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Abstract. We describe the three-body final state resulting from the photo-double-ionization (PDI) of two-
electron ionic atoms by a modified C3 wave, denoted SC3. This continuum wave function accounts for
the nuclear dynamical screening in the inter-electronic motion. We analyze the scaling properties of the
triply differential cross-sections (TDCS). For an easier comparison with possible experimental results we
analyze the correlation factor in the Gaussian parametrization of the TDCS, for different nuclear charges.
We determine the dependence of the half width at half maximum of the Gaussian with the nuclear charge
and discuss possible physical mechanisms.

PACS. 32.80.Fb Photoionization of atoms and ions

1 Introduction

Photo-double-ionization (PDI) of atomic systems is a
showcase for the investigation of two electron dynamics
in a system of three interacting Coulomb particles. Initial
atomic states are not distorted by the incident photon and
could be specified with high precision. This highlights the
role of the final two electrons state and provides a severe
test for any new model propose to describe the three parti-
cles continuum. A description of recent experimental and
theoretical work for He targets can be found in two recent
reviews [1,2].

The inclusion of the electron-electron correlation in the
three body continuum state has been found to be essen-
tial for a realistic description of the PDI angular distri-
butions [3–6]. In these works, use of some available ana-
lytical models of the final state showed that unphysical
results were obtained when the interelectronic interaction
was neglected. These models consider the continuum mo-
tion of the three particles as decoupled, and the wave func-
tion is expressed as a product of two-body Coulomb func-
tions. Comparison of the C2 model, that only considers
the electrons subject to the nuclear central field, with the
C3 model [7], which describes the interelectronic interac-
tion by incorporating an electron-electron Coulomb wave,
clearly reveals the importance of the repulsion correlation
for an appropriate description of the angular distributions
in the PDI process [3,4]. The C3 model describes the elec-
tronic repulsion but neglects the non-orthogonal kinetic
energy correlation [8]. This kinetic correlation could be
partially considered by introducing effective Sommerfeld

a e-mail: sotranto@uns.edu.ar

parameters, depending on the coordinates and momen-
tums [9–12], or by multivariable hypergeometic waves [13].

These analytical approaches give a reasonable descrip-
tion of the shape of the angular distributions. However,
they show disagreement between the PDI cross-sections
resulting from the use of the three electromagnetic gauges
representative of the photon-atom interaction. Besides, for
He target the magnitude of the TDCS evaluated with
these methods differs from the available experimental
data [11].

In the last few years, intensive computational pro-
cedures have been introduced, showing good agreement
with experiments. These are the convergent close cou-
pling (CCC) method [14], the time-dependent close cou-
pling calculation [15] and the ab initio hyperespherical
R-matrix method with semiclassical outgoing waves [16].
These methods show good agreement with the experi-
mental data and between gauges. A group theoretical ap-
proach has also been proposed to obtain the final contin-
uum wave function extrapolating correlation-symmetries
of doubly excited states, but up to the moment it has
not been sufficiently tested experimentally [17]. A numer-
ical solution of the three-body equation has also been re-
cently obtained by using an exceptionally large computing
power, and introducing complex coordinates to deal with
the asymptotic behavior [18].

In a former paper, we proposed a modified version
of the C3 model by performing a dilatation of the inter-
electronic coordinate through an energy dependent mul-
tiplicative factor, and we denoted this three-body state
as SC3 [19]. That factor is meant to simulate the nu-
clear screening action on the electron-electron interaction,
and was determined in order to correct the exponential
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decrease of the total cross-sections magnitude as energy
approaches threshold, typical of the C3 model. We have
calculated TDCSs for photon impact on He, and we
found agreement in shape between the velocity and length
gauges, and with experimental data when the emitted
electrons equally share the exceeding energy of the pho-
ton. However, discrepancies remain for other energy shar-
ing cases. Furthermore, the SC3 model gives a much better
description than the C3 approach of the total cross-section
in the intermediate energy region.

In this paper we apply the SC3 method to the PDI of
two-electron atomic ions in the ground state, i.e.: ions in
the He isoelectronic sequence. We analyze the role the
nuclear charge plays and how it weakens the electron-
electron correlation effects. Pioneering work on this prob-
lem has been carried out by Kornberg and Miraglia, us-
ing the C2 and C3 wave function for the final three-body
state [20]. They introduced a scaling law for the total, sim-
ple and triply differential cross-sections, and verified the
scaling for the total and energy differential cross-sections.
As usual in C3 theories, they found large differences be-
tween the results from the velocity and length gauges. The
theoretical and experimental work about PDI of ions tar-
gets is limited, and mostly deals with the negative ion of
hydrogen H−. This is a theoretically difficult ion to deal
with, because the electrons are in a loosely bound initial
state with very strong correlation. Recently Kheifets and
Bray using the CCC [21], and van der Hart and Feng [22]
using a B-spline based technique, have evaluated the ra-
tio of double to single photoionization cross-sections and
the total PDI cross-sections for diverse atomic ions. They
have confirmed the scaling rule proposed by Kornberg and
Miraglia for total cross-sections. Furthermore, from the
CCC results it could be inferred that disagreement be-
tween gauges for the PDI total cross-section of H− is even
found when a sophisticated 20-parameters Hylleras wave
function for the initial state is used.

For targets with two electrons in the ground state the
emission electronic angular distributions present a sym-
metry that is determined by the angular momentum of
the photon. This leads to selection rules that forbid emis-
sion along some particular configurations of electrons mo-
menta [23]. For linearly polarized photons, the TDCS can
be factorized as a term that describes the electron-photon
interaction times a Gaussian factor that takes account
for the inter-electronic correlation [24]. This factor has
been denoted the “Correlation Factor” and is supposed
to depend on the emission energy and relative angle be-
tween electrons. The Gaussian form for this factor was
proposed on the base of the Wannier theory, with a width
dependent on the excess energy shared between the emit-
ted electrons [25]. Nowadays, the Gaussian shape for the
correlation factor is of standard use, with its full width
at half maximum considered as an empirical parameter.
This parametrization has been extended for arbitrary en-
ergy sharing and is valid for a wide range of excess energies
Ef [26]. Here we evaluate this factor with the SC3 method
and examine the dependence of the width on the charge
of the target.

The scheme of the papers is the following: in Section 2
we briefly discuss the SC3 model and the wave functions
used to represent the initial bound states, in Section 3 we
present the TDCS for PDI of He-like atoms, in Section 4
we evaluate and discuss the interelectronic correlation fac-
tor, and in Section 5 conclusions are drawn.

2 Theory

As we have already mentioned above, the SC3 approxima-
tion gives equivalent angular distributions in the velocity
and length gauges for equal-energy sharing emission [19].
In this regime, main difference between these two gauges
amounts to an angle independent scaling factor. For un-
equal energy the method shows discrepancies between that
gauges, which probably are a consequence of the sensitiv-
ity of the length gauge dipole amplitude to large distances,
where the initial state may give a poor description which
is enhanced by the oscillating nature of the final state.
The introduction of more elaborated initial states is now
being in course, but implies significant rewriting of our
codes. Therefore here we present our results in the veloc-
ity gauge.

The TDCS for absorption of a photon of energy ω and
emission of two electrons with momenta k1,k2 is given by:

dσ

dΩ1dΩ2dE1
= 4π2α

k1k2

ω
|〈Ψf |ε̂ · (∇a + ∇b)|Ψi〉|2 (1)

where α is the fine-structure constant. The photon energy
ω, is distributed between the atomic ionization energy and
the excess energy Ef = E1 + E2 where E1 = k2

1/2 and
E2 = k2

2/2 , are the energies of the emitted electrons. We
consider the axis x as that of the incident linearly polar-
ized photon, and z the corresponding to the polarization
vector ε̂. One of the electrons is emitted in the yz-plane
with angle θ2 relative to z. The direction of the other is
determined by the angles φ1, relative to the yz-plane, and
θ1 relative to ε̂.

In the SC3 approximation [19] the final wave function
is given by

ΨSC3(k1,k2, r1, r2) = Nf eik1·r1+ik2·r2
1F1[ia1, 1, x1]

× 1F1[ia2, 1, x2] 1F1[ia3, 1, β x3] (2)

where ai = Ziµi/ki are the Sommerfeld parameters, xi =
−ikiξi and ξi = ri + k̂i · ri, i = 1, 2, 3. Here, Zi, µi, ξi and
ki indicate charges, reduced masses, coordinates and mo-
mentum of each electron relative to nucleus and between
the electrons, respectively. The 1F1[a, b, x] is the Kummer
function and the normalization constant Nf is obtained
by requiring the wave function to have outgoing unitary
flux:

Nf =
1

(2π)3

3∏
j=1

e−aj
π
2 Γ (1 − iaj). (3)

The dilatation parameter β in the interelectronic coor-
dinate was determined in order to improve the thresh-
old behavior of the total cross-section. We showed that,
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Table 1. Variational parameters and ground state energies
calculated using the wave function given in equation (6).

atom a b λ C0 〈E〉 〈E〉exact

H− 0.4666 1.0721 0.0373 –0.9307 –0.5259 –0.5277

He 1.4126 2.2068 0.1990 –0.6649 –2.9019 –2.9037

Li+ 2.3328 3.3006 0.3911 –0.4951 –7.2780 –7.2799

Be2+ 3.2614 4.3781 0.5892 –0.3918 –13.6536 –13.6555

B3+ 4.1973 5.4456 0.7896 –0.3236 –22.0290 –22.0309

C4+ 5.1387 6.5064 0.9911 –0.2754 –32.4043 –32.4062

N5+ 6.0846 7.5620 1.1932 –0.2396 –44.7795 –44.7814

O6+ 7.0341 8.6137 1.3957 –0.2120 –59.1546 –59.1565

F7+ 9.6622 7.9865 1.5984 –0.1901 –75.5297 –75.5317

Ne8+ 10.7079 8.9414 1.8013 –0.1723 –93.9048 –93.9068

resigning the Kato cusp condition when x3 → 0 [27], the
introduction of this parameter corrects the exponential de-
cay of the C3 approximation, for low excess energy. For He
target, we found that this parameter is energy dependent,
and proposed:

β =
1√
Ef

· (4)

To consider highly charged nucleus we must scale the β.
With this scope we consider the Hamiltonian for a two
electron system in the field of a nucleus with charge ZT

and infinite mass. When we scale the electron coordinates
r1 → r1/ZT , r2 → r2/ZT the Schrödinger equation re-
duces to that for two electrons in a single-charged nucleus,
repulsive e−e interaction 1/ZT r12 and energy Ef/Z2

T .
This shows that the relevance of potential electron cor-
relation must decrease as the nuclear charge rises, and the
energy must be scaled with Ef/Z2

T . Then it follows that
an appropriate scaling is

β =
ZT

2
√

Ef

· (5)

For an helium atom this reduces to equation (4). We rep-
resent the initial bound state by a modified Bonham and
Kohl GS2 correlated wave function [28]:

ΨGS2 = Ni

(
e−c1r1−c2r2 + e−c2r1−c1r2

)
× (

e−zcr12 + C0e−λr12
)
. (6)

Here an additional parameter zc has been introduced to
avoid the use of arbitrary cut-off in the evaluation of the
transition amplitude. From the Ritz variational procedure
we evaluate the parameters and the energies given by this
wave function for the He-isoelectronic sequence [29]. The
values obtained are displayed in Table 1, for zc = 0.01.
This simple functional form allows for partial analytical
calculation of the transition amplitude using Nordsieck-
like integrals [4,13].

3 Angular distributions

In this section, we calculate the TDCS for PDI of ions
of the He-isoelectronic sequence, in the ground state. We
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Fig. 1. TDCS for Ef = 6 eV and 20 eV for different core
ions, when the electron 1 is emitted in the angle θ1 = φ1 =
0◦. Theories: solid-line: O6+; dot-dashed-line: C4+; dashed-line:
Be2+ ; dotted-line: He. All theories have been scaled to the He
data.

consider the dependence on the nuclear charge of the an-
gular distribution of one of the electrons in the yz-plane,
when the emission angle of the other electron is kept fixed.

In our figures, we observe the zeros associated to the
selections rules [23]. In each case, the angular distributions
for different ions have been normalized to the peak top
value for the He target distribution.

In Figure 1 we present the TDCS for Ef = 6 eV and
20 eV, and equal energy sharing regime between the emit-
ted electrons, for different core ions (He, Be2+, C4+, O6+),
when the electron 1 is emitted in the angle θ1 = φ1 = 0◦.
It could be seen that as the nuclear charge increases,
the electrons tend to situate with an interelectronic an-
gle θ12 close to π/2. This distribution is characteristic of a
double electron emission reached after photon absorption
by one electron followed by a binary collision with the re-
maining one. Once both electrons are emitted and leave
the reaction zone they suffer a post-collisional focusing by
action of the interelectronic repulsion, which tends to in-
crement the angle θ12. As could be seen from this figure,
as the excess energy decreases the correlation effects are
supposed to be more notorious and smaller variations in
the angular distribution could be inferred for the different
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Fig. 2. TDCS for Ef = 20 eV, θ1 = 65◦ and φ1 = 0◦. Theories
as in Figure 1.

ions when Ef = 6 eV. By the other side, for Ef = 20 eV
these correlation effects are smaller and the peaks tend to
situate closer to θ12 ≈ π/2.

The same trend could be observed from Figure 2,
where Ef = 20 eV, θ1 = 65◦ and φ1 = 0◦. As ZT in-
creases the two electrons are emitted in quasi-orthogonal
directions. We note that due to the photon field the al-
titude of the peaks become asymmetric, and the second
electron is emitted preferentially towards the direction of
the polarization vector.

In Figure 3 we show the TDCS for Ef = 52.9 eV,
θ1 = 0◦ and φ1 = 0◦ in the unequal energy sharing regime.
The slow electron energy is fixed (E1 = 5 eV) and the fast
electron angular distribution (E1 = 47.9 eV) is analyzed.
For He, the resulting distribution is known to reproduce
with accuracy the experimental data [30]. As the ZT in-
creases, the relevance of the e−e repulsion becomes rela-
tively smaller, and it could be observed that the peak at
180◦ begins to disappear, leading to a two-peak structure.

In Figure 4 the slow electron distribution is presented
for the same energy sharing as in Figure 3. Again, as the
nuclear charge increases, the relevance of the repulsive e−e
interaction which pushes the electrons towards antiparallel
directions decreases. As a result, this kind of “focusing”
at 180◦ disappears and a two-peak structure remains.

In 1994, Kornberg and Miraglia proposed scaling laws
for the total, simply differential and triply differential
cross-section for PDI, derived in the frame of the C3
method when the highest 1/ZT order is kept [20]. That
scaling for the TDCS reads:

dσ

dΩ1dΩ2dE1
(ZT , E) =

1
Z6

T

dσ

dΩ1dΩ2d (E1/Z2
T )

(
1, E/Z2

T

)
.

(7)
Their scaling law for the total PDI cross-section has been
confirmed even for low ZT as was pointed out in the in-
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Fig. 3. TDCS for Ef = 52.9 eV, θ1 = 0◦ and φ1 = 0◦ in
the unequal energy sharing regime (E1 = 5 eV). Theories:
solid-line: O6+; dot-dashed-line: C4+; dashed-line: Be2+; short-
dashed-line: Li+; dotted-line: He. All theories have been scaled
to the He data.
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Fig. 4. TDCS for Ef = 52.9 eV, θ1 = 0◦ and φ1 = 0◦ in the
unequal energy sharing regime (E1 = 47.9 eV). Theories as in
Figure 3.

troduction. However, to our knowledge, results showing
the validity of their scaling for the triply differential PDI
cross-section have not been presented until now.

In Figure 5, we show the scaling properties of the
TDCS of the present model as a function of the core
charge, for ZT = 1, ..., 8 when Ef/Z2

T = 5 eV and
θ1 = φ1 = 0◦. The figure is displayed in logarithmic scale
to clearly appreciate the variation with ZT . We note that,
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Fig. 5. Scaled TDCS, for ZT = 1, ..., 8 when Ef/Z2
T = 5 eV

and θ1 = φ1 = 0◦. Theories: solid-line: O6+; dashed-line:
N5+; dotted-line: C4+; dot-dashed-line: B3+; short-dotted-line:
Be2+; short-dashed-line: Li+; short-dot-dashed-line: He.

as ZT increases, the peak maximum of the angular dis-
tribution of electron 2 displaces towards the direction of
the other electron, and the peak width in half maximum
increases slightly. However there is not a “saturation” for
the angular distribution. It could be seen, that for increas-
ing nuclear charge, the angular distributions tend to the
uncorrelated distribution (1 + cos θ2)2. The maximum of
the two lobes goes to θ1 = 0 and the corresponding distri-
butions approach the envelope. In this sense, our results
show that the Kornberg and Miraglia scaling law for the
TDCS is attained in the ZT → ∞ limit.

4 Electron-electron correlation factor

Huetz et al. [24], developed a Wannier theory for PDI of
noble gases and realized that the TDCS could be expressed
in the near threshold region and in equal energy sharing
regime as follows,

dσ

dΩ1dΩ2dE1
= C(θ12)(cos θ1 + cos θ2)2 (8)

where C(θ12) is the usually called “correlation factor”. It
describes the electrons correlation, and the other angu-
lar factor accounts for the interaction of the photon with
each electron. During the last few years, this parametriza-
tion of the TDCS has been widely used and, the Gaussian
ansatz [25] has been usually employed to represent the
correlation factor:

CG(θ12) = A(Ef ) exp
[
−4 ln 2(θ12 − 180◦)2

Γ (E)2

]
· (9)

For He targets and low exceeding energies, the half-width
at half maximum Γ (E) shows a clear dependence with the
excess energy given by: Γ ∼ E

1/4
f [25].

A simple interpretation can be given [1,26]. The elec-
trons are initially in a very symmetric radial configuration,
and their kinetic energies are well balanced meanwhile
they are in the vicinity of the ion core. As they move out,
the Coulomb repulsion drives the mutual angle between
ejected electrons towards θ12 = π, and stabilizes the an-
gular correlations. The Wannier mechanism for the thresh-
old ionization presumes that the electrons recede being at
equal distances from the atomic core (r1 = r2) and in op-
posite directions (θ12 = π). Meanwhile the nuclear attrac-
tion produces a “dynamical screening” which destabilizes
the correlation between the escaping electrons, and in a
naive approximation produces an angular motion around
θ12 = π. In the three-body interactions the only θ12 de-
pendence is contained in the electron-electron repulsion
term, that near the Wannier saddle can be expanded as:

|r1 − r2|−1 =
1

R
√

1 − cos θ12

=
1

R
√

2
+

(π − θ12)2

8R
√

2
+

5(π − θ12)4

384R
√

2
+ ...

(10)

The R is the hyper-radius
√

r2
1 + r2

2 , that at this point
has a certain effective value R = R0 [34]. Retaining terms
up to second-order, the electrons move out performing an
angular harmonic motion around the point θ12 = π, with a
frequency that depends on R0. We can write an oscillator
Hamiltonian Hθ for the electron-electron relative angular
motion, with eigenfunction [25,33,34]:

χ(θ12) = ea(π−θ12)
2
. (11)

The parameter a is associated to a Wannier radius R0 as
a = 1/8R0, which also determines an angular e−e oscil-
latory energy around θ12 = π. This energy only depends
on R0, and is determined by the frequency of the oscil-
lation produced by the nuclear action, and therefore it
depends on the nuclear charge ZT . The probability that
the two electrons are emitted with a relative angle is given
by |χ(θ12)|2, that is the factor CG(θ12) appearing in equa-
tion (9).

In the frame of the C3 approximation, Briggs and
Schmidt [1] give another interpretation for the correla-
tion factor. It is possible to expand the square modulus of
the Coulomb factor associated with the electron-electron
relative motion:

|N(k12)|2 =
2π
k12

exp( 2π
k12

) − 1
· (12)

For equal energy sharing and k12 → 0, we have

|N(k12)|2 → e
− π√

Ef
− π

8
√

Ef
(π−θ12)

2− 5π
384

√
Ef

(π−θ12)
4

. (13)

We note that this factor does not include the nuclear dy-
namical screening and it only contains a partial depen-
dence of the transition amplitude on θ12.

Nowadays, the Γ (E) is usually treated as an em-
pirical parameter and is determined from experimental
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Fig. 6. Correlation coefficients CSC3(θ12) for ions with core charge: ZT = 2, 4, 8, 10. The excess energy considered is 20 eV. A
Gaussian fit has also been included for comparison.

data and theories [1,26,31,32]. This parametrization valid
for linearly polarized photons and equal sharing emission
has been generalized for other polarizations and the un-
equal energy sharing regime [26]. Several authors [25,33],
have claimed that this correlation factor should be θ12-
independent for ZT ≥ 3, while others debate this result
and the accuracy of a strict Gaussian shape [34].

We have fitted the TDCS given by the SC3 theory
with equation (8), for E1 = E2 = 10 eV and angles θ1 =
φ1 = 0◦. This gives the correlation coefficients CSC3(θ12),
that are presented in Figure 6 for ions with core charge:
ZT = 2, 4, 8, 10.

In Table 2 we tabulate our values for Γ , as a function
of Ef , for ZT = 2, 4, 6, 8 for energies Ef = 6, 10, 20 eV. We
observe that the SC3 method gives a width that increases
with energy and core charge. This is in agreement with
results shown in Figure 1, and indicate a reduced relevance
of the electron-electron correlation. For He, the resulting
value could also be compared with the experimental value
of Turri et al. [35], i.e.: 91 degrees at Ef = 20 eV.

The Gaussian form is in excellent agreement with the
SC3 model predictions for the He case, but shows slight de-
viations when ZT increases. The Gaussian ansatz implies
that the electrons in the near threshold region would tend
to situate as opposite as possible. However, for a highly

Table 2. Γ (Ef ) values obtained from a Gaussian fit of
CSC3(θ12).

Ef

atom 6 eV 10 eV 20 eV

He 92.6(5)◦ 99.2(5)◦ 104.3(4)◦

Be2+ 97.7(6)◦ 109.0(8)◦ 124(1)◦

C4+ 99.3(6)◦ 112.0(9)◦ 130(1)◦

O6+ 100.3(6)◦ 113.6(9)◦ 133(2)◦

Ne8+ 100.8(6)◦ 114(1)◦ 134(2)◦

charged nucleus, the dynamic screening now allows elec-
trons to deviate from θ12 ≈ π and probably C(θ12) should
include terms of even-order higher than 2. Anyway, the
SC3 model shows a clear dependence of C(θ12) with θ12

in contrast with the flat prediction of Rau.
We also studied possible deviations from equation (8).

We included the anharmonic terms of equation (10) in the
Hamiltonian Hθ and tried an ansatz for the corresponding
eigenfunction:

χ(θ12) = ea(π−θ12)
2+b(π−θ12)

4
. (14)

We kept the relation b = 5a/48 given by the potential
equation (10) and therefore a single parameter remained,
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and is associated to the effective Wannier radius R0, which
determines the e−e oscillatory energy. The probability
that the two electrons are emitted with a relative angle is
given by |χ(θ12)|2 and gives an alternative form for the cor-
relation factor. We used this “anharmonic” Gaussian form
to fit the SC3 results, and we found slight differences with
the former results, which would probably be experimen-
tally unobservable. However the differences turned more
noticeable as the nucleus charge and the excess energy
were increased.

5 Conclusions

In this paper we have studied the TDCS for PDI of ions
in the He isoelectronic sequence. We have represented the
final continuum state using a recently introduced SC3
model, which has shown to give better results than the
C3 model for He targets [19]. For equal energy sharing we
have found that the two-electron interaction correlation
effects diminish as the nuclear charge or the excess energy
increases.

For unequal energy sharing, we clearly observe how
the “focusing” at the relative angle 180◦ disappears as
the interaction of the electron with the nucleus overcome
the repulsive e−e interaction.

We studied the Kornberg and Miraglia scaling law for
the TDCS for ZT = 1, ..., 8, and found that for low ZT

our results separate from their prediction, which becomes
meaningful as the nuclear charge increases. Meanwhile the
scaling law for the total cross-section, though developed
in the high ZT limit, has shown to be valid for low ZT

values also. Therefore, the present results show that the
Kornberg and Miraglia scaling for the n-differential cross-
section turns better as lower is n.

We fitted our results for the TDCS with the usual
Gaussian parametrization for the correlation factor. We
have found that for ZT ≥ 3, our results are well re-
produced by the Gaussian ansatz, in disagreement with
some existing Wannier-type models [25,33]. Furthermore
we have evaluated and tabulated the empirical parame-
ters Γ (Ef ) from our results for different ions and energies.
Experiments or further theoretical analysis would be very
helpful to elucidate on this point.

The present simple model for the final three-body wave
function is able to describe the main physical features
of the angular distributions in PDI process for multiply
charged ions. Furthermore it shows the convenience and
potential of an analytic wave approach to predict general
rules such as the scaling laws.
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