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ABSTRACT

Two types of time scales (ten-day and phenological phases) for environmental variables
were employed in the development of statistical regression models for the southwest
Pampa, Argentina. Models were built to detect the effects of weather in wheat yields for
the period 1977-1999. The parameters were grouped as meteorological, processed and
indices. Total soil-water availability (Att) and the ratio of actual evapotranspiration to
potential evapotranspiration (o), conform the processed variables and were obtained from
a water balance model where moist anomaly index (Z) and Palmer drought severity index
(ISP) are the indices calculated according to Palmer's model. For these parameters it was
possible to detect the decades of the year and the phenological phases best related to grain
yields. The regression equation for meteorological variables in decadal scale is the best
fitted and skill-predictive. Using mixed parameters, both decadal and phenological stage
models perform standard errors of estimate around 200 kg ha”. Truncated models on a
phenological scale behave better than in decadal scale. The use of physiological stages
improved yields estimation, in particular, for those years with extreme meteorological
conditions. The optimal models were tested and a mean square root error (RMSE) of about
400 kg ha™ was obtained.

Key Words: wheat modeling, multivariate regression, environmental variables, pampa

region.



1. INTRODUCTION

The southwest border of the pampa region is characterized by its sub-humid
climate, with high inter-annual rain variability and a negative soil moisture balance. Wheat
is the most important regional cereal production. Variable weather conditions have a direct
impact on crop yields. The environmental major components that affect wheat
development are temperature, photoperiod and vernalization (Miralles and Slafer 2001).
Other factors that have incidence on growth and productivity are water availability and
radiation. Several authors pointed out that winter cereals in the region suffer from water
stress during the late spring season. The largest correlation between monthly precipitation
and yearly wheat yields is observed in November, March and April (Paoloni and Vazquez
1984). Other authors recognize the incidence in yield reduction of the initial soil moisture
content, high air temperature in the filling stage and water deficiency during anthesis
(Travasso et al. 1994). Average yields for the SW pampa region are 2000 kg ha” with
maximum values of 3500-3600 kg ha™', provided that early and abundant rainfall occurs
together with no late frosts and moderate temperatures during grain filling (Gallo Candolo
2001).

Regression-type models have been proposed and applied to estimate weather
effects on yields since the beginning of the XX century and they have been criticized too,
because of their empirical nature that restricts the use to the range of values from which
they were developed. But their use is still adequate for regions where simulation or
deterministic growth models are not available because, among others, the proper model
parameters cannot be correctly determined. Lately, three crop simulation models used to
test the accuracy of grain yield predictions under UK climatic conditions failed to predict
wheat yield. Mis-specified parameters and errors in weather variables or sowing date,

among others, (Landau et al. 1998), may have caused inaccuracy. The same authors were



able to improve their results when they developed a parsimonious, multiple-regression
model, using a minimum number of parameters without losing predictive power, (Landau
et al. 2000). There is also a renewed interest in this type of models as tools to estimate the
impact of climatic fluctuation on the crop productions over wide spread areas. Early
investigations were performed for Bordenave, by Scian and Donnari (1995), using the
monthly Palmer drought severity index (ISP) and the moisture anomaly index (Z) to
estimate wheat yield.

In the present study we used weather data to study the availability of a multivariate
model of wheat yield estimation, employing a time scale of ten days (decadal scale) as well

as periods related to the physiological stages.

2. MATERIALS AND METHODS

Wheat yield and meteorological data from an experimental field in Bordenave
(Latitude: 37° 51" S, Longitude: 63° 01" W, height: 212 m), province of Buenos Aires,
were employed (Source: Ing. Venanzi 2001). Estimated grain yield for other counties was
also used (Source: J.L. Ibaldi 2000). Palmer's model (Palmer 1965) was applied in a
decadal time scale, from 1977 to 2000. Besides accumulated rainfall (pp), and minimum
and maximum mean temperature (Tmi and Tx), other parameters were used. Total soil
water storage (Att) and the ratio between Penman potential and actual evapotranspiration
(ETP/ETR or o) were obtained for a water balance model (Palmer 1965) as well as the
moisture anomaly index (Z) and the Palmer drought severity index (ISP).

The soil of the experimental station is a thermic, loamy sand Entic Haplustoll that
is frequently observed in the study region. It owns medium to low fertility levels and is

highly prone to eolian erosion. Effective depth varies between 0.8 and 1.8 m limited by



the petrocalcic horizon (or tosca layer). "Tosca’ is a local word used to define a soil layer
strongly cemented by calcium carbonate.

Classical Pearson correlation formulas were applied with a 5% significance level.
For the multivariate regression statistic analysis the step-wise method was used, with an F
to-enter value between 1 and 3.5, except for truncated models, and a minimum tolerance
between 0.01 and 0.20, depending on the restriction limit set to select the variables to enter
(Draper and Smith 1981).

Different models were proposed for three meteorological variables, two processed
variables and two indices, in a single way or as mixed parameters. Variables such as
management, genetics and technology were not included. The selection of the optimal
variables conforms the total model. The truncated model is generated when restriction is
imposed on the number of decades to include. The time period goes from previous to
seeding variables (April and May) to harvest time (December). Variables are pre-selected
using a forward step-wise method followed by a backward mode. Finally, between five to
six optimal variables are selected, according to the determination coefficient (R?) and the
standard estimation error (SEE). Care was taken to avoid redundancy. The first 16 years of
crop yields were used to obtain the models and the rest to test them, employing the root
mean square error (RMSE) because of its sensibility to larger errors than the mean absolute
error (MAE).

Wheat yields from the experimental field correspond to full season wheat cultivars;
annual cropping and a fixed sowing date. Taking into account the growth patterns of wheat
and suitable periods for ten-day agroclimatic data the following phenological stages and
decades were used:

1) Seedling: jn3 to jl1;

2) Emergence: jI2 to ag3;



3) Tillaje: sel to se3;

4) Stem elongation: ocl to oc2;

5) Heading : oc3;

6) Anthesis or flowering: nol;

7) Grain filling: no2 to no3;

8) Maturity: del to de2;

9) Harvest: de3.

The ten-day period is identified by numbers 1, 2 or 3, indicating first, second or third

ten-day period for the month.

3. RESULTS
3.1  Data analysis

Measured wheat yields from Bordenave as well as estimations from three
neighboring counties (Espartillar, Puan, Pigue) were analyzed, year-by-year. Grain yields
are shown in Figure 1. The average yield of the period 1979-2000 amounts to 1600 kg ha™.
Two maxima are distinguished for years 1984/85 and 1997/98 respectively.

Figure 1.

The correlation coefficients between wheat yields from Bordenave and the other
locations are highly significative. Maximum and minimum values range from 0.76 to 0.89.
According to this, it might be possible to expand the application of the model obtained,
based on regression equations for Bordenave data, to the regional area with a 60%-80% of
explanation of yield variability.

Mean values of the meteorological variables (Tx, Tmi and pp) at Bordenave, for the
36 decades of the period 1971-2000 are represented in Figure 2, together with the crop

cycle (June to November). The annual mean and standard deviation for rainfall is 790 +



183 mm. Ten-day mean maximum temperature do not exceed 30 C and decadic minimum
values are positive.
Figure 2.

The incidence of rainfall during wheat cycle is documented in Figure 3.
Accumulated precipitation maxima for the crop cycle are coincident with years 1984-1985
and 1994, major yield years. The study region was affected during the "70s with increasing
rainfalls whose effect was reflected in larger yields (Sierra and Brynsztein 1990, Castafieda
and Barros 1994, Roberto et al. 1994, Hoffmann et al. 1997). In contrast, during the
analyzed period there is not a clear positive tendency, so assumption should be made that
yield variability in this period would mainly be the expression of a climatic variability.
Figure 3.

3.2 a) Decadal scale models

Linear regression analysis was applied previous to the determination of the
multivariate method to each one of the meteorological parameters (pp, Tx and Tmi), to the
surface water balance variables (Att and o) and to Z and ISP indices. The total 36 decadal
variables were considered as a first trial and then, only the decades of the crop season.
Table I.

Table I presents the selected variables for the exploratory regression models: MP0O1
(starting at decade ten) and MP02 (27 ten-day periods coincident with crop season). The
best-related variables are enhanced, crossed for MPO1 or shaded for MP02. Results for the
seven linear regression variables show that the ordered parameters (ranked with decreasing
Rz) are: a, Z, Tmi, Att, pp, ISP, Tx for MPO1, and Z, a, ISP, Att, Tx, pp, Tmi for MP02. In
consequence, it is deduced that o and Z are the two bests parameters for a statistical model
in the region. The decades of the crop cycle with the largest number of significative

variables are the first ten-days in August, the second decade in October and the first decade



in November. This statistical analysis gives evidence that crop development during these
particular decades is highly affected by thermal and hydric anomalies.

The best fitting equation for meteorological variables include: Tmi(j12), Tmi(ag3),
Tmi(no3), Tx(oc2) and pp(ag2), pp(no2), (model 1D). Minimum temperature during
November and maximum in October affect yields with negative sign. The R? coefficient is
0.9813 and the SEE amounts 90.5 kg ha™, (here and following: see Table III for modeling
summary results).

When processed parameters are used in a regression model, the selected variables
are: a(ocl), a(no2), a(se2), a(ag2), Att(ocl), a(nol), (model 2D). The value of the
coefficient R” is 0.9203, with SEE of 186.8 kg/ha. Taking account of the variables
included in the model (up to the second decade of November), this selection should define
a naturally truncated predictor model. The inclusion of the variable Att(ocl) shows the
importance of soil moisture during stem elongation. Variable o denotes the relation of
water availability and plant requirements and it is important during almost the whole crop
cycle. According to RMSE obtained in the predictability test, this selection does not make
a good predictor model.

The index variable integrates in only one value the effect of meteorological and
available soil water parameters. The selected variables for such a model includes ISP
during planting (model 3D). Other variables are: Z(se3), Z(no2), Z(ag2), Z(no3) and
Z(agl), and this model has a SEE of 318 kg/ha.

3.2 b) All-variables decadal model

The forward step-wise method was used in order to perform a general selection of
variables. According to the results obtained in the above paragraph, ten variables were
included in the model: a(ocl), Z(no2), Z(no3), Z(oc2), Tx(ag2), Z(nol), pp(se3), pp(j12),

pp(j13), Tmi(se3). Then, using the backward mode, the selected variables obtained were, in



increasing order: pp(j12), pp(se3), pp(nol), pp(no3), Tmi(ag2), Tx(ag2), Z(oc2), Z(nol),
Z(no2), a(ocl). Consequently, the common variables obtained from one and the other
method were established and they are: a(ocl), Z(no2), Z(oc2), Tx(ag2) and pp(jlI2). This
result reinforces the importance of Z and a as predictors of wheat yield, while the ISP
index and the Att were not included as valid variables.

The condition of "up to 6 variables” was added to simplify their future application
in crop estimation equations and the possibility of having more degrees of freedom so as to
obtain better statistical significance. From the different combinations employed, the best
result for the multiple regression equation was expressed by a(ocl), Z(nol), Tmi(se3),
Att(ocl) and pp(jl2) variables, (model 4D) and it is characterized by an SEE of 178.96 kg
ha™' and R? coefficient of 0.9187.

Figure 4.

The relation between predicted and observed values, residuals, and predicted SEE
for this model is shown in Figure 4. When verifying it against 1995 to 1998 observed
yields, a RMSE of 470 kg ha™' was obtained.

3.2 ¢) Truncated model

It was possible to select an equation with four variables: a(ocl), Z(oc3), a(agl)
and pp(oc3), in order to obtain an “early estimation model” truncated by the end of October
(model 5D). The fitting values were: SEE equal to 287 kg ha', R? equal to 72.0 %, F to
enter: 4.85 and minimum tolerance: 0.200. With the introduction of more severe conditions
only two variables were included: Tx(ocl) y Z(oc2). In such case the estimated SEE
increases to 410 kg ha™', in spite of an R? value of 76 %. For both cases, as was expected
for truncated models, the testing procedure gives RMSE values greater than 670 kg ha™.

3.3 a) Phenological phase models
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For the phenological phase scale the same steps as for decadal time scale were
followed. The result of linear regression analysis, when wheat phases are employed is
condensed in Table II.

Table I1.

Statistical results establish that grain yields are strongly related to rainfall amounts
during emergence, stem elongation and flowering stages. Low temperature in the maturity
stage impacts negatively on wheat yields, and so do high temperatures during stem
elongation. Total water storage (Att) is increasingly important during almost all stages. o
and Z indices are detected as variables closely related to grain yields during stem
elongation and grain filling stages. Stem elongation is by far the phenological stage with
more parameters statistically related to yield.

The selection of variables according to crop phases (model 1F) are: pp(7), Tx(7),
Tx(2), Tx(1), Tmi(4), with R* of 87.3% and SEE of 235.5 kg ha'. Model 2F is composed
of: a(4), o(7), Att(4), Att(6) and a(5), with a fitted regression explained by R* value of
84.1% and 250.2 kg ha as estimated SE. Finally, model 3F is formed with Z(7), ISP(1)
and Z(6) variables, with R” of 75.8% and SEE equal to 297.3 kg ha™.

3.3 b) All-variables phenological model

The best model equation obtained to express wheat yield estimation, Y, is:

Y =2628.0 +2273.3 o (4) + 6.1 Z(7) - 17.8 Att(4) + 11.9 Att(6) - 101.7 Tx(4),
with R? of 88.87% and SEE value of 209.5 kg ha™', (model 4F, in Table III).

Figure 5.

Figure 5 shows the relation between predicted and observed values, residuals, and
predicted SE for phenological scale and mixed parameters (model 4F). Residual errors as
function of observed yields are presented in Figure 6.

Figure 6.



11

A tendency to under-estimate yields for low and medium crop-yield values is
apparent. Control test estimation for this model was measured. The RMSE accounts for
440.0 kg ha™ , being the best of all the cases presented.

3.3 ¢) Truncated phenological model

The first six phenological stages including anthesis, were considered in an early
yield estimated model. The best result was obtained for a model which include parameters
o, pp, Att and Tx with a R? coefficient of 0.8727 and a SEE of 224.0 kg ha'. Variable
selection for this truncated model is in accordance with the general model. Slight
differences are due to the elimination of variable Z in phase 7 and the inclusion of
precipitation during anthesis. In contrast with the results for the decadal scale, truncated
models for the phenological case did not result in good estimations and the RMSE
obtained was above 500 kg ha™.

Using the first five phenological phases which includes as selected variables a(4),
Tx(4), pp(1), Att(4) and Att(5) resulted in an R? equal to 0.8406 and estimated SE of 250.6
kg ha' (model 5F). In spite of a larger SE, the RMSE was rather smaller than for the above

model, (491.3 kg ha™).

4. DISCUSSION

It is possible to establish many different associations between variables with
statistical significance which may have a good fitting to the data, but a criterion for
predictability should conform to the agronomic adequacy of the selected variables to crop
developing stages.

Multiple regression models are valuable tools as long as they can stand for easy-to-
obtain variables. In this study variables were kept as linear, no attempt was made to

include crossed variables, exponential or potential functions. The use of a very elaborated
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variable like the ISP shows an inadequate fitting to data; on the other hand, raw
meteorological variables and those from a simple soil water balance give better results
(Table III).

Table 111

However, other authors have found that the mean monthly ISP index has good
correlation with wheat yields (Akinremi and McGinn, 1995). There is no statistical
evidence for the inclusion of pre-season variables into the models selected. The multiple
regression equations for some of the models presented are summarized in Table 1.A of the
Appendix.

In testing the predictive ability of the regression models, unsatisfactory results were
obtained for those years in which meteorological extremes occurred. The high-risk
meteorological extremes such as late frost damage (as in 1998), and heavy rains during
physiological maturity (as in 1996), might be included in future models.

The investigations with complex simulation models as CERES-wheat, for the
pampa region proved that the differences between observed and predicted yields do not
exceed a standard deviation (660 kg ha™), (Magrin et al., 1991). It is then possible to assess
that simple regression models, as some of those presented in this study, might be
considered practical as predictive models and a tool to estimate the impact of climate
change.

Among the limitations and restrictions of this study it is possible to mention: 1)
small number of crop years, 2) no application of the models outside the region and 3) fixed

starting and ending dates of physiological phases.

S. CONCLUSIONS
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For both scale analysis, decadal and phenological models, the following
results were obtained: D1 and D3 are the best fitted and skill-predictive models while D1
has the smallest mean square root error. Models 4 (D and F) are both good and it is thought
that the inclusion of the grain filling phase in 4F performs a better yield fitting, with a
RMSE of 440 kg ha™. Models 1F, 2F and 3F fail to express yields predictions. Truncated
models on a phenological scale (5F) behave better than in a ten-day scale (5D). In fact, the
best models would be those for which SEE and RMSE amount to similar values, such as in
3D, but with a cost expressed in a smaller determination coefficient, 76.9%.

In summary, this investigation shows that environmental variables for decadal and
phenological scale can be employed in the design of multiple regression crops modeling
for wheat yields at Bordenave. In the step-wise regression the decadal models have higher
R? than the phase models. Models with simple averages and totals of temperature and
precipitation, respectively, (model 1D, Table III), provide more meaningful representation
of crop conditions than models with indices as variables. Those variables related to
processed parameters confirm the effect of soil water availability in planting stage and
thermal factors included indirectly in a, (models 2D and 2F, Table III). A predictive
equation with indices evidences the preference of Z variable over ISP (models 3D and 3F,
Table III). Between decadal and phenological scales for truncated models, the best
predictive equations were obtained for phenological stages (models 5D and 5F, Table III).
But, when selecting the variables using all parameters at decadal scales the step-wise
method provides the best results (models 4D and 4F, Table III).

According to RMSE values, the use of physiological stages improved yields
estimation, in particular, for those years with extremes meteorological conditions. A
possible explanation is that phenological phases include several ten-day periods,

moderating the effect of extreme events that have small probability of occurrence. When
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extreme values are present just in a decade not included in the decadal model, estimations
may fail. These models can be improved including new terms with the incidence of late

frost and intense rainfall events.
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Appendix

Table I-A. Interception, variables and coefficients for the best multivariate
regression models as mentioned in the text.

MODEL 1D(met.) 4D(tot.) 4F(tot.) S5F(trun.)
Intercep.

(kg ha™) 9079.4 2493 2843.5 2628.5
Variables Tmin(j12) Pp(j12) o(4) o(4)
Coefficients 23.9 13.8 2532.3 25323
Variables Pp(ag2) Tmi(se3) Att(4) Att(4)
Coefficients 21.24 108.1 -18.0 -17.9
Variables Tmi(ag3) Att(ocl) Tx(4) Tx(4)
Coefficients -134.9 -8.1 -101.8 -130.4
Variables Tmx(oc2) a(ocl) Att(6) Att(5)
Coefficients -215.2 1714.6 11.9 10.0
Variables Pp(no2) Z(nol) Z(7) Pp(6)
Coefficients 5.6 8.1 6.1 11.0

Variables Tmi(no3)
Coefficients -203.0 ) ) )
Adj R? 0.9688 0.8781 0.8330 0.8090
R’ 0.9813 0.9187 0.8886 0.8727
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TABLES

Table 1. a) Agroclimatic ten-day variables best related to wheat yields at Bordenave for
MPO1 model, (shown as X cells) and MP02 model, (pre-season and crop-cycle months,
shown as shaded cells), corresponding to (i) meteorological, (ii) processed and (iii)
index parameters. Enhanced decades (boldface) indicate largest and simultaneous
number of significative parameters. b) Correlation coefficients for both models and

T . . 2
each parameter, (Roman numbers indicate parameters order with decreasing R* values).

a) pp(i) Tmi(i) Tx(1) Att(ii) a (ii) Z(iii) ISP (iii)
apl X
ap2
ap3 X

my?2 X

jnl X X
jn2
jn3 X
ji
j12
jl3 X
agl X X X X
ag? X
ag3
sel

<R

se2

< <

se3
ocl X
oc2 X
oc3
nol X
no2 X X
no3 X
del
de2
de3

Skl
o
| < <
<




b) pp () | TmiG) | Tx() | AttGi) | aGi) | 2zGi) | ISP (iii)
AdjR® | 0.8211 | 0.8932 | 0.6643 | 0.9066 | 0.9696 | 0.9463 | 0.7498
R® | 0.8964 | 0.9497 | 0.7566 | 0.9417 | 0.9826 | 0.9718 | 0.8420
MPO1 % I VII v I I VI
AdiR® | 0.7220 | 0.7424 | 0.7648 | 0.8498 | 0.9138 | 0.9235 | 0.8602
R® | 0.8538 | 0.8485 | 0.8893 | 0.9028 | 0.9594 | 0.9640 | 0.9178
MP02 | VI VII % v 11 I I

Table II. Correlation coefficients between grain yields and agroclimatic variables

using phenological stages. Enhanced values (boldface) indicate significance level

of 5%.
Period PP Tmi Tx a Att Z ISP
Previous | 1510 | -0.4359 | -0.1658 | 0.0162 | 0.0488 | -0.1559 | 0.0919
Mr1_Jn2
Planting | (o1 | 03584 | 0.1438 | -0.1193 | -0.1157 | -0.0745 | -0.1367
Jn3_JI
Emergence |  3c20 | 02168 | -0.2975 | 0.1627 | 0.1503 | 03119 | 0.0558
J2_Ag3
Tillering | »737 | 02317 | -0.2844 | 0.3526 | 02600 | 0.3429 | 0.1249
Sp1_Sp3
Stemelong. | <415 | 0.0371 | -0.5480 | 0.6990 | 0.4833 | 0.5870 | 0.3702
Ocl_Oc2
Hegg;"g 02528 | -0.0742 | -02554 | 0.4484 | 0.5081 | 0.3185 | 0.4363
Fl"gg;‘“g 0.4493 | -0.2292 | -03083 | 03576 | 0.5311 | 0.4452 | 0.4743
Grain fill. 1 5100 | 0.0936 | -0.2499 | 0.5964 | 0.5961 | 0.6125 | 0.5342
No2_No3
Maturity
20.2865 | -0.4058 | -0.0910 | 0.0650 | 0.1072 | -0.2612 | 0.2162
Del_De2
H;‘)r:;“ 0.2570 | -0.2490 | -0.0156 | -0.2280 | 0.2620 | 0.2249 | 0.2562
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Table III. Selected variables for decadal (D) and phenological (F) models, its

determination coefficient, R* (%), estimated standard error, SEE (kg ha™) and root mean

square error, RMSE ( kg ha™). The best fitted models are enhanced (boldface).

Models Variables R? SEE | RMSE
1D(met) | Tmi(jl2) | Tmi(ag3) | Tx(oc2) | Tmi(no3) | pp(ag2) |pp(no2) | 98.1 90.5 345.7
2D(pro) a(ocl) a(oc2) a(se2) a(ag2) | Att(ocl) | a(nol) | 92.0 | 186.8 | 501.8
3D(ind) Z(se3) Z(mo2) | ISP(jn3) | Z(ag2) Z(mo3) | Z(agl) | 769 | 318.2 | 365.8
4D(tot) a(ocl) Z(nol) | Tmi(se3) | Att(ocl) | Pp(jl12) - 91.9 | 178.9 | 470.0
5D(tru) a(ocl) | pp(ag3) | pp(se3) | pp(oc2) a(oc2) | pp(sel) | 82.5 | 276.7 | 668.6
1F(met) pp(7) Tx(7) pp(6) pp(1) Tmi(3) - 87.2 | 2242 | 7913
2F(pro) o(4) o(7) Att(4) Att(6) a(s5) - 84.1 | 250.2 | 740.0
3F(ind) Z(7) ISP(1) Z(3) Z(1) - - 61.8 | 373.5 | >1000
4F(tot) o(4) Z(7) Att(4) Att(6) Tx(4) - 88.9 | 209.5 | 440.0
5F(tru) o(4) Tx(4) pp(1) Att(4) Att(5) - 84.0 | 250.6 | 491.3
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Figure Legends

Figure 1. Estimated (for three counties of the Southwest Pampa) and measured
(Bordenave) wheat yields (kg ha™) during 1979-2000 crop years.

Figure 2. 30 years (1971-2000) ten-day mean for accumulated precipitation and mean
maximum and minimum temperature at Bordenave. The growing season ranges from
June to December.

Figure 3. Accumulated precipitation (mm), during the crop season period at Bordenave.
The same, for two counties of Buenos Aires province. Period 1979-2000.

Figure 4. Predicted and observed grain yields, residuals, and predicted standard error
(kg ha™), for decadal variables a(ocl), Z(nol), Tmi(se3), Att(ocl) and pp(j12), (model
4D).

Figure 5. Predicted and observed grain yields, residuals, and predicted standard error
(kg ha™), for phenological scale variables a(4), Z(7), Att(4), Att(7) and Tx(4), (model
4F).

Figure 6. Residual errors as a function of observed grain yields (kg ha™) for model 4F.



\

\

I

."‘ 7 *
g “‘ ‘.\ \

R

f A\
. Wl ¥ c A\
740 . o W\
o) ol 3 \\ /
* 3 Y/
v

0 T T T T T T T T T

—+— Espartillar - —— - Pigue ---¢--- Puan

Bordenave

79/80
81/82
83/84
85/86
87/88

89/90
91/92
93/94
95/96

97/98

99/00

21

Figure 1. Estimated (for three counties of the Southwest Pampa) and measured

(Bordenave) wheat yields (kg ha™) during 1979-2000 crop years.
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Figure 2. 30 years (1971-2000) ten-day means for accumulated precipitation

and mean maximum and minimum temperature at Bordenave. The growing

season spands from June to December.
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Figure 3. Accumulated precipitation (mm), during the period june to november at

Bordenave. The same for 2 counties of Buenos Aires province. Period 1979-2000.
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Figure 4. Predicted and observed grain yields, residuals, and predicted standard

error (kg ha™), for decadal variables a(ocl), Z(nol), Tmi(se3), Att(ocl) and

pp(j12), (model 4D).
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Figure 5. Predicted and observed grain yields, residuals, and predicted standard

error (kg ha™), for phenological scale variables a(4), Z(7), Att(4), Att(7) and

Tx(4), (model 4F).
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Figure 6. Residual errors as a function of observed grain yields (kg ha™) for

model 4F.



