage of energy in the form of ATP (Valle et al. 2005).

Indeed, different studies were conducted to assess the

relationship between seasonality or thermal acclimation

and the regulation of thermogenic capacity (Feist and

Morrison 1981; Nespolo et al. 2001a; Moshkin et al. 2001;

Wang et al. 2006a; Zhang and Wang 2007a; Zhao et al.

2010; see Heldmaier 1989; Lovegrove 2005). However,

none of them was conducted in a solitary subterranean

species that live in relatively thermally stable environ-

ments, but face also aboveground environment conditions.

Subterranean rodents live in tunnel systems parallel to

the soil surface. Underground habitats buffer fluctuations in

ambient temperature (Ta) and protects against predation,

but are also challenging because they are humid, dark,

hypoxic and hypercapnic (see Nevo 1999, but see Burda

et al. 2007 for a review in burrow atmospheric conditions).

This particular environment resulted in selection pressures

that led to convergent morphophysiological characteristics

shared by most of subterranean species (i.e. low BMR

compared to surface-dwelling counterparts McNab 1966,

1979; White 2003).

Ctenomys talarum (tuco-tucos) is a subterranean rodent

endemic to South America (Woods 1984) that inhabits

coastal grasslands of Buenos Aires Province (Argentina).

Individuals of C. talarum build and maintain extensive and

relatively complex tunnels systems (Antinuchi and Busch

1992). Morphophysiological characteristics of this species

match with most of other subterranean rodents (Antinuchi

et al. 2007). However, contrary to strictly subterranean

species that rarely venture outside the burrows (Nevo

1999), individuals of C. talarum are exposed to contrasting

Tas during their bouts to forage on the surface.

The aim of this study is to ascertain the magnitude of

MMR during cold acclimation. Particularly, we proposed

to establish the role of ST and NST, and also the rela-

tionship between NST and UCPs expression in BAT.

Considering the stability of ambient temperature within the

burrows and the constraints imposed by the burrow envi-

ronment on metabolic rates (and consequently the low

capacity of heat dissipation), we hypothesized that

C. talarum shows low variability in thermogenic variables,

compared to those observed in surface dwelling rodents.

On the other hand, we hypothesized also that this species

shows a higher plasticity in thermogenic variables than

strictly subterranean rodents because of its bouts to forage

and disperse aboveground.

Materials and methods

Animal capture and thermal acclimation

Animals were live-trapped in Mar de Cobo (37 �450S,

57 �560W, Buenos Aires Province, Argentina), during the

austral summer. Throughout the year, individuals experi-

ence a wide range of surface Tas (range *2 �C to *25 �C;

mean Ta min = 13.6 �C, and mean Ta max = 24.8 �C

during summer months; mean Ta min = 1.8 �C, and mean

Ta max = 12.7 �C during winter months; Luna F., personal

observation; Argentine National Forecast Service,

http://www.smn.gov.ar). In this species, temperature fluc-

tuations within the burrow show a similar annual pattern to

Ta, but with lower variation (Cutrera and Antinuchi 2004).

Therefore, we used Tas as a proxy of burrow temperatures,

as used by Luna et al. (2009) to evaluate BMR variation

within the genus Ctenomys.

Once individuals were captured, they were taken to

the laboratory and housed in individual cages
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(0.30 9 0.40 9 0.25 m) with wood shavings as nesting

material. The animal room was kept at 25 ± 1 �C, and

photoperiod was LD 12:12 (lights on at 7.00 a.m.). Ani-

mals were fed with mixed native grasses, carrots, lettuce,

corn, alfalfa and sunflower seeds ad lib.

To assess the effect of ambient temperature regime on

thermogenic variables, after 7–10 days of laboratory

habituation, randomly chosen animals were acclimated to

25 ± 1 �C for 25 days (25 �C group). The remaining ani-

mals were acclimated to 15 ± 1 �C for the same time

period (15 �C group). Acclimation time was chosen

according to the standard procedure used by Nespolo et al.

(2001a). The selected temperature for cold acclimation was

chosen because it resembles Tas during winter and indi-

viduals could be subjected to it without experiencing

changes in body mass (see ‘‘Results’’). Acclimation was

followed by physiological measurements.

Basal metabolic rate and non-shivering thermogenesis

Oxygen consumption was measured using a computerized

positive pressure open-flow respirometry system (Sable Sys-

tem, Las Vegas, NE, USA). A cube-shaped chamber (volume

1.8 l) was used to estimate O2 consumption during resting. The

chamber consisted on a double wall of aluminum with poly-

urethane in the middle. The chamber has a 20-mm acrylic

window door that allows the observation of the animals, with an

inlet and outlet air port. Chamber temperature was controlled

by two Peltier elements (model CP-1.4-127-061, Melcor,

Cleveland, OH, USA) connected to a PC and controlled by a

specially designed software (Laboratorio de Instrumentación y

Control, Universidad Nacional de Mar del Plata). Ta inside the

chamber was maintained with an accuracy of 0.1 �C. The

chamber received dry and CO2 free air at 1.5 l min-1 from a

mass flowmeter (Side-Trak Sierra model 830/840, Sierra

Instruments, Monterey, CA, USA), which was enough to

ensure 90 % equilibration of the air in the chamber within

3 min (Lasiewski et al. 1966; Withers 1977). Air passed

through a CO2 absorbent (self-indicating soda lime, Labora-

tories IQB, Quilmes, BA, Argentina), and water scrubber

(Silica Gel, Industrias Kubo, Mar del Plata, BA, Argentina)

before and after passing through the chamber. Excurrent air

from the chamber was sub-sampled at 150 ± 10 ml min-1 and

oxygen consumption was obtained from an Oxygen Analyzer

FC-1B every 1 s by a Datacan V—PC program (Sable System,

Las Vegas, NE, USA). The chamber was maintained at Ta of

25 ± 0.1 �C, which is within the thermoneutral zone for this

species (Busch 1989). Rates of oxygen consumption were

calculated using the equation 4a of Withers (1977),

_VO2 ¼ _V FIO2 � FEO2=1� FIO2ð Þ

where _V is the flow rate through the system, FIO2 and

FEO2 are the fractional O2 concentration in the incurrent

and the excurrent air, respectively (FIO2 was 0.2095).

C. talarum showed no circadian patterns of activity and O2

consumption (Luna et al. 2000; Meroi 2008), which allows

recordings of lowest O2 consumption, independent of the

time of the day (Meroi 2008). So, all metabolic trials were

performed between 9:00 and 17:00 h (see below for indi-

vidual total time trials). All individuals were adults, non-

reproductive and post-absorptive, fulfilling BMR criteria

(see Antinuchi et al. 2007).

Body mass of individuals (M) was measured using an

electronic balance (model FX-3000, ±0.01 g, A&D Com-

pany Limited, San Jose, CA, USA) at the beginning of each

trial and rectal temperature was recorded at the end of each

experiment with a YSI probe (model 93k73545-402) con-

nected to a Cole-Parmer thermistor meter (model 8402-10,

±0.1 �C, Cole-Parmer Instrument Company, Vernon Hills,

IL, USA).

BMR and NST were measured using the protocol

described by Nespolo et al. (2001a) for a subterranean

species (Spalacupus cyanus). The protocol was as follows:

(1) after a period of habituation in the chamber (*30 min),

oxygen consumption was recorded for 1 h at rest. This total

time for sampling was chosen because it allows a 5–10 min

lowest steady-state of O2 consumption (Busch 1989; An-

tinuchi et al. 2007). BMR estimated using this procedure

were similar to those found with longer periods of exper-

imentation (Luna and Antinuchi 2007), ensuring a reliable

estimation of minimum metabolic rate (Antinuchi et al.

2007). (2) 30 min of O2 consumption was recorded after an

intramuscular injection of saline solution. (3) 30 min

record after an intramuscular injection of norepinephrine

(NE, the same volume as saline solution). In eutherians, the

oxygen consumption in response to NE occurs 10 min after

the injection and lasts for at least 5–10 min (Feist and

Rosenmann 1976; Richardson et al. 1994). Doses of NE

were estimated according to Wunder and Gettinger (1996),

described as NE (mg kg-1) doses = 2.53 M-0.4. During

this period, the maximum 10-min steady-state oxygen

consumption after the injection of NE was considered to be

NSTmax, which includes both BMR and thermoregulatory

NST (Wunder and Gettinger 1996).

Cold-induced maximum metabolic rate

Maximum thermogenic metabolism was estimated in a He-

rich atmosphere, according to the procedure described by

Rosenmann and Morrison (1974), using a positive pressure

open-flow respirometry system (Sable System, Las Vegas,

NE, USA). A mixture of He (79 %) and O2 (21 %) was

passed through a mass flowmeter before entering the

chamber (Side-Trak Sierra model 830/840, Sierra Instru-

ments, Monterey, CA, USA). Before MMR estimation,

flow rate was corrected for the He-O2 gas mix (K factor
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relative to N2 = 1.454, 2.1 l min-1). As in the case of BMR,

the mixture was passed through a CO2-absorbent and water

scrubber before and after passing through the chamber. After a

period of habituation in the chamber (*20 min), oxygen

consumption was recorded for 1 h at an ambient temperature

of 5 ± 0.1 �C. This Ta was chosen based on previous trials

that determined the lowest Ta in which individuals reach

maximum metabolism (data not shown; Rosenmann and

Morrison 1974), and produce a desirable effect (hypothermia;

see Almeida and Cruz-Neto 2011).

Shivering thermogenesis

Shivering thermogenesis (ST) was estimated for each

acclimation treatment according to the equation proposed

for eutherian mammals (MMR = BMR ? NST ? ST,

Jansky 1973; Wunder and Gettinger 1996).

Surgical procedure for IBAT extraction

Interscapular BAT of cold- (15 �C), and warm-acclimated

individuals (25 �C) was removed by surgery. Each individual

was anesthetized by an intramuscular injection of ketamine

hydrochloride (40 mg kg-1) and xylazine (2 mg kg-1). After

shaving, the back of the animal (3 9 4 cm, approximately), a

2-cm longitudinal incision was made between the scapulae

through the epidermal layer, the skin was carefully opened out

and interscapular BAT was completely removed. An hypo-

dermic injection of antibiotic (Dipenisol�) was given to the

animals after suturing the incision. After surgery, they were

closely monitored until the incision healed to assure that there

was no infection.

Measurement of UCP1 and COXII content,

and COX activity

Extracted interscapular brown adipose tissue was homog-

enized in Tris/sucrose buffer (250 mM sucrose, 5 mM

Tris–HCl, 2 mM EDTA, pH 7.2) in a Teflon/glass

homogenizer. Total protein content was determined by the

Bradford method (Bradford 1976). Samples of BAT were

denatured and 30 lg of proteins per line were loaded and

run in a SDS-PAGE (3 % stacking gel and 12 % running

gel) according to Laemmli (1970), and electrotransferred

onto a nitrocellulose filter, as described by Puigserver

(1991). Samples were incubated with UCP1 and COXII

antibody (Alpha Diagnostics). To validate the results, a

sample of warm-acclimated rat BAT tissue that has pre-

viously been identified to express UCP1 and COXII

(Quevedo et al. 1998; Rodriguez-Cuenca et al. 2002) was

included in the Western blot. Bands on films were analyzed

by scanner photodensitometry and quantified using Kodak

1D Image Analysis Software. Different aliquots of the

obtained homogenates were used to measure COX activity

using spectrophotometry (Wharton and Tzagoloff 1967;

Chrzanowska-Lightowlers et al. 1993).

Effect of IBAT removal

Warm-acclimated individuals were used to assess the effect

of IBAT removal on Tb and metabolic variables. Following

the same period of acclimation mentioned earlier, indi-

viduals were divided into three groups for the measurement

of Tb, BMR, NST and MMR: (1) unmanipulated individ-

uals (?IBAT group), (2) interscapular BAT removal indi-

viduals (-IBAT group) and (3) surgery control individuals,

which were subjected to surgery, but without carrying out

the interscapular BAT removal (SHAM group). For sur-

gically treated groups, a period of 10 days was waited

before variables were estimated to allow the recovery of

the animals. All individuals subjected to surgery were

released at the capture site when the experiments ended up.

Data set and rodent phylogeny for interspecific MMR

and NST analyses

To compare MMR and NST among species, we used both

conventional and phylogenetically independent contrasts

(Felsenstein 1985). Data of MMR (ml O2 h-1) were

sourced from the literature (Moshkin et al. 2001; Rezende

et al. 2004; White et al. 2008; this study). Values were used

only when MMR were obtained using He–O2 procedures.

As proposed by Rezende et al. (2004), we included values

of MMR when studies of thermal acclimation used Tas that

closely reaches the range of Tas that individuals experience

in the field during summer, or when they were obtained

during seasons other than winter.

NST (ml O2 h-1) data were also obtained from the literature

(Bao et al. 2001; Li et al. 2001; Moshkin et al. 2001; Perrin and

Richardson 2005; Scantlebury et al. 2005; Rodriguez-Serrano

and Bozinovic 2009; this study). As in the case of MMR, NST

values included in the analysis were those reported during

seasons other than winter (see Rodriguez-Serrano and Bozi-

novic 2009). We excluded values from studies in which dates

of animal captures and measurements were not specified (see

Mzilikazi and Lovegrove 2006). In some cases, we recalcu-

lated NST values from the literature. The phylogeny of

rodents was derived from trees described in Rezende et al.

(2004), and in Rodriguez-Serrano and Bozinovic (2009).

Additional literature was used to build the tree (Michaux et al.

2001; Spotorno et al. 2004; Jansa and Weksler 2004; White

2003). In both cases, we subtracted 1 df each time we used two

populations of the same species or two data from the same

species reported in different studies (Purvis and Garland 1993;

Garland and Diaz-Uriarte 1999). In the case of MMR, 3 df

were subtracted due to unresolved branch, plus 7 df resulted
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from different populations of the same species. In the case of

NST, the obtained tree was completely dichotomous, although

we subtracted 6 df because data belonged to different popu-

lations of the same species. Because the subtraction of df in

each case did not change our results, our analyses are pre-

sented including all the data. The arbitrary branch length

transformation of Pagel (1992) was used to standardize branch

lengths in the tree.

Statistical analyses

All data are presented as mean ± SEM. A paired t test was

used to compare body mass before and after the acclima-

tion period within each group. ANCOVA was used to

compare BMR, NST, ST or cold-induced MMR between

acclimation temperatures. Body mass was used as a

covariate when ANCOVA was performed. t test was used

to assess for differences in Tb after cold exposure or after

NE injection, and IBAT mass between temperature accli-

mation. ANCOVA was used to evaluate the effect of

acclimation temperature on UCP1 content, COXII content

and COX activity. Body mass was used as a covariate.

UCP1 and COXII contents were log10 transformed before

the ANCOVA analysis. Normality and homoscedasticity

were tested before the analysis (Zar 2010). Mann–Whitney

test was used only when assumptions were not meet.

ANCOVA was used to test the null hypothesis of no

differences in metabolic variables among intact (?IBAT),

sham-operated (SHAM) and surgically IBAT removed

individuals (-IBAT). In the same way, body mass was

used as a covariate. ANOVA was used to compare Tb, after

cold exposure or after NE injection among ?IBAT, SHAM

and -IBAT groups. As described earlier, normality and

homoscedasticity were tested before the analysis (Zar

2010).

Conventional allometric equations were estimated by

least squares linear regression. For phylogenetically

informed (PI) regression, independent contrasts were

computed using PDAP:PDTREE module (Midford et al.

2003) of Mesquite (ver. 1.12; Maddison and Maddison

2006). Before any analysis was performed, MMR, NST,

and body mass were log10 transformed. We performed

conventional or phylogenetic ANCOVA to test for differ-

ences in NST between subterranean and strictly subterra-

nean rodents, using log10-transformed body mass as a

covariate. Finally, Mann–Whitney test was used to assess

for differences in the percentage of variation of NST

between cold and warm acclimation between surface

dwelling and subterranean rodent species.

Results

Effect of thermal acclimation

Acclimation period did not affect body mass (cold-accli-

mated, paired t test, t5 = 1.34, P = 0.24, warm-accli-

mated, paired t test, t5 = 0.62, P = 0.56). No differences

were found in BMR (ANCOVA, F1,9 = 1.74, P = 0.22),

NST (ANCOVA, F1,9 = 0.78, P = 0.44), or cold-induced

MMR (ANCOVA, F1,9 = 0.81, P = 0.39), or ST

(ANCOVA, F1,9 = 0.61, P = 0.46) between individuals

exposed to different acclimation conditions (Table 1). All

the animals were normothermic after NE injections

(36.9 ± 0.2 �C) and hypothermic after He–O2 exposure

(32.7 ± 0.4 �C). No differences were observed in Tb after

NE injection (Mann–Whitney, T = 45.5, P = 0.31,

Table 2) or after He–O2 exposure (t test, t10 = 0.22,

P = 0.83, Table 2) between 15 and 25 �C treatments.

In the same way, IBAT mass related to body mass did

not differ between groups (pooled data of IBAT mass

over M-1 = 3.74 ± 0.37 mg g-1; t10 = 2.08, P = 0.07,

Table 3). When UCP1 protein content in IBAT was ana-

lyzed using ANCOVA, an outlier was found when

assumptions were tested (Studentized residual = 18.41;

Durbin–Watson test, D = 2.26). Because, UCP1 content

can vary with age (Florez-Duquet and McDonald 1998),

and we were not able to determine the age of individuals

accurately, we attributed this outlier to differences in lon-

gevity of individuals. Longevity of Ctenomys talarum is

relatively high for a rodent of this size, exceeding 2 years

in the wild, and some individuals have survived at least

3 years (Malizia 1998). After excluding this individual

from the ANCOVA analysis, no differences between

Table 1 Body mass (M) and

metabolic variables in

individuals of Ctenomys
talarum in different

experimental conditions

a Probability for ANCOVA test

performed in each variable

between temperature

acclimation. Body mass was

used as a covariate

Experimental condition Pa

15 �C (n = 6) 25 �C (n = 6)

M (g) before BMR 175.19 ± 5.70 181.95 ± 19.14

BMR (ml O2 h-1) 166.54 ± 5.65 162.91 ± 9.65 0.22

NST (ml O2 h-1) 221.25 ± 18.76 245.07 ± 10.10 0.44

ST (ml O2 h-1) 332.12 ± 32.42 378.05 ± 22.35 0.46

M (g) before MMR 166.42 ± 6.19 180.01 ± 6.19

MMR (ml O2 h-1) 719.90 ± 21.36 786.03 ± 30.65 0.39
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acclimation groups was found (ANCOVA, F1,8 = 0.08,

P = 0.78). Both COXII content in IBAT (ANCOVA,

F1,9 = 8.36, P = 0.02) and COX activity (ANCOVA,

F1,9 = 6.34, P = 0.03, Table 3) were higher in cold-

acclimated individuals.

Effect of IBAT removal

No differences were observed in BMR (ANCOVA,

F2,13 = 0.14, P = 0.87), cold-induced MMR (ANCOVA,

F2,13 = 2.75, P = 0.10), or ST (ANCOVA, F2,13 = 1.60,

P = 0.24) among experimental groups (Table 4). When

IBAT was removed, NST of -IBAT was lower

(ANCOVA, F2,13 = 14.61, P \ 0.01, Table 4) than sham-

operated (Scheffé, P \ 0.001) or ?IBAT individuals

(Scheffé, P = 0.048), whereas no differences were

observed between ?IBAT and sham-operated individuals

(Scheffé, P = 0.25). After He–O2 exposure at 5 �C, Tb

decreased drastically in -IBAT (ANOVA, F2,14 = 40.37,

P \ 0.01, Table 5) compared to ?IBAT (Tukey,

P \ 0.001) or sham-operated individuals (Tukey, P \
0.001). No differences were observed in Tb between

?IBAT and sham-operated individuals (Tukey, P =

0.562). Contrary, Tb after NE injections at 25 �C was

similar among experimental groups (ANOVA, F2,14 =

3.00, P = 0.09, Table 5).

Interspecific MMR and NST analyses

To evaluate whether C. talarum displays a lower cold-

induced MMR or lower NST in relation to other rodent

species, we compared MMR and NST values of this spe-

cies with those obtained from the literature. Allometric

equations calculated for studied rodent species using con-

ventional analysis were:

Table 2 Body temperature (Tb) after HELOX exposure and after

norepinephrine (NE) injection in individuals of Ctenomys talarum in

different experimental condition

Experimental condition Pa

15 �C 25 �C

Tb after HELOX exposure (�C) 32.8 ± 0.7 32.6 ± 0.5 0.83

Tb after NE injection (�C) 36.8 ± 0.2 37.0 ± 0.2 0.31

a Probability for t test performed in each variable between tempera-

ture acclimation. Tb of C. talarum individuals is 36.5 ± 0.9 �C (Luna

et al. 2009)

Table 3 UCP1 and COXII content and COX activity in individuals of Ctenomys talarum in different experimental condition

Experimental condition Pa

15 �C 25 �C

IBAT mass M-1 (mg g-1) 4.42 ± 0.42 3.06 ± 0.50 0.07

UCP1 content (au g IBAT-1) 54.98 ± 24.23b 23.06 ± 9.98 0.20

COXII content (au g IBAT-1) 231.49 ± 52.19 55.56 ± 14.02 0.02*

COX activity (nKat g IBAT-1) 39.30 ± 16.17 28.93 ± 5.91 0.03*

au arbitrary units, nKat (nanokatal) defined as a unit of catalytic activity
a Probability for ANCOVA test performed in each variable between temperature acclimation. Body mass was used as a covariate
b n = 5 (see ‘‘Results’’)

* Significant differences between experimental conditions

Table 4 Body mass (M) and metabolic variables in individuals of Ctenomys talarum in different experimental conditions

Experimental condition P�

?IBAT (n = 6) SHAM (n = 5) -IBAT (n = 6)

M (g) before BMR 184.28 ± 3.69 153.77 ± 9.12 156.52 ± 5.17

BMR (ml O2 h-1) 153.74 ± 7.07 135.12 ± 10.22 134.67 ± 5.92 0.87

NST (ml O2 h-1) 247.74 ± 11.07a 235.52 ± 14.01a 135.71 ± 40.76b \0.01*

ST (ml O2 h-1) 267.84 ± 50.08 347.93 ± 53.20 341.83 ± 29.53 0.24

M (g) before MMR 183.86 ± 3.69 148.74 ± 11.14 155.09 ± 5.21

MMR (ml O2 h-1) 669.32 ± 43.59 691.92 ± 46.43 612.21 ± 40.37 0.10

Small letters represent pairwise comparisons (Scheffé’s test) among groups
� Probability for ANCOVA test performed in each variable between experimental conditions. Body mass was used as a covariate

* Significant differences among experimental conditions
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MMR ml O2h�1
� �

¼ 29:58M0:65�0:004

R2 ¼ 0:89;F1;59 ¼ 464:54;P\0:001
� �

NST ml O2h�1
� �

¼ 20:39M0:54� 0:013

R2 ¼ 0:38;F1;53 ¼ 32:25;P\ 0:001
� �

where M is the body mass in grams. Slopes of the regres-

sions were similar to those previously reported for cold-

induced MMR (M0.662, Rezende et al. 2004) or NST for

different rodent species (M0.503, Rodriguez-Serrano and

Bozinovic 2009). Using conventional regression equation,

data of MMR (Fig. 1a) and NST (Fig. 2a) of C. talarum

fall within the 95 % prediction limits for the obtained

equations (Zar 2010).

When evaluating metabolic variables corrected for the

effect of phylogeny to render data independent, we

obtained the following equations

MMR ml O2h�1
� �

¼ 32:01M0:63� 0:003

R2 ¼ 0:94;F1;57 ¼ 877:38;P\ 0:001
� �

NST ml O2h�1
� �

¼ 25:72M0:49� 0:009

R2 ¼ 0:53;F1;51 ¼ 55:66;P\ 0:001
� �

where M is the body mass in grams. Similar to the pattern

observed using conventional analysis, when regression

equations were corrected by phylogeny, data of MMR

(Fig. 1b), and NST (Fig. 2b) of C. talarum fall within the

95 % prediction limits for the obtained equations for rodent

species (Zar 2010).

Overall, the 95 % confidence intervals for slopes of the

regression between cold-induced MMR and body mass

(M), using conventional statistics (CS) or phylogenetically

informed (PI), overlapped (95 % CI for CS 0.59–0.71; for

PI 0.59–0.67). In the same way, the slopes of the rela-

tionship between NST and body mass for both types of

analyses were similar (95 % CI for CS 0.36–0.75; for PI

0.36–0.61).

No differences were found among rodent species with

different commitment to subterranean life (ANCOVA,

conventional, F1,5 = 3.94, P = 0.11, phylogenetically

informed, F1,4 = 0.34, P = 0.59, Table 6). The percentage

of variation in NST between acclimation regimes were

lower in subterranean species than those observed in

surface dwelling species (Mann–Whitney, T = 5.73,

P = 0.02, Table 7). Moreover, the distribution of the

Table 5 Body temperature (Tb) after cold exposure and after norepinephine (NE) injection in individuals of Ctenomys talarum in different

experimental condition

Experimental condition P�

?IBAT SHAM -IBAT

Tb after cold exposure (8C) 33.4 ± 0.1a 34.3 ± 0.3a 27.1 ± 0.8b \0.01*

Tb after NE injection (8C) 36.8 ± 0.2 36.1 ± 0.4 35.7 ± 0.3 0.09

Small letters represent pairwise comparisons (Tukey test) among groups
� Probability for t test performed in each variable between experimental conditions

* Significant differences among experimental conditions
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Fig. 1 Relationship between log10 MMR and body mass (M) for

rodent species (open triangles) and C. talarum (filled square) using

conventional (a) or phylogenetically informed (b) analyses. Solid line
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Fig. 2 Relationship between log10 NST and body mass (M) for

rodent species (open triangles) and C. talarum (filled square) using

conventional (a) or phylogenetically informed (b) analyses. Solid line
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Table 6 Mean body mass (M), non-shivering thermogenesis (NST), and predicted NST (%) in different subterranean or strictly subterranean

rodent species

Species M (g) NST (ml O2 h-1) %a,b Life habits References

Ellobius talpinus 45 153.67 95.8 Strictly subterranean Moshkin et al. (2001)

Fukomys damarensis 123 55.35 20.2 Strictly subterranean Hislop and Buffenstein (1994)

Cryptomys hottentotus 102 176.46 71.2 Strictly subterranean Haim and Fairall (1986)

Heterocephalus glaber 36 54.72 38.8 Strictly subterranean Woodley and Buffenstein (2002)

Ctenomys magellanicus 280 392 91.7 Subtterranean Rodriguez-Serrano and Bozinovic (2009)

Ctenomys opimus 218 436 116.8 Subtterranean Rodriguez-Serrano and Bozinovic (2009)

Spalacopus cyanus 88 268.36 117.5 Subtterranean Nespolo et al. (2001a)

Ctenomys talarum 182 245.07 72.2 Subtterranean This study

a Percentage of predicted NST by curve for rodents: NST (ml O2 h-1) = 20.39 M0.54 (This study)
b No differences between subterranean and strictly subterranean species (see ‘‘Results’’)

Table 7 Non-shivering thermogenesis (NST) in several rodent species under two different Ta acclimation regimes

Species NST (ml O2 g-1 h-1) %a,b Life habits References

Warm acclimation Cold acclimation

Spalacopus cyanus 3.06 3.54 15.7 Subtterranean Nespolo et al. (2001a)

Ctenomys talarum 1.37 1.26 8.7* Subtterranean This study

Heterocephalus glaber 1.52 1.73 13.8* Strictly subterranean Woodley and Buffenstein (2002)

Octodon degus 1.99 2.70 35.3 Surface Nespolo et al. (2001b)

Phyllotis xanthopygus 2.24 5.77 158.2 Surface Nespolo et al. (2001b)

Phyllotis darwini 1.61 5.58 247.4 Surface Nespolo et al. (2001b)

Eothenomys miletus 4.99 7.88 57.8 Surface Li et al. (2001)

Microtus brandi 3.52 6.81 93.3 Surface Li et al. (2001)

Meriones unguiculatus 1.71 2.85 66.5 Surface Li et al. (2001)

Spermophilus dauricus 0.90 1.66 84.8 Surface Li et al. (2001)

a Percentage of variation between Ta acclimation regimes
b Significant differences between subterranean and surface species (see ‘‘Results’’)

* No differences between warm and cold acclimation
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variable did not overlap between groups, as could be

inferred from mean and SEM values (12.73 ± 2.09 % for

subterranean species vs. 106.19 ± 27.69 % for surface

dwelling species, Table 7).

Discussion

Energetics: components of MMR

Subterranean rodents show low BMR when compared with

the predictions based on the standard allometric equation of

surface-dwelling mammals (Kleiber 1961; McNab 1966;

Vleck 1979). In this study, values of BMR match with

those previously reported for C. talarum (see Antinuchi

et al. 2007, for a review) and show no variation after cold

acclimation (Table 1).

In the same way, MMR was similar between experi-

mental groups, and was at least 4.3 times higher than BMR

(Table 1). It is interesting to note that the observed value

for cold-induced MMR was *92 % of the predicted by the

allometric equation for maximal thermogenic metabolism

based on the different rodent species using conventional

analysis (Fig. 1a) or phylogenetic contrast (Fig. 1b).

Similarly, NST did not change after thermal acclimation

(Table 1). Although a few species of Ctenomys had been

studied to assess NST, the observed value of C. talarum

was similar to those reported for C. opimus, C. magellan-

icus (Rodriguez-Serrano and Bozinovic 2009), C. porteusi

(Luna F., unpublished data), and other subterranean or

strictly subterranean rodents (Table 6). NST in Fukomys

damarensis differs considerably from other subterranean

rodents (Table 6). Raw or contrast data of NST in C. tala-

rum fall inside the 95 % prediction limits of the regression

for rodent species, using conventional or phylogenetically

informed equations, suggesting that this species displays a

non-shivering thermogenic capacity within the range of

rodents. However, NST was lower than the expected

(*72 %) for a rodent of the body mass of C. talarum

(Fig. 2a, b). Interestingly, NST of subterranean or strictly

subterranean rodents did not differ, or has a small variation,

when individuals are subjected to different Ta acclimation

regimes in the laboratory compared to surface rodents

(Table 7).

As we hypothesized before, species that live exclusively

within burrows could have low variability in thermogenic

capacity (see Table 7). For the naked mole rat Hetero-

cephalus glaber, a thermoconforming eusocial rodent, this

is a deductive assumption because burrow temperatures are

within thermoneutral zone and heat dissipation is further

limited. In fact, for this species, burrow temperature varies

between 31 and 34 �C throughout the year (Buffenstein

and Yahav 1991), and individuals are rarely exposed to

temperatures outside this range, thus having low need for

cold tolerance (Woodley and Buffenstein 2002). However,

Ctenomys species differentiate from H. glaber in this

regard. In the case of C. talarum, as in C. fulvus (Cortés

et al. 2000), Tas within burrows are below the thermo-

neutral zone (i.e., 12.9 ± 2.2 �C during winter;

22.6 ± 1.5 �C during summer, Cutrera and Antinuchi

2004). Although fluctuations in Ta within the burrows are

buffered in relation to surface Tas (9.5 ± 2.9 �C during

winter, 29.1 ± 2.7 �C during summer; Cutrera and An-

tinuchi 2004), individuals are also exposed to aboveground

Ta variation, since surface exploration is common during

their regular, but short, bouts to gather food near the bur-

row0s openings (see Luna and Antinuchi 2003; Antinuchi

et al. 2007), or during dispersal periods (Malizia et al.

1995). Therefore, the inability to increase both cold-

induced MMR and NST in C. talarum after cold acclima-

tion suggest that extreme Tas do not represent a challenge

for individuals when they are aboveground, allowing an

arrhythmic pattern of activity outside the burrows

throughout the day (Luna et al. 2000; Cutrera et al. 2006).

On the other hand, maximal thermoregulatory capacity

could be limited by external factors other than Ta, and

linked to limitations on other physiological systems. Bur-

rows are characterized by atmospheres with low O2 and

high CO2 concentrations (Nevo 1999), and thus, can be

stressful in terms of an adequate O2 supply to metabolic

active organs (Weibel and Hoppeler 2005). C. talarum face

low Tas even inside the burrows during winters (Cutrera

and Antinuchi 2004). In this regard, an increase in O2

consumption is expected to compensate for heat loss, thus,

the low O2 content within the burrows could prevent ani-

mals to elevate MMR, due to hypoxia risk. In this scenario

cold-induced MMR would not be affected by thermal

acclimation.

If burrow’s atmosphere imposes limitation on respira-

tory or cardiovascular systems [central limitation or sym-

morphosis hypotheses, see Bacigalupe and Bozinovic

(2002) for a review] individuals could show similar max-

imal thermogenic metabolism under different ambient

temperature regimes. In this context, cold-induced MMR

and exercise-induced MMR should also be similar. Our

data on cold-induced MMR in warm-acclimated individu-

als were rather similar to those estimated using untrained

individuals running in a motorized treadmill at high speeds

(exercise-induced MMR, F. Luna unpublished data), and

during digging (Luna and Antinuchi 2006).

Because of cold-induced MMR in C. talarum is

unchanged during cold acclimation, O2 supply to the active

thermogenic organs could restrict the increase in NST [e.g.

lung limitation to O2 changes (Maina et al. 2001), or O2

provision for cardiovascular work (Weibel et al. 1991; see

Suarez 1998)]. Therefore, it is possible that NST in warm-
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acclimated individuals may already be maximal, preclud-

ing a further increase in cold-acclimated individuals.

Ambient temperature used in this study is the minimum

temperature to elicit a desirable thermal effect (Table 2).

At this temperature, thermal unbalance was exacerbated

when interscapular BAT was removed (Table 2). In this

case, NST decreased more than 30 % with a consequent Tb

fall from *33 �C to *27 �C after surgery (Table 2). This

finding emphasized the importance of IBAT in NST

capacity.

NST is not the exclusive source of heat in C. talarum.

Besides Heliophobius argenteocinereus were observed to

shiver during cold acclimation (Šumbera et al. 2007), to

our knowledge, this is the first work that suggests, using

respirometric technique, the presence and importance of ST

in a subterranean mammal. Shivering is the major com-

ponent of total heat production (*61 % total thermogen-

esis), and is not affected by thermal acclimation. Although

ST was proposed to be inefficient (Jansky 1973) for a

subterranean rodent, muscular work that individuals per-

form during digging could be exploited also as source of

heat, as was hypothesized by Luna and Antinuchi (2007).

Molecular correlations

Several surface-dwelling species were observed to change

NST and UCP1 content depending on the season or thermal

acclimation (e.g. Acomys russatus, Kronfeld-Schor et al.

2000; Microtus oeconomus, Wang et al. 2006a; Ochotona

curzoniae, Wang et al. 2006b; Meriones unguiculatus,

Zhang and Wang 2007a; Lasiopodomys brandtii, Zhang

and Wang 2007b). Our data demonstrate the presence of

UCP1 in BAT of a subterranean rodent species. Although

UCP1 content was variable (see ‘‘Results’’), the content of

uncoupling proteins in BAT was similar in cold- and

warm-acclimated individuals (Table 3). Besides the leak to

uncouple oxidative phosphorylation to produce heat, BAT

could have a high oxidative capacity compared to other

tissues to ensure NST (Klingenspor 2003; Mzilikazi et al.

2007). Cytocrome c oxidase (COX) is a marker enzyme for

the mitochondrial membrane and, particularly COXII, is

commonly used to estimate respiratory capacity in BAT

mitochondria (Klaus et al. 1988; Klingenspor et al. 1996).

In our study, UCP1 content was not different between

experimental conditions, but COXII content and COX

activity were augmented in cold-acclimated individuals

(Table 3).

The reason for the increased COXII content and COX

activity in cold-acclimated individuals remains to be clar-

ified. As described before, extraction of IBAT induces a

fall in NST (more than 30 %). We would assume that ST is

unchanged during recovery time after surgery (10 days),

which in fact was similar (see Table 1), because any

change in ST implies transformation of muscle fiber types

(Egginton et al. 2001). In this context, we would expect the

same fall (*36 %) in cold-induced MMR. However, cold-

induced MMR in IBAT-removed individuals was similar

(Table 4). Therefore, values of MMR and ST of IBAT-

removed individuals (see Table 4) could disguise another

unknown thermogenic mechanism.

Conclusions

Thermal acclimation in C. talarum had no effect on met-

abolic variables such as cold-induced MMR, BMR, and

thermogenic capacity. However, we provide the first evi-

dence of the presence of BAT in a subterranean genus

endemic of South America. Consistently UCP1 content

was independent of thermal acclimation, but COXII con-

tent and COX activity was higher in cold-acclimated

individuals. As blueprint, we propose that cold-induced

MMR in warm-acclimated individuals reaches a maximal,

being ST the main thermogenic mechanism. NST could

also have a ceiling in warm-acclimated individuals, due to

physiological restrictions in O2 intake or delivery systems.

Furthermore, the expression of UCP1 could also be limited

in BAT tissue of warm-acclimated individuals. Although

this assertion must be taken with caution, the increment in

the oxidative capacity, mediated by COX in BAT in cold-

acclimated individuals, might be related to a different

thermogenic mechanism.
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