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In the present work we studied the room evacuation problem using the social force model
introduced by Helbing and coworkers. The “faster is slower” effect induced by panic was
analyzed. It could be explained in terms of increasing mean clogging delays which shows
a strong correlation with certain structures that we call “blocking clusters”. Also a steady
state version of the problem was implemented. It shows that, from a macroscopic point
of view, the optimal evacuation efficiency correspond to the state at which the difference
between the system desire force minus the system granular force is maximum.
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1. Introduction

The problem of evacuation of pedestrians from a room under panic conditions

is of obvious importance in common life. In past years, several computer models

that simulate pedestrian dynamics were developed.1 These codes do not take into

account the effect of panic on the pedestrian behavior.

Pedestrian flow through a bottleneck2 and clogging in a T-shape channel3 have

been studied previously using the lattice-gas model of biased random walkers. More

general self driven particle systems with simple interactions were studied by Vicsek,4

Albano5 and Czirók.6 Phase transitions were found for these systems.

The evacuation through a narrow door during an emergency is a complex prob-

lem not well-understood yet, that can cause very dramatic blocking effects.

A model that takes into account panic is the so-called “Social Force Model”

proposed by Helbing and Molnar.7 This model considers the discrete nature of the

“pedestrian fluid”, allowing us to fix the physical parameters of each individual

(mass, shoulder width, desired velocity, target, etc.). Real scale interaction forces

can be calculated, in particular, the contact forces which may cause high pressures

capable of pushing down a wall of bricks or to asphyxiate people in the crowd. The
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above characteristics cannot be properly taken into account with cellular automata

approaches or traditional models using continuous fluid approximations.

The understanding of the evacuation dynamics will allow the design of more

comfortable and safe pedestrian facilities.

Also, special devices that speed up the evacuation processes could be investi-

gated. A simple example is to place a column near the exit as proposed by Helbing

et al.8 More sophisticated devices could be developed based on a validated dynam-

ical under panic model.

The aim of the present paper is to investigate the microscopic mechanisms in-

volved in the room evacuation process. First we analyze the behavior of a crowd

composed of a fixed initial number of pedestrians until complete evacuation is at-

tained. This process is nonstationary. The number of pedestrians inside the room is

a function of time as well as pressure and other dynamical properties of the system.

We then focus on a stationary problem. In this case the state of maximum jamming

is maintained along the time by reinserting outgoing particles into the room. This

stationary situation allows us to study some features that cannot be revealed in the

nonstationary case.

This work is organized as follows. In Sec. 2, we present the “Social Force Model”

proposed by Helbing et al.8 In Sec. 3, we describe the simulations made. In Sec. 4,

we introduce some definitions that allow the proper characterization of relevant

observables. In Sec. 5, we summarize the results for the nonstationary problem. In

Sec. 6, the results of the stationary case are presented. Finally in Sec. 7, we present

our conclusions.

2. The Model

In this work we use the “Social Force Model” proposed by Helbing and coworkers.8

In this model the dynamics of each particle (pi) is driven by three forces with differ-

ent properties. They are: “Desire Force” (FDi), “Social Force” (FSi) and “Granular

Force” (FGi). The corresponding expressions are:

FDi = mi

(vdiei − vi)

τ
. (1)

In this equation, mi is the particle mass, vi and vdi are the actual and desired

velocities respectively, ei is the versor pointing to the desired target (particles inside

the room have their targets located at a random position in the exit door), and τ

is a constant related with the relaxation time of the particle to achieve vd.

FSi =

Np
∑

j=1,j 6=i

A exp

(

−εij

B

)

en
ij . (2)

Np is the total number of pedestrians in the system, A and B are constants that

determine the strength and range of the social interaction, and en
ij is the versor
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pointing from particle pj to pi. This direction is the “normal” direction between

two particles.

FGi =

Np
∑

j=1,j 6=i

[(−εijkn − γvn
ij)e

n
ij + (vt

ijεijkt)e
t
ij ]g(εij) , (3)

with

εij = rij − (Ri + Rj) . (4)

Here the tangential versor (et
ij) indicates the corresponding perpendicular direction,

rij is the distance between the centers of pi and pj , R is the particle radius, kn and

kt are the normal and tangential elastic restorative constants, γ is the damping

constant (the Helbing original model did not consider the nonconservative term

associated with this constant), vn
ij is the normal projection of the relative velocity

seen from pj (vij = vi −vj), vt
ij is the tangential projection of the relative velocity,

and the function g(εij) is g = 1 if εij < 0 or g = 0 otherwise. Particle positions

were initially uniformly distributed inside the room in such a way that εij > 0

for all pairs ij. Also initial velocities were randomly generated inside the range

1.0 ± 0.005 m/s.

The interaction of particles with walls and vertex through social and granular

forces are computed in an analogous way.

3. Numerical Simulations

In order to explore the room evacuation dynamics with the model described above,

we have performed a series of numerical simulations varying vd.

Following Helbing, the model parameters used were τ = 0.5 s, A = 2000 N,

B = 0.08 m, kn = 1.2 105 N/m, kt = 2.4 105 kg/m/s, m = 80 ± 10 kg and

γ = 100 kg/s.

The geometry of the room was a 20 m by 20 m square with an exit door of

width L = 1.2 m. Pedestrians shoulder widths were uniformly distributed between

(0.5 m, 0.58 m). In all the simulations we have fixed the size of the crowd to be 200

individuals.

3.1. Nonstationary simulations

As stated above, the problem of room evacuation is a nonstationary process. As

time goes by and pedestrians leave the room, the conditions of density and pressure

inside the room change. In this calculation we investigated the whole process of

evacuation (i.e., until all individuals have left the room), performing a series of

runs for each of the following values of vd: 0.8, 1.0, 1.5, 1.75, 2.0, 2.25, 2.5, 3.0, 3.5,

4.0, 5.0, 6.0 and 8.0 m/s. In each case the desired velocities for the 200 particles

were uniformly distributed inside a range of vd ± 0.05 m/s.

The complete results for this nonstationary case were published in a previous

work.9 Here the main results will be revisited.
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3.2. Stationary simulations

It is quite intuitive that the rate at which the room is evacuated is somehow re-

lated to the pedestrian jamming in the inner neighborhood of the exit door. This

effect, which we fully describe below, is difficult to study in the nonstationary case

because it lasts for a short time. In view of this difficulty we have implemented

a stationary case in which the jamming effects remain constant in time. This has

been accomplished by reinserting particles that have left the room, back inside of

it. Outgoing pedestrians that have reached 3 m away from the door are instanta-

neously placed inside the room at a random position not closer than 1.5 m from

any other pedestrian.

Steady state simulations were performed for the following values of vd: 0.8, 1.0,

1.125, 1.25, 1.375, 1.5, 1.75, 2.0, 2.25, 2.5, 3.0, 4.0, 6.0 and 8.0 m/s. The simulation

time, in all cases, was 1000 seconds.

4. Some Definitions

In this section we introduce the definitions of those magnitudes which we have

found useful in order to properly explore the systems’ properties.

4.1. Clogging delay

Pedestrians trying to leave a room can generate high pressures and densities in the

neighborhood of the exit door. In such a case, it might happen that a group of

pedestrian gets interlocked, for a more or less short period of time, at the exit door,

thus becoming obstacles to other pedestrians. This effect is known as clogging and

we name “clogging delay” (cd) as the period of time between two individuals that

leave the room consecutively. In the discharge curve (the number of individuals

that have left the room as a function of time) clogging delays show up as horizontal

segments of the curve (see Fig. 2). Depending on the value of vd, only social forces

(low vd) or social plus granular forces (high vd) will be the dominating interactions.

Hence, there are two kinds of clogging delays that we call social delay and granular

delay, depending on the strength of the granular interaction between particles.

4.2. Granular cluster

We define a “granular cluster” (Cg) in the following way. Given a particle pi of

radius Ri and a cluster Cg ,

piεCg ⇔ ∃ pjεCg/rij < (Ri + Rj) , (5)

where (pj) indicates the jth particle (or person) and Rj is his radius. This means

that, Cg is a set of particles that interact not only with social and desire forces, but

also with granular forces.
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4.3. Blocking cluster

Just before the exit, the contact forces are able to produce arch-like blocking clusters

(see Fig. 4).

A “blocking cluster” (Cbc) is defined as the subset of clusterized particles closest

to the door whose first and last component particles are in contact with the walls

at both sides of the door.

These blocking clusters can be more or less stable and can last up to six seconds

in our simulations and they can be composed of three to more than ten particles.

5. The Evacuation Process (Nonstationary Case)

In this section the evacuation of 200 pedestrian from a room is investigated. This

process is clearly nonstationary since, as a function of time, the number of particles

inside the room is reduced and as a consequence, the number of particles pushing

each other near the exit door diminishes. This means that the state of the system

is changing with time, which makes it difficult to properly characterize it. One

variable that characterizes the evolution of the system is the evacuation time for

all the considered pedestrians.

5.1. Evacuation time versus desired velocity

Helbing and coworkers have analyzed different properties of the model described in

Sec. 2. In what is relevant to this work they have shown that, in the room evacu-

ation problem, the total evacuation time curve has a typical functional behavior,

displaying a minimum at moderate values of vd. We will denote this minimum

as the desired velocity threshold vdt. For velocities above and below, the evacuation

time increases, which means that a very interesting phenomenon takes place. Above

the threshold, the larger the value of vd, the longer it takes for the individuals to

evacuate a room.

The importance of such a behavior is clear if one thinks about situations in

which the crowd is in a state of panic. A state of panic is associated with high

values of vd i.e., individuals try to move faster and faster towards the exit door.

When we analyze the evacuation time in our simulations the behavior described by

Helbing is recovered. In Fig. 1 we show such a curve.

5.2. Discharge curve

Further information can be gained if we look at the discharge curve, i.e., the number

of particles that have left the room as a function of time. In this curve, horizontal

lines denote the time difference between two successive particles which leave the

room. These time differences will be referred to as “delays” (as stated above and see

next section). In Fig. 2, we show this curve for a single realization at three different

values of vd, namely 0.8, 2.0 and 6.0 m/s.
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Fig. 1. Mean evacuation time as a function of the vd for all the 200 persons.
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Fig. 2. This figure shows the so-called discharge curve i.e., the time at which each particle leaves
the room. This curves are calculated from a single simulation for three different values of vd,
namely 0.8, 2.0 and 6.0 m/s. Note that the curve corresponding to the highest vd has a less
smooth shape. This is related to the presence of large clogging delays (see text).

It can be easily recognized that at larger values of vd, the occurrence of abnor-

mally large delays becomes more probable, particularly in the intermediate stages

of the evolution of the system (there is a rather large fraction of the total number

of particles inside the room).
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The flow rate is the derivative of the discharge curve. It is easy to realize that,

the flow rate is not constant in time because the process is nonstationary. At the

very beginning and at the end there are low crowd pressures which make the flow

rate very low for small values of vd.

5.3. Mean clogging delay

Clogging delays were defined in Sec. 4.1. Here, in Fig. 3 the mean clogging delays

as a function of vd are shown.

It can be seen that this curve has the same tendency and the minimum is reached

at the same vd than the evacuation time curve (Fig. 1). This means that there is a

direct relation between evacuation time and clogging delay.

5.4. “Arch-clogging” correlation

In Sec. 4.3, the concept of Blocking Cluster was introduced. In Fig. 4, we show a

typical blocking cluster.

As the value of vd is increased, the probability of appearance of a blocking cluster

increases (see Fig. 5). This is due to the fact that as the value of vd is increased

particles can overcome the social force repulsion and then, they start interacting

via granular forces. These granular forces can generate clusters which block the exit

of particles.

In order to quantify the relationship between the presence of a blocking cluster

and the appearance of a clogging delay, we define the “arch-clogging” correlation
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Fig. 3. Mean clogging delays for the 200 persons evacuated versus vd.
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Fig. 4. A typical blocking cluster (black particles). Particles belonging to any arbitrary cluster
> 1 are drawn with wider lines.
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Fig. 5. Blocking cluster existence probability as a function of vd.

coefficient as follows:

cac =
1

N

N
∑

cd=1

f(tbc2 , tcd
1 , tcd

2 ) , (6)

where N is the total number of clogging delays in each run, tbc
2

is the time at

which some arbitrary blocking cluster brakes down, tcd
1

is the time at which the

associated clogging delay starts, and tcd
2

is the time at which this clogging delay
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finishes. “Associated” means that the first particle that exits the room at time tcd
2

(when the clogging delay finished) must be one of the particles that belonged to

the blocking cluster broken at tbc2 . The function f is such that:

f = 1 if tcd
1

≤ tbc
2

≤ tcd
2

,

f = 0 otherwise .
(7)

We now present the results of the calculation of cac. Figure 6 shows the value of

the cac coefficient for different clogging delay ranges.

The meaning of, for example, a value of cac of 0.6 is that the 60% of the clog-

ging delays (in the range considered) were produced by blocking clusters and the

remaining 40% are due to social clogging.

It can be seen that the correlation between the presence of a blocking cluster

and a clogging delay is almost one for delays longer or equal to 2.3 s and vd bigger

than 2.0 m/s, which is the optimal velocity for evacuation. Below this velocity all

“long delays” are due to social clogging.

For shorter clogging delays the competition between social clogging and blocking

clusters is evident. In particular, for the shortest bin considered (0.1 ≤ cd ≤ 0.3)

blocking clusters are responsible for at most 30% of the clogging delays.

From this analysis, it is clear why, above the threshold velocity vdt, “Faster is

slower”. As the value of vd is increased, the probability of appearance of a blocking

cluster increases (see Fig. 5), which turns out to be strongly correlated to large

clogging delays (see Fig. 6).
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6. The Stationary Case

Since the nonstationary case limits our capacity of analysis, it is desirable to explore

a stationary version of the problem. In the previous sections, we have shown that the

mechanism responsible for the decrease of the efficiency of evacuation of the system

for high vd is the blocking cluster formation. This blocking cluster needs a bigger

cluster as a substrate. Therefore, the most critical stage of the evacuation process is

when large clusters are formed. This state of the system can last forever if outgoing

particles are reinserted inside the room. In such a case the most relevant observable

is the discharge curve. For the stationary case this curve has a constant slope (see

Fig. 8) so the flow rate (number of particles leaving the room per unit time) is

well-defined. Then, under steady state conditions, the variable that characterizes

the evacuation performance of the system, for each vd, is the flow rate.

6.1. Flow rate versus desired velocity

The state of the system which corresponds to most efficient evacuation, is charac-

terized by the vd which maximizes the flow rate of the system. As expected, the

flow rate curve versus vd has the same qualitative behavior as the evacuation time

in the nonstationary case, displaying an extremum at an intermediate value of vd.

However, the value of vdt is quantitatively different. In the stationary problem,

vdt = 1.375 m/s as can be observed in Fig. 7.
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Fig. 7. Flow rate of the evacuation system as a function of vd. The maximum is reached at
vdt = 1.375 m/s.
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Fig. 8. Discharge curve for vd = 0.8, 1.375, 2.25 and 8.0 m/s. Clogging delay is not evident in
these curves due to the scale.

6.2. Discharge curve

In Fig. 8 the discharge curves for vd = 0.8, 1.375, 2.25 and 8.0 m/s are shown.

In the stationary case, only one run of 1000 s is performed for each vd. From

these curves, the flow rate can be calculated.

6.3. Granular cluster analysis

Making use of the definition of granular cluster given in Sec. 4.2, we study the

morphology of the system inside the room.

First, the cluster size distribution is analyzed for various values of vd. In Fig. 9

we show such distributions for vd = 1.375, 2.25, 2.5 and 3.0 m/s.

It can be seen that the shape of the distributions change from exponential (at

low vd) to U-shaped (for high vd). In between, a power law one can be found. This

suggests that a phase transition might be taking place.

Looking at the second moment of the distribution without the maximum cluster,

(see Fig. 10) we see that it displays a sharp maximum at vd = 2.25 m/s, a value at

which the shape of the cluster size distribution is close to a power law one.

We then see that the value of vdt at which the change of behavior of the flow

rate takes place (the flow rate changes its tendency at vdt = 1.375 m/s) corresponds

to a cluster size distribution well inside the exponentially decaying region. In the

next section, we explore the possible causes of the existence of an optimum vd for

evacuating the room.
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Fig. 9. Cluster size distributions for vd = 1.375, 2.25, 2.5 and 3.0 m/s.
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Fig. 11. Blocking cluster existence probability as a function of vd.

6.4. Total system forces analysis

We start this section by displaying in Fig. 11 the probability of appearance of a

blocking cluster as a function of vd. As in the nonstationary case, this probability

increases with the value of vd.

It can be seen that this probability begins to be nonnegligible for values of vd

above vdt = 1.375 m/s. It is clear that blocking clusters are responsible for the

“faster is slower” effect above vdt.

More information can be obtained if we analyze the total system forces.

Each particle has a unique desire force so the total desire force of the system at

a given instant is

F Sys
D =

Np
∑

i=1

|FDi| . (8)

For the interacting forces (social and granular) the corresponding instant total

system forces are given by the following equations:

F Sys
S =

Np
∑

i=1

Np
∑

j=1,j 6=i

A exp

(

−εij

B

)

, (9)

F Sys
G =

Np
∑

i=1

Np
∑

j=1,j 6=i

{| − εijkn − γvn
ij | + |vt

ijεijkt|}g(εij) . (10)

In Fig. 12, the variations of the mean system forces as a function of vd can be

observed. Figure 13 shows a zoom over the region of low values of vd.
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Fig. 12. Mean system forces (see Eqs. (8)–(10)) as functions of vd.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

5

Desired Velocity (m/s)

M
ea

n 
T

ot
al

 S
ys

te
m

 F
or

ce
 (

N
)

Desire
Granular

Fig. 13. Zoom of the previous figure into the low vd zone.
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Fig. 14. Difference between the desire and granular mean system forces shown in the previous
figure. The vd that maximize this difference is equal to the vdt at which the maximum evacuation
efficiency is obtained.

This curves have two interesting points. The first one is the crossing point where

the mean granular system force begins to be greater than the mean desired system

force. This occurs near vd = 2.25 m/s, the critical point from the granular cluster

point of view (see Sec. 6.3).

The second interesting point can be better seen if we calculate the difference

between the mean desire force 〈F Sys
D 〉 minus the mean granular force 〈F Sys

G 〉 (see

Fig. 14).

It can be seen that this difference has a maximum at vdt where the system

reaches its maximum flow rate. This suggests that the optimum evacuation for

the stationary case corresponds to a state in which a delicate relation between the

average desire force and average granular force is attained. Taking into account that

as the desired velocity is increased the granular force increases and that this last

term does not behave linearly, the optimum evacuation is attained when the system

reaches the maximal desired velocity that generates the minimal relative average

granular force.

7. Conclusion

In this work we have focused on the microscopic analysis of the evacuation dynamics

of self-driven particles confined in a square container with one exit door.

In the first part of this work we have fixed the number of particles to 200 and

the width of the door has been taken as 1.2 m. It has been confirmed that the

evacuation time (te) is a function of the desired velocity vd. As already shown by
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Helbing et al. we have found that there exists a threshold value of vd such that

below it, te is a decreasing function of vd while above it, the tendency is reversed.

By analyzing the structure of the clusters that are formed in the system and

introducing the concept of blocking clusters, we have been able to trace this change

in behavior to the increase in the probability of long clogging delays. These long

time clogging delays are correlated with the formation of blocking clusters.

From the dynamical point of view, the key effect is the increasing role of dis-

sipative granular forces which become strong enough just above vdt to make the

probability of formation of clusters nonnegligible.

In the second part, we have focused on a stationary version of the problem in

which particles are reinserted into the room once they have left it. In this case we

have found that the optimum evacuation is attained when the difference between

the average desire force and the average granular force is maximal. This suggests

the following explanation of the change in the flow rate curve: Being the average

desire force related to the capacity of displacement of the particles and the aver-

age granular force related to the capability of particles forming clusters, this would

indicate that the optimal evacuation corresponds to the situation in which parti-

cles move as fast as they can producing a minimum number of clusters. This is a

preliminary result that should be further investigated.
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