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Abstract

This investigation arose from the practical necessity of placing a centrifugal pump rigidly
attached to a thin, circular cover plate of a water tank in a medium size ocean vessel. Due to
lack of space, it was necessary to locate the system off—center of the circular configuration.
It was considered necessary to calculate the fundamental frequency of the coupled system.
The first part of the present study is concerned with the determination of the fundamental

frequency of vibration of a circular plate carrying a concentrated mass at an arbitrary pos-
ition, using a variational approach.
Numerical results are obtained for the stated problem for several combinations of the

intervening geometric and mechanical parameters.
An experimental investigation is also performed in the case of clamped plates.
Based on the results for solid circular plates, the fundamental frequency of annular plates

with a free inner edge and a concentrated mass is also obtained.
Circular plates are fundamental structural elements in ocean engineering applications:

from off-shore platforms to underwater acoustic transducers. In a great variety of circum-
stances, they must carry operational systems in an eccentric fashion. Since the dynamic per-
formance is always of interest, one must know at least some of the basic dynamic
parameters.
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1. Introduction

A survey of the literature reveals that free transverse vibrations of circular plates

carrying a rigidly attached point mass have only been studied, when the mass is

placed at the plate center (Roberson, 1951; Leissa, 1969 and Laura et al., 1984).
The exact solution, obtained by Roberson, requires a Bessel function expansion

of zero order.
On the other hand, if the mass is eccentric with respect to the plate configur-

ation, the exact solution is considerably more complicated, since it would require

combinations of Bessel functions of higher order and trigonometric terms in the

azimuthal variable. For the present study, since one is specially interested in the

fundamental frequency coefficient, it was decided to use, in the case of a solid

plate, combinations of polynomials which identically satisfy the plate boundary

conditions and trigonometric terms in the angular variable taking into account the

lack of radial symmetry when the mass is off-center. The polynomials contain an

undetermined exponential parameter, which allows for further optimization of the

frequency coefficient once the classical Rayleigh–Ritz method is implemented.
The methodology was also implemented in the case of a circular annular plate

with a free inner edge and carrying a concentrated mass. The same coordinate

functions as in that case of solid plates were used. Accordingly, the natural bound-

ary conditions were not satisfied at the inner edge but this is legitimate when

applying the Rayleigh–Ritz method.
It is felt that the problem tackled in this paper is of general interest in several

modern engineering applications: from mechanical systems design to mounting a

transformer or an electronic device on a circular printed circuit board.
However, the present investigation was generated by the need to know the fun-

damental frequency of a thin circular plate carrying a centrifugal pump placed on

top of a tank in the power plant of a medium size ocean vessel. Due to space lim-

itations the pump was attached eccentrically with respect to the circular plate.
A limited amount of experimental results was obtained in the case of a circular

solid plate and good engineering agreement with the analytical predictions is

shown to exist.
It must be emphasized that circular (solid or annular) plates are quasi-universal

structural elements in engineering applications: from transducer elements to bulk-

heads as well as supporting elements in off-shore platforms. In a great variety of

instances they must carry operating electromechanical or electronic systems placed

off center. Hence the need of knowledge of their basic dynamic structural para-

meters such as lower natural frequencies of transverse vibration.
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2. Approximate analytical solution

The conventional Rayleigh–Ritz formulation for vibrating circular plates with

a concentrated mass at arbitrary position (Fig. 1) involves the following energy

functional:
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Fig. 1. Circular plates carrying a concentrated mass M at an arbitrary position.
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where Wð�rr; hÞ is the amplitude of the plate’s displacement and Mð�rr; hÞ is the ampli-
tude of the radial bending moment (Bambill, 1994). As the edge rotation is
opposed by spiral springs having distributed flexibility u (unit length/moment) it
can be expressed:

Mða; hÞ ¼ 1

u
@Wð�rr; hÞ

@�rr

����
�rr¼a

Adimensional parameters and coefficients are used to simplify the formulation
into a non-dimensional form:

r ¼ �rr

a
ð2aÞ

r1 ¼
�rr1
a

ð2bÞ

X ¼ x

ffiffiffiffiffiffi
qh
D

r
a2 ð2cÞ

D ¼ Eh3

12ð1� l2Þ ð2dÞ

X is the vibration dimensionless frequency coefficient, q is the density of the plate
material, E and l are Young’s modulus and Poisson’s ratio, respectively.

The approximate functional relation for the deflection of the plate is assumed
to be:

Wðr; hÞ ffi Waðr; hÞ ¼
XN
j¼0

AjfjðrÞgjðhÞ ð3Þ

where:

f0ðrÞ ¼ 1þ a0rc þ b0r
2

f1ðrÞ ¼ 1þ a1rc þ b1r
2

� 
r2
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..

.
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..
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fNðrÞ ¼ 1þ aNrc þ bNr
2
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and

gjðhÞ ¼ cosjh for j ¼ 0; 1; 2; . . .N

The aj’s and bj’s coefficients are determined by applying the boundary conditions in
terms of the deflection and its derivatives at r ¼ �rr=a ¼ 1.
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The governing boundary conditions are:

Wðr; hÞjr¼1¼ 0 ð4aÞ
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where / ¼ uD=a is the adimensional flexibility coefficient of the boundary springs.
The corresponding coefficients of the coordinate functions are accordingly func-

tions of l, / and c, for j ¼ 0
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For the case of a simply supported plate / ¼ uD=a ! 1
Hence, for j ¼ 0
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On the other hand for a clamped plate one has / ¼ uD=a ! 0.
Accordingly:
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Replacing Eq. (3) into the energy functional (1) and minimizing it with respect to

the Ai parameters.

@JðWÞ
@Ai

¼ 0; i ¼ 0; 1; 2; . . . ;N ð5Þ

a trascendental equation in X(c) is found using the non-triviality condition.
The optimization parameter c allows for the determination of an improved

eigenvalue X1 (the lowest root of the trascendental equation),

@X1ðcÞ
@c

¼ 0 ð6Þ

The analytical approach was also used to calculate the frequency coefficients of

annular plates with a free inner edge (Fig. 2), at the second stage of the analytical

investigation.

Fig. 2. Annular plates carrying a concentrated mass M at an arbitrary position.
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For the annular plate, the functional is:

JðWÞ ¼ D
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Obviously, in the case of elastically restrained edges, one must add to the gov-
erning functional, the mechanical energy stored in the restraints.

The formulation is reduced into a non-dimensional form by using the adimen-
sional coordinate functions and coefficients (2a–d). The parameter ri ¼ b=a results
now in order to define the geometric configuration.

Expression (3) is used for the deflection’s amplitude of the annular plate too:

Wðr; hÞ ffi Waðr; hÞ ¼
XN
j¼0

AjfjðrÞgjðhÞ

The coordinate functions fj(r) and gj(h) satisfy only the conditions at the outer
boundary. The mass is at the �rr1; h1ð Þ position.

3. Numerical results and experimental investigation

Table 1 presents the fundamental vibrating coefficients X1 for a rigidly clamped
plate carrying a concentrated mass at its center. The mass adimensional parameter

M=Mp is referred to the mass of the circular solid plate, Mp ¼ pr2hq
� 

.

The first column of coefficients has been taken from Leissa classical treatise
(Leissa, 1969), the second column is from Laura et al. (1984) and the third column
depicts the results obtained in the present investigation.

Table 1

Frequency coefficients X1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2 for a rigidly clamped circular plate carrying a concentrated

mass at its center

M=Mp Leissa (1969) Laura et al. (1984) Present study

0 10.214 10.22 10.226

0.05 9.012 9.01 9.012

0.10 8.111 8.11 8.111

0.20 7.000 6.87 6.872

0.50 5.000 5.02 5.023

1.00 3.750 3.75 3.759
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Table 2 depicts natural frequency coefficients X1 of a simply supported circular
plate (with l ¼ 0:30) with a concentrated mass at its center. In both tables, it is to
be observed that the agreement between results obtained by other researchers and
present ones is good.

It is important to remark that the presence of the function gj(h) inside Eq. (3),
which takes into account the angular dependence, disturbs the result when the
punctual mass is at the center. As it was expected, the function W(r, h) is not a
very convenient approximation in this case, because the gj(h) term disturbs the
symmetry.

Tables 3–5 depict the values of the fundamental frequency coefficients for circu-
lar plates with different boundary conditions. The mass relation M=Mp varies from
0.05 to twice the mass of the solid plate, while the position of the mass changes
from a position near to the center (r1 ¼ 0:05) to the boundary: r1 ¼ 1.

Fig. 3 shows how the frequency coefficient X1 decreases as the mass ratio increa-
ses from M=Mp ¼ 0 to M=Mp ¼ 2 for a circular plate clamped at its boundary as
it was to be expected.

It is to be observed that the variation of X1 is more noticeable when the mass M
is near the center of the plate (M=Mp ¼ 0:10; X1 ¼ 9:07 and M=Mp ¼ 2; X1 ¼

Table 3

Frequency fundamental coefficients X1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2 for a clamped circular plate with a concentrated

mass M at (r1, h1) position

Mass position (r1, h1) M=Mp

r1 ¼ �rr1=a 0.05 0.10 0.20 0.30 0.50 1.00 1.50 2.00

0 9.01 8.11 6.87 6.05 5.02 3.76 3.13 2.74

0.10 9.07 8.21 7.01 6.22 5.19 3.91 3.27 2.87

0.20 9.22 8.45 7.34 6.58 5.56 4.25 3.57 3.14

0.30 9.41 8.76 7.77 7.05 6.05 4.70 3.97 3.50

0.40 9.63 9.12 8.27 7.61 6.64 5.24 4.46 3.95

0.50 9.84 9.48 8.82 8.25 7.33 5.88 5.03 4.47

0.60 10.02 9.82 9.39 8.96 8.17 6.70 5.77 5.13

0.70 10.14 10.06 9.87 9.66 9.18 7.92 6.92 6.19

0.80 10.20 10.18 10.14 10.10 9.99 9.61 9.04 8.39

0.90 10.22 10.22 10.22 10.21 10.21 10.19 10.18 10.16

Table 2

Frequency coefficients X1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2 for a simply supported circular plate carrying a concentrated

mass at its center (l ¼ 0:30)

M=Mp Leissa (1969) Laura et al. (1984) Present study

0 4.935 4.93 4.936

0.05 – – 4.547

0.10 – 4.23 4.231

0.20 3.767 3.75 3.750

0.50 2.945 2.92 2.913

1.00 2.291 2.25 2.255
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2:869 when the mass is at r1 ¼ 0:10) (clamped plate) than when the mass is placed
close to the outer boundary. Fig. 4 corresponds to the case of simply supported
circular plates.

Some experiments were performed on solid circular plates to investigate the
effect of the mass.

The first set of tests was performed on a clamped stainless steel plate of 0.09 cm
of thickness. The diameter of the plate was 39 cm.

The concentrated mass was located at the geometric center (r1 ¼ 0) and at two
positions out of the center (r1 ¼ 1=3; 2=3).

The mass ratios M=Mp were of 0.442 and 0.530, respectively.
A second experience was made on a thin clamped iron plate (h ¼ 1:24 cm) with

three different mass ratios M=Mp ¼ 0:326, 0.475 and 0.600. The frequency values,

expressed in Hertz, are in Table 7. The deviation is very small when the mass is

Table 5

Frequency fundamental coefficients X1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2 for a circular plate carrying a concentrated mass

M at (r1, h1) position and with a rotational elastic constrain along the edge (/ ¼ ua=D ¼ 0:05; l ¼ 0:30)

Mass position (r1,

h1)
M=Mp

r1 ¼ �rr1=a 0.05 0.10 0.20 0.30 0.50 1.00 1.50 2.00

0 8.20 7.30 6.28 5.58 4.67 3.52 2.94 2.58

0.10 8.04 7.35 6.35 5.66 4.76 3.61 3.02 2.65

0.20 8.14 7.51 6.58 5.92 5.04 3.87 3.26 2.86

0.30 8.28 7.73 6.90 6.28 5.41 4.22 3.57 3.15

0.40 8.43 7.99 7.26 6.69 5.86 4.63 3.95 3.50

0.50 8.59 8.27 7.68 7.17 6.37 5.12 4.38 3.89

0.60 8.74 8.53 8.11 7.71 6.99 5.72 4.93 4.38

0.70 8.85 8.75 8.53 8.29 7.77 6.58 5.72 5.11

0.80 8.91 8.89 8.82 8.75 8.57 7.95 7.21 6.55

0.90 8.94 8.93 8.93 8.92 8.90 8.86 8.80 7.73

Table 4

Frequency fundamental coefficients X1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2 for a simply supported circular plate with a con-

centrated mass M at (r1, h1) position ðl ¼ 0:30Þ

Mass position (r1, h1) M=Mp

r1 ¼ �rr1=a 0.05 0.10 0.20 0.30 0.50 1.00 1.50 2.00

0 4.54 4.23 3.75 3.39 2.93 2.25 1.90 1.67

0.10 4.55 4.25 3.78 3.43 2.95 2.29 1.94 1.71

0.20 4.58 4.29 3.85 3.52 3.05 2.39 2.03 1.79

0.30 4.62 4.37 3.96 3.64 3.18 2.53 2.16 1.91

0.40 4.68 4.46 4.09 3.80 3.36 2.70 2.32 2.06

0.50 4.74 4.56 4.25 3.99 3.58 2.92 2.53 2.26

0.60 4.79 4.66 4.42 4.21 3.84 3.21 2.80 2.51

0.70 4.85 4.77 4.61 4.46 4.17 3.60 3.19 2.89

0.80 4.89 4.86 4.78 4.70 4.54 4.16 3.82 3.54

0.90 4.92 4.91 4.89 4.87 4.84 4.73 4.62 4.51
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located at r1 ¼ 1=3 and slightly larger deviation is observed when the mass is loca-

ted at r1 ¼ 2=3.
A comparison was also performed with an experimental result available in the

literature (Delaplane and Kerlin, 1990) for a thin aluminum clamped circular plate

with a concentrated mass M=Mp ¼ 0:903 at r1 ¼ 0:38. The corresponding mea-

sured frequency is 54 Hz and the value obtained using the formulation developed

in the present study for this case is 54.12 Hz. For the lower relation of

M=Mp ¼ 0:041, the agreement between experimental and analytical results is not

good as Delaplane and Kerlin show in their study.
Tables 6 and 7 depict comparisons of analytical and experimental results per-

formed on stainless steel and steel plates, respectively, for several mass ratios and

mass positions. In general, a good engineering agreement is observed.

Fig. 4. Frequency fundamental coefficients of simple supported plates carrying a concentrated mass.

Fig. 3. Frequency fundamental coefficients of clamped plates carrying a concentrated mass.

D.V. Bambill et al. / Ocean Engineering 31 (2004) 127–138136



Table 8 presents fundamental eigenvalues for clamped-free annular plates when

the point mass is attached at the inner boundary, while Table 9 deals with, the sim-

ply supported-free case, Mp ¼ pqhð1� r2i Þ.

Table 7

Frequency coefficients in Hertz for a thin steel circular plate, clamped at its outer boundary and carrying

a concentrated mass M at (r1, h1)

Mass

position

(r1, h1)

M=Mp ¼ 0:326 M=Mp ¼ 0:475 M=Mp ¼ 0:600

r1 ¼ �rr1=a Experi-

mental

results

(Hz)

Analyti-

cal

results

(Hz)

Percent-

age devi-

ation (%)

Experi-

mental

results

(Hz)

Analyti-

cal

results

(Hz)

Percentage

deivation

(%)

Experi-

mental

results

(Hz)

Analyti-

cal

results

(Hz)

Percent-

age devi-

ation

(%)

0 56.2 – – 49.9 – – 44.8 – –

1=3 58.3 58.31 0.02 55.3 52.7 5.0 50.1 48.8 2.6

2=3 60.6 77.95 22.2 78.8 78.7 0.8 68.3 71.0 3.9

Table 6

Frequency coefficients in Hertz for a thin stainless steel circular plate, clamped at its outer boundary and

carrying a concentrated mass M at (r1, h1)

Mass position

(r1, h1)
M=Mp ¼ 0:442 M=Mp ¼ 0:630

r1 ¼ �rr1=a Experimental

results (Hz)

Analytical

results (Hz)

Percentage

deviation (%)

Experimental

results (Hz)

Analytical

results (Hz)

Percentage

deviation (%)

0 29.1 – – 27.5 – –

1=3 28.8 28.1 2.6 25.9 25.2 2.3

2=3 32.6 35.3 7.8 28.7 30.4 5.5

Table 8

Frequency fundamental coefficients X1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2 for clamped-free annular plates with a con-

centrated mass M attached at the inner free boundary (ri, h1)

Mass position X ¼
x1

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
a2

M=Mp

r1 ¼ �rr1=a ¼ ri 0.05 0.10 0.20 0.30 0.50 1.00 1.50 2.00

0.05 9.01 8.10 6.83 6.00 4.96 3.70 3.07 2.69

0.10 9.03 8.07 6.76 5.92 4.87 3.62 3.00 2.62

0.20 9.21 8.19 6.85 5.99 4.94 3.68 3.06 2.67

0.30 10.06 8.99 7.55 6.62 5.47 4.08 3.39 2.97

0.40 11.98 10.72 9.00 7.88 6.50 4.83 4.01 3.50

0.50 15.60 13.88 11.50 9.97 8.11 5.94 4.89 4.25

0.60 22.40 19.42 14.66 12.35 9.82 7.08 5.82 5.06

0.70 33.19 30.32 20.04 16.77 13.26 9.52 7.82 6.79

0.80 61.01 47.27 35.21 29.28 23.69 16.47 13.50 11.71
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As a general conclusion one may say that the fact that simple polynomial
approximations combined with trigonometric expressions, coupled with a classical
variational approach, allow for the solution of a complex elastodynamics problem
in a simple manner, is rather remarkable.
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