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a b s t r a c t

Impedance spectroscopy combined with principal component analysis allows the trace detection of metal
ions. The detection system is based on two modified electrodes, each of them containing a chelating
agent (pyrocatechol violet and a nitrilotriacetic derivative); as the chelator is able to capture the metal
ion at very low concentrations, important electrical changes are produced on the surface environment,
generating patterns with different features for each ion. The system is able to differentiate eight metal
ions (Al3+, Fe3+, Cd2+, Pb2+, Hg2+, Cu2+, Ca2+ and Ag+) at micromolar levels in ultrapure water. The method
allows the detection of metal ions in aqueous samples without the need of sample conditioning, rinsing
steps or the addition of probes. Selecting the appropriate frequencies and sensors, the array can also be
applied to different aqueous systems such as bottled mineral water or concentrated NaCl (27%) yielding
similar results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The assessment of hazardous metal ions is an important practice
due to their potential toxic effects on humans, and/or the adverse
impacts on the environment. The toxicity concern includes also
aluminum, the most abundant metal in the Earth’s crust, and the
third most abundant element therein. Even though a direct rela-
tion between the role of aluminum and other metals (Cu, Fe) in
Alzheimer’s disease has not yet been definitively demonstrated,
epidemiological evidence suggests that elevated levels of them in
the brain may be linked to the development of the disease [1,2]. Cur-
rently, the U.S. EPA does not regulate aluminum under its drinking
water program, but has a secondary non-enforceable standard of
50–200 �g/L [3].

Determination of these species at low detection limits can be
carried out by spectroscopic techniques; however this is a time and
cost intensive task for products based on aqueous solution (drink-
ing water, beverages, pharmaceutical products), considering that
most of the time, under good processing practices, the results fall
below the maximum levels allowed. Therefore it would be very con-
venient to develop a sensor able to alert when one of these metal
ions is present above a threshold level without sample condition-
ing.

Most of these ions are able to form very stable complexes with
multidentate chelating ligands capable of capturing ions in ppb
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concentrations due to their high affinity constants [4–6]. This is an
important feature; however the problems of selectivity, generally
poor, and of signal transduction still remain. The most popular way
of detection is through colorimetric techniques, though sometimes
the change in absorbance is not sensitive enough. A partial solu-
tion to this problem is the use of chelating agent with fluorescent
properties; though it cannot be universally applied. Regarding the
selectivity, an ingenious solution was presented by Anzenbacher
and co-workers for identification of different metal ions [7] using
a set of chelating fluorophores, analyzing the resulting signals by
partial component analysis.

One common characteristic of these positively charged species
is the fact that all of them can show electrical effects in the system;
however, at low concentrations these changes will not be suffi-
ciently important to produce a sensitive signal. A simple way to
enhance their detection is capturing them at an electrode surface,
and observing the changes produced in the capacitance or in the
electron transfer process of a probe.

In the last years several groups have used the impedimetric
response of a surface as transduction method for the detection of
species at low concentrations, either by specific recognition, or by
pattern recognition methods. In the first case aptamers, antibodies,
DNA or recently “covalent virus layer” were use to introduce selec-
tivity [8–10]. Due to the high association constants of these species,
it is possible to detect very low concentrations of analytes. In the
second case, less selective systems were used to identify groups of
compounds rather than individual species [11,12].

In some of these studies a redox couple, i.e. ferri-/ferrocyanide,
is used to follow the chemical changes produced on the electrode
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Scheme 1. Chemical structures of the chelators used in this work: N,N-
bis(carboxymethyl)-l-lysine (dNTA) at left and pyrocatechol violet (PV) at right.

surface. One of the advantages of this method is that it facilitates
the analysis of the signal, since the couple is a very well known sys-
tem. For example, the analyte concentration can be determined by
the changes of the electron transfer process at the electrode surface
[8]. On the other hand, when probes are not present, the analysis
is mainly restricted to capacitance and resistance changes in the
system [11,12]. A third approach can be the use of a probe already
present at the electrode surface. Changes in the environment can
affect the probe’s formal redox potential; in impedimetric studies,
even changes of few mV can be very important regarding the elec-
tron transfer rate at a given potential. This information, plus other
electrical changes due to the adsorption of charged species at the
electrode surface, may produce a data set useful for distinguishing
the nature of the different adsorbed species.

In this work the detection of eight different metal ions (Al3+,
Fe3+, Cd2+, Pb2+, Hg2+, Cu2+, Ca2+ and Ag+) in water is carried out
using chelating sensors. The fast reactions between the ions and
the chelators concentrate the charged species at the surface of the
sensor, and the resulting electric effects are detected by impedance
spectroscopy. The sensors are built by simple steps, incorporating
two commercially available chelators on the surface: a deriva-
tive of nitrilotriacetic acid (dNTA) and pyrocatechol violet (PV)
(Scheme 1). The effect of the metal ion on the impedance response
of a redox couple bound to the electrode is used to produce a set of
data, able to be processed by principal component analysis (PCA),
cluster analysis (CA) and multivariate discriminant analysis (MDA).
The system allows the identification and detection of these ions at a
threshold concentration of 1 �M in different aqueous samples, such
as ultrapure water (resistivity 18 M� cm), bottled mineral water
and a concentrated NaCl solution.

2. Experimental

2.1. Reagents

Aniline, 3-aminophenylacetic acid (3-AFA), N-(3-dimethyl-
aminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), N-
hydroxysuccinimide (NHS), N,N-bis(carboxymethyl)-l-lysine
(dNTA) were provided by Sigma-Aldrich Argentina. Pyrocatechol
violet (PV) was from Merck. Metal ion solutions were made
from nitrate salts of each cation. All other reagents used were
analytical grade. Aniline was distilled prior to use. Ultrapure
water (resistivity 18 M� cm) was obtained with a Millipore MilliQ
water purification system. Bottled mineral water (Villa del Sur,
Argentina; lot LB4133), pH 7.8, containing 19 ppm Ca2+, 12 ppm
Mg2+, 164 ppm Na+, 10 ppm K+, 450 ppm HCO3

−, 0.7 ppm F−.
Concentrated NaCl (27% NaCl) was a gift from Fresenius Medical
Care Argentina, the solution is prepared with NaCl and water
complaining Pharmacopoeia standards and it is used for the
preparation of hemodialysis baths. All the other reagents were
analytical grade.

2.2. Sensor construction

2.2.1. dNTA sensor
Scheme 2A shows the disposable eight-graphite electrode

array constructed by screen printing in a similar way as previ-
ously reported (without silver underlying tracks) [13]. Sequential
polymerization of aniline and 3-AFA was carried out by cyclic
voltammetry between −0.2 and 0.85 V vs Ag/AgCl at 10 mV s−1.
First, the electrodes were immersed in a solution of 90 mM aniline
in 1.8 M H2SO4 and the potential was simultaneously cycled six
times; then, the electrodes were rinsed with water, and immersed
in a solution of 10 mM 3-AFA in 1.8 M H2SO4 and the potential
cycled four times. Finally, the electrodes were rinsed with ultrapure
water. The carboxylate groups present in the electrodes were acti-
vated with a solution containing 50 mM EDC, 12 mM NHS in MES
buffer, pH 5.5 for 30 min to activate the carboxylate groups. After
the activation step, the electrodes were rinsed with MES buffer,
pH 5.5 and immersed in a 5 mM dNTA in 50 mM PIPES buffer, pH
7.5 for 1 h. Then, the electrodes were rinsed with ultrapure water.
Each electrode was divided in two by making an incision with a
scalpel, leaving an insulating gap of 40 �m between them. One half
was used as working electrode and the other as counter electrode.
Finally, the eight sensors are separated and the samples were indi-
vidually analyzed.The amperometric response of the electrode was
stabilized by cycling the electrode at 10 mV s−1 between −0.2 and
0.55 V ten times, and then left at 0.2 V vs Ag/AgCl for 200 s.

2.2.2. PV sensor
A disposable eight-graphite electrode array was immersed in

a 5 mM PV aqueous solution for 90 min, then the electrodes were
rinsed with ultrapure water. Each electrode was divided in two
by making an incision with a scalpel, leaving an insulating gap
of 40 �m between them. One half was used as working electrode
and the other as counter electrode. Finally, the eight sensors were
separated and the samples are individually analyzed

2.3. Electrochemical impedance spectroscopy (EIS) measurements

EIS measurements were performed using a �AUTOLAB type III
impedance analyzer. The cell was made in acrylic, the reference
electrode was placed over the working and counter electrodes at
a fixed distance of 70 �m. The impedance spectra were recorded
within a frequency range of 10−1–104 Hz. The potential was fixed
at 0.2 V for the dNTA sensor, and 0.17 V for the PV sensor. The ampli-
tude of the alternating voltage was 10 mV. A total of 51 frequencies
were studied with logarithmic distribution in each decade. Each
metal ion was investigated in a new modified electrode, where
first ultrapure water (or other pure sample) was analyzed and then
addition of the respective metal ion to a final concentration ranging
from 1 to 250 �M was carried out. Results were analyzed in terms
of resistance (Z′) and capacitive reactance (Z′′).

2.4. Multivariate data analysis

Each measurement was performed using a 2-sensor array, deter-
mining Z′and Z′′ at a number of 51 frequencies for each sensor. Thus,
each measurement was considered as a vector of an N-dimensional
vector space with N equal to 204 (2 sensors × 2 variables × 51 fre-
quencies). In addition, considering that four concentrations were
tested with three trials for each concentration and for each metal
ion, then twelve measurements for each ion were obtained. This
renders to a M × N data matrix composed by M-measurement files
and N-coordinate rows, where M = 12 × number of considered ions
to be discriminated (about eight ions plus the solvent). Therefore, a
matrix of about M = 108 and N = 204 was initially used as input for
the multivariate analysis. However, the size of the input data matrix
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Scheme 2. Schematic representation of the sensor construction. (A) Graphite electrode platform. (B) Experimental cell configuration. (C) Chemical modification of the sensors
used in this work.

was significantly reduced later by an appropriated selection of the
most representative input data, based on inspection of the loading
factors recovered by principal component analysis, which leads to
values of N between 18 and 30 depending of the particular case.

2.4.1. Unsupervised methods
Two unsupervised methods, principal component analysis

(PCA) and cluster analysis (CA), which are the most commonly
methods used for analyzing sensor’s array data, were performed
[14,15].

In PCA, the projections of each measurement vector into the
orthonormal base of the N-dimensional associated to the direc-
tions of the maxima data variance were obtained by diagonalizing
the correlation matrix. These projections are referred as the so-
called principal components. Frequently, the projections into the
first two or three directions of the new base of the vector space
contains more than 90% of the total data variance, thus investiga-
tion of these reduced subset of components improves the ability for
grouping data for discrimination purposes providing a substantial
dimensional reduction. Hence, the results of PCA are 2D or 3D plots,
commonly referred as PCA-maps or score plots, representing the
relevant principal components for each measurement performed
with the sensor array. The samples are grouped by similarities in
these PCA-maps and groups observed by visual inspection.

Cluster analysis (CA) is also an unsupervised method [15]. The
main difference respect to PCA is the ability to quantitatively test
the performance of the sensor system for the correct clusterization
of the data, indicating the power to group the information held in
each sample in a number of desired groups. The number of groups,
referred as clusters, is chosen by the operator following his needs or
previous knowledge of the type of samples. In our case the number
of chosen clusters was equal to the number of ions plus solvent to
be discriminated (for example, nine clusters in the case of ultrapure
water solutions).

CA can be implemented using different algorithms In this work
the Partition Around Medoids (PAM) algorithm was used, which is
based on searching k representative objects among the data set
(k = number of target clusters), called medoids. The medoids are

calculated such as the total distance between all elements and
their nearest medoid is minimal. The number of desired classifi-
cation clusters, to which the input data are going to be assigned
after running PAM, must be fixed previously. Each element is then
assigned to the cluster corresponding to the nearest medoid. There-
fore, PAM indicates by which data input are the clusters composed
by; hence the number of correctly grouped samples can be deter-
mined.

In addition CA provides also the so-called silhouette of each clus-
ter. For each element i (each input data), the silhouette value sv(i) is
given by sv(i) = (a(i) − b(i))/(max{a(i), b(i)}), where a(i), is the aver-
age distance between the element i to all others elements in the
cluster, while b(i) is the average distance from i to all others ele-
ments of the nearby cluster. If sv(i) is close to 1, the element i is
well clusterized, while if sv(i) is close to −1, the element i is badly
clusterized. In practice, the optimal clusterization is given by simi-
lar values of sv(i) for the different samples within the same cluster,
and by values close to 1 of its average, referred as the average sil-
houette width, ASW. Currently, values of ASW between 0.7 and 1
are considered to indicate a good clusterization [16].

2.4.2. Multivariate discriminant analysis (MDA)
A supervised method, namely multivariate discriminant anal-

ysis (MDA) [17,18], was used for classifying samples. MDA uses
training data in order to obtain discriminant functions which define
decision boundary surfaces between the classes, that is, it finds
optimal boundaries which separate classes. Linear or quadratic
expressions for the boundary surface function have been used in the
present work, referred as LDA and QDA, respectively. The parame-
ters which define those functions are obtained in an optimization
process, using the mentioned training data set. For example, LDA
finds a linear discriminant function which is a linear combination
of the original variables such that the ratio of the between-class
scatters and the within-class scatter is maximized, assuming that
covariance matrices are equal for all groups.

The amount of training data was always 80% of the total available
data and the same percentage was used for selecting the number
of data input associated to each class. These data were randomly
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selected under the above constrains. This procedure was repeated
three times, thus three runs were performed in each one of the
analyzed situations.

3. Results

3.1. Sensor construction and impedance response

Since most of the drinking waters have low concentrations of
ions, and purified reverse osmosis water is frequently used in
the pharmaceutical industry, the electrochemical cell used for this
measurements is designed in such a way that the working and the
counter electrodes are two graphite parallel strips at a distance
of 40 �m, while the reference electrode is placed onto them at
70 �m (Scheme 2B). This arrangement provides a compact system
in which the ohmic drop due to the low water conductivity can be
handled by a conventional potentiostat and representing a small
part the information contained in the signal.

Two types of chelating agents were tested: pyrocatechol violet
(PV) and a derivative of nitrilotriacetic acid (dNTA), both present-
ing different affinities for the metal ions used in this work [4–6].
PV is easily adsorbed on graphite and presents a quasi-reversible
redox couple [19] (Scheme 2C). On the other hand, dNTA is not
adsorbed and it does not present redox features; however, this
derivative, contains a primary amino group that allows the cova-
lent attachment to carboxylic groups (Scheme 2C). The graphite
electrode was modified by electropolymerization of a thin layer
of polyaniline (PANI) and; then, 3-aminophenylacetic acid (3-AFA)
was electropolymerized onto the formed polymer, as reported for
a similar system constructed with aniline and a sulfonic derivative
of aniline [20]. In this way, not only acetic groups are attached on
the surface for further modification, but also the PANI remains elec-
troactive at neutral pH generating a redox probe that can provide
information to the system (Fig. 1).

3.1.1. Ultrapure water analysis
As described in the experimental section, graphite electrodes

were built by screen printing techniques in plates containing eight
electrodes, and latterly modified simultaneously to obtain a bet-
ter reproducibility. Fig. 2 shows the Nyquist plot, resistance (Z′)
vs capacitive reactance (Z′′ = 1/ωC), for a PV modified electrode
exposed to ultrapure water. The bars on each point represent
the standard deviation obtained for eight different electrodes; for
example the average values for the resistance and the capacitive

Fig. 1. Cyclic voltammogram of a graphite electrode modified by consecutive elec-
tropolymerization of aniline and 3-AFA in 50 mM Tris buffer, pH 7.0. Sweep rate
10 mV s−1.

Fig. 2. Nyquist plot corresponding to the average of eight electrodes modified with
PV in presence of ultrapure water. The bars indicate the standard deviations in resis-
tance and capacitive reactance for each measurement. Applied potential 0.17 V vs
Ag/AgCl, alternating potential amplitude 10 mV.

reactance at 10 Hz are 364 ± 2 and 46 ± 1 ohms (n = 8), respectively.
The fabrication reproducibility permits correlate results, exposing
the modified electrodes to different metal ion solutions, without
the need of relating them to a common reference; a similar behavior
is observed for the dNTA sensors

Another important characteristic of the system is that, due to the
fast reaction rate of the metal ion with the chelator, measurement
can be carried out immediately after placement of the sample in
contact with the electrode, without any further manipulation, such
as rinsing steps or probe additions.

51 frequencies were tested from 0.1 to 10,000 Hz, giving cur-
rent and phase shift responses for each of them. This information
can be represented as resistance (Z′) and capacitive reactance (Z′′),
therefore the sample produces 102 responses in each sensor. The
data obtained at some selected frequencies are plotted in Fig. 3. In
the upper row are represented the resistance (left) and the capac-
itive reactance (right) for the PV sensor. The resistance values for
each metal ion do not show important changes through the fre-
quencies, however among the samples some features can be easily
noted, and they are related to their chemical characteristics. Three
main groups can be established: a first group (Cu2+ and Hg2+) with
a low resistance, it has to be mentioned that these ions undergo
a redox process at the working potential; a second group (Fe3+

and Al3+) with an intermediate resistance, presenting the highest
affinity constants for the chelator; and finally a third group, cor-
responding to the ions that are not complexed or present a low
affinity to PV [4]. To the right of the graph, the plot of the capacitive
reactance shows a more diverse pattern throughout the frequen-
cies, also allowing the classification of the metal ions mainly in the
same three groups, as before.

For the dNTA sensor (lower row in the graph), the changes in
resistance throughout the frequency range are small; yet, an impor-
tant change in capacitance is observed. In this case the values for
the capacitive reactance of water are not plotted since they range
from 28 to 31 ohms, against a maximum value of 3 when a metal
ion is present. It is important to note that these values represent the
inverse of the capacitance; considering that this sensor is formed by
a coating containing weak acid and base moieties, when a metal ion
is incorporated an important change in the coating charge occurs,
impacting on the capacitance.

Even though the qualitative interpretation of the results
addressed above is possible, a detailed analysis cannot be done;
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Fig. 3. Sensor responses of ultrapure water and 12 �M metal ion solutions in ultrapure water. Resistance (left) and capacitive reactance (right) at selected frequencies. PV
sensors (top), dNTA sensors (bottom).

since the experiments are carried out in conditions in which the
behavior of the different cations cannot be described by means of a
simple model. In this case our focus is placed in using the wealth of
information for searching differences that may allow us detecting
the different ions above low threshold concentrations. Therefore,
multivariate data analysis was performed (PCA, CA and MDA) in
order to explore the ability of the present methodology for dis-
criminating solutions of different ions, that is, on the basis of its
chemical identity.

The first approach to determine the metal ions was to ana-
lyze the 204 responses for each sample by PCA at four different
concentrations, from 1 to 250 �M by triplicate. The first principal
component contains the highest degree of variance and other com-
ponents follow in the order of decreasing variance, in this way the
pattern generated by the sensor array is reduced to a single score
and plotted in the new space generated using only two or three
principal components. This representation (score plot) is shown
in Fig. 4. Here, the PCA score plot utilizes the first three princi-
pal components which accounts for 94% of the total data variance
and it shows an unambiguous clustering. Since PCA is an unsu-
pervised method, namely, the formed groups are defined by the
similarity of the samples, it can be used to test the ability of the

applied method to discriminate the different cation solutions; as
it can observed from the figure, nine clusters can be easily recog-
nized by visual inspection in the PCA map. Each cluster is composed
only by one type of sample, that is, ultrapure water or each one
of the cation aqueous solutions. Taking only the two first princi-
pal components still can be observed a clear grouping of samples
with a good discrimination among the different pollutants (Fig. 4,
below). It is worth mentioning the important difference between
ultrapure water and the other samples, while the distribution of
the ions in the plot maintains a relation with the details described
before. For example, Hg2+ and Cu2+ present a position strikingly
different respect to the others; while Fe3+ and Al3+ are close.

Cluster analysis (CA) was performed in order to quantitatively
confirm the excellent grouping obtained by visual inspection in
PCA. In fact, a 100% of correctly clusterized samples were obtained
when CA was performed for a number of 107 samples, that is, all the
samples with the same composition were assigned within a same
cluster with no mistakes. The average silhouette width, ASW, was
0.86, confirming the goodness of the clusterization.

Finally, a supervised method, MDA, was also performed. Con-
sidering that the method is thought as an alarm for metal ion
contamination in the production of pharmaceuticals or beverages
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Fig. 4. 3D (top) and 2D (bottom) PCA plots for ultrapure water and the same sam-
ple contaminated with different cations. Ion concentrations range between 1 and
250 �M.

in situations where it is known the possible presence of certain
impurities, the ability of the sensor system to classify samples of
the considered cations was explored. This is carried out by using
supervised multivariate data analysis, as multivariate discriminant
analysis (MDA). In other words, supervised multivariate methods
can be used to train the sensor system to recognize relevant con-
taminants. MDA was used for classifying the samples. 86 samples
were randomly chosen to train the system and 21 as testing sam-
ples. This process was randomly repeated three times and in all
the cases 100% of correct classification of the testing samples was
obtained.

Since the system shows an excellent performance, it arise the
question if a lesser number of data input can be used to obtain the
same result, and save time in the analytical procedure. Two criteria
were taken, one statistical, based on the analysis of the most rele-
vant frequencies used in PCA, and the other by visual inspection of
Z′ and Z′′ obtained at different frequencies (Fig. 3). The statistical cri-
terion, based on the analysis of the so-called loading factor obtained
in PCA, shows that both sensors are needed; in each of them, Z′ and
Z′′ are used in the analysis. Finally, the statistical analysis shows
that low frequencies (among 0.1 and 32 Hz) contribute to produce
a good discrimination of the different type of samples. Using 18
variables a 97% variance is obtained within the three first PCs. For

the cluster analysis, if the samples are divided in nine clusters, the
system confuses some of the ultrapure water samples with silver
ion solutions. This can be corrected using the supervised method
(MDA) where a success of 100% is obtained.

Analyzing Fig. 3, it can be observed that the system at low fre-
quencies shows important differences among the ion solutions.
Therefore, seven frequencies were analyzed between 0.1 and 40 Hz,
using the two sensors. This means a total of 28 variables were ana-
lyzed. Cluster analysis is improved with 100% of success, meaning
that with the use of only 28 of the 204 variables it is possible to
obtain the same result. MDA also presents 100% of correct classifi-
cation of the testing samples.

3.1.2. Analysis of other type of samples
The presence of metal pollutants in aqueous solutions is an

important concern in beverages and pharmaceutical products. As
examples of the applicability of this method to the detection of
eventual contaminants, concentrated NaCl solutions of pharma-
copoeia quality, and bottled mineral water were analyzed.

In concentrated NaCl solutions, the most important changes
respect to the previous sample are the high ion concentration, the
ability of chloride ions to form complexes with metal ions and the
presence of sodium. The pure solution presents important differ-

Fig. 5. 3D (top) and 2D (bottom) PCA plots for concentrated NaCl solution and
the same sample contaminated with different cations. Ion concentrations range
between 1 and 250 �M.
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ences respect to ultrapure water; however the detection of the
metal ions is possible due the high sequestration capabilities of
the chelators. Fig. 5 shows the principal component analysis of the
NaCl solution contaminated with the different metal ions; it can
be observed that the three first PCs takes into account 96% of the
variance (top figure), while the 2D takes into account 81% of the
variance (bottom figure). In both graphs well defined regions are
obtained; compared with the ultrapure water, the distribution of
the different cluster around the pure sample is different, and the
system tends to merge Cd2+ and Pb2+ samples. If CA is applied to
clusterize the samples, it shows that the analysis integrates Pb2+

and Cd2+ in the same group, while Hg2+ is divided in two groups.
Finally, MDA shows that with an appropriate training, similar to
the one carried out in ultrapure water, the system can differentiate
all the samples (100% success).

The statistical analysis shows that the most relevant variables in
PCA are among 400 and 10 KHz. Taken the six most relevant for the
three first principal components, a 97% variance is obtained. In Fig. 6
can be observed the plot of the results, with a better discrimination
for Cd and Pb than the one showed in Fig. 5. Also, using only these
18 variables, cluster analysis is able to discriminate Pb from Cd,
assigning to each ion its own cluster with an ASW of 0.84, showing
that sometimes an excess of information can be redundant given
misleading information.

Fig. 6. 3D (top) and 2D (bottom) PCA plot for the same samples than in Fig. 6. In this
case only 18 variables were taken into account for the analysis.

Fig. 7. 3D (top) and 2D (bottom) PCA plots for bottled mineral water and the same
sample contaminated different cations. Ion concentrations range between 1 and
250 �M.

The third sample studied in this work was bottled mineral water,
where Ca and Mg are at concentration around 500 �M. The chelat-
ing capabilities of the agents used toward Ca and Mg may have an
important impact, therefore PCA was carried out for each sensor
independently. The sensor containing PV can only produce two big
groups, one containing the pure mineral water samples, and the
other containing all the contaminated samples. In this case, even
though calcium is unable to form complexes with PV, magnesium
undergoes complexation [4,21]. On the contrary, the sensor mod-
ified with dNTA can discriminate practically all the contaminants,
showing only a superposition between Pb from Cd (Fig. 7). In this
case the complexation constant for Ca and Mg with NTA are at least
three orders of magnitude smaller than the ones for the other metal
ions [5,6]. When CA is carried out, Pb and Cd are placed in the same
group. In this case the use of MDA is the great importance since
with a proper training (78 training samples) the system is able to
identify 20 testing samples, including the correct identification of
Pb and Cd (100% of right classification).

For this type of samples the six most relevant variables in the
three first principal components belongs to high frequencies. In this
case, its use in PCA and CA does not improve the previous results.
However, MDA is able to classify correctly all the samples (100%
success).
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4. Discussion and conclusions

This work shows that the trace detection and discrimination of
different metal ions can be carried out by analyzing the impedance
response of modified electrodes with chelators; the combination
of strong sequestering agents with a sensitive technique to the
adsorption of charged species on a conducting surface produce a
device able to detect metal ions at a threshold concentration of
1 �M in the three different samples.

The method allows the detection of metal ions in aqueous sam-
ples without the need of sample conditioning, rinsing steps or the
addition of probes. The system is easy to construct and unexpen-
sive. The fact that the sensors can be constructed and modified in
batches guaranties the reproducible of the assay without to take
references for the data analysis.

Due to the distance among the electrodes, the sensor system can
be work in environments of different conductivities, one of very low
conductivity (ultrapure water) and the other of high conductivity
(concentrated NaCl), and in both of them easily distinguish the dif-
ferent types of pollutants. In the case of aluminum, a concentration
of 27 ppb can be detected, below the limit given by EPA for drinking
water. The performance of the system can be also improved by an
appropriate analysis of the signals at different frequencies; some-
times is possible to choose the right frequencies at a first glance of
the system response; while, if the data look confusing, the use of
statistical algorithms allow choosing the most significant informa-
tion.

The third type of sample analyzed was mineral water; in this
case the sample contains Ca and Mg ions that can be complexed by
the chelating agents. The concentration of Ca and Mg were around
500 �M, while the contaminants range from 1 to 250 �M. In this
case the analysis was not straight forward and the sensor contain-
ing PV was unable to discriminate the different pollutants, while
the use of the one containing dNTA practically allowed the whole
discrimination.

The existence of a myriad of chelating agents allows developing
the most convenient taste sensor for each application. To achieve
successfully this goal, it will be necessary to take into account the
basic chemical features of the sample components and the expected
pollutants to choose the appropriate chelating agents. The method
opens the opportunity to develop simple systems to guarantee the
quality of water in the most diverse areas.
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