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This work studies the changes along days of the aroma released from a flavour encapsulated in a polysac-
charide gel matrix using the electronic nose methodology. The purpose is to explore the capacity of the
sensor array to assign a pattern of aroma to the corresponding release day within a total period of five
days. Different procedures of data treatment and analysis are compared in order to achieve the maximum
of information of the system under study in conditions where the number of measurements is limited.
Raw and normalized sensor signals are processed using various unsupervised and supervised data anal-
ysis algorithms such as Principal Component Analysis, Kohonen-Self Organizing Maps, Cluster Analysis,
Multiple Discriminant Analysis and two types of Artificial Neural Networks (BP-ANN and RBF-ANN).
Accurate assignation of the number of release days is obtained with a successful classification up to four
classes associated to samples at increasing days of aroma release. The relative advantages and drawbacks
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of the different procedures and data manipulations are discussed.
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1. Introduction

It is of high relevance for many flavouring processes to follow
the evolution of the aroma released by an encapsulated essence.
Volatile compounds throw off the matrix in a differential manner
according to their relative concentrations and affinities towards
the encapsulation material, providing the aroma of the system. In
many cases additional contribution to the aroma variation comes
from changes of the matrix itself during the release. Examples
are all the processes related to non-stabilized gels, such as those
occurring during a sol-gel transition, and those related to the aging
of the matrix due to drying or oxidative degradation. Flavour re-
lease is a dynamic process which involves not only time dependent
aroma changes depending on both the essence and the matrix
components (Boland, Buhr, Giannouli, & van Ruth, 2004; Madene,
Jacquot, Scher, & Desobry, 2006) but also a dynamic perception,
and must be studied using dynamic methods. These facts also im-
ply a particular attention to the data treatment and analysis, as re-
viewed by Piggott (2000) and references therein.

An electronic nose (e-nose) is an instrument composed by an ar-
ray of non-specific gas sensors coupled to a pattern recognition sys-
tem which allows to discriminate odours using chemometric data
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analysis (Gardner & Bartlett, 1999). The methodology is relatively
simple because does not require separation and identification of
the odour components, which makes the technique appropriate
for real time quality control (Branca, Simonian, Ferrante, Novas, &
Negri, 2003; Cosio, Ballabio, Benedetti, & Gigliotti, 2007; Gan, Che
Man, Tan, Noraini, & Nazimah, 2005; Hai & Wang, 2006) and as a
non-destructive method to control fruit maturity and cultivar pro-
cesses (Bhattacharyya et al., 2007; Hernandez G6mez, Wang, Hu, &
Garcia Pereira, 2008; Pathange, Mallikarjunan, Marini, Keefe, &
Vaughan, 2006) among other applications in food control (Peris &
Escuder-Gilabert, 2009). E-noses have been seldom used for study-
ing the aroma release kinetics of flavours (Baranauskiené, Rimantas
Venskutonis, Galdikas, Senuliené, & Setkus, 2005; Deisingh, Stone,
& Thompson, 2004). Therefore, we performed a series of studies
exploring the potentiality and limitations of these sensor devices
detecting changes in odour patterns along time (Lovino, Cardinal,
Zubiri, & Bernik, 2005; Monge, Bulone, Giacomazza, Bernik, & Negri,
2004; Monge, Bulone, Giacomazza, Negri, & Bernik, 2004; Monge,
Negri, Giacomazza, & Bullone, 2008).

Due to the high sensitivity of the sensors to register subtle
changes, the electronic nose provides indisputable evidence about
whether an odour has changed or not, irrespective of which partic-
ular component of the odour is the responsible for the change in
the aroma fingerprint. When looking for slight differences, all the
features of sensor signals will have importance when analyzing
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data: signal intensity and signal ratios. In this regard, raw data
treatment, total number of measurements and the mathematical
algorithms used (supervised or not) will play decisive roles in the
resultant discrimination capacity of the sensor device.

Since it is not the scope of this work to identify which compo-
nents have changed in this way altering the aroma pattern, no val-
idation with conventional analytical methods was done. In
addition, the intention is to see which of the afore mentioned che-
mometric methods yield the best results when using a limited
number of measurements: this would mimic a routine situation
such as doing a quality control in real time. Thus, herein we exam-
ine qualitatively the time dependent pattern of the aroma released
from an encapsulated essence 5 days onward since encapsulation
and evaluate the performance of different chemometric ap-
proaches, stressing that a successful discrimination of the samples
will depend on the choice of the appropriate mathematical meth-
odology for data treatment.

2. Experimental
2.1. Experimental details

The flavouring sample is a tutti-fruti essence provided by Inter-
national Flavours and Fragrances Argentina, composed by 80% of
limonene. The e-nose prototype used in the present work was
developed at our laboratory (Lovino et al., 2005). The array is com-
posed by 10 commercial sensors based on polycrystalline tin diox-
ide having different sensitivities, provided by Figaro Inc.: TGS 831
(Sensor 1); TGS 813 (Sensor 2); TGS 825 (Sensor 3); TGS 832 (Sen-
sor 4); TGS 880 (Sensor 5); TGS 826 (Sensor 6); TGS 816 (Sensor 7);
TGS 842 (Sensor 8); TGS 823 (Sensor 9) and TGS 800 (Sensor 10).
For each sensor, a voltage proportional to the respective electrical
conductance is digitalized (12 bits resolution with voltages within
0-5V). All the digital outputs are simultaneously recorded and
stored on a laptop. The only pre-processing step used was data
normalization, when used. The noise/signal relationship was about
5 x 1073, while most of the experimental details have been re-
ported in previous articles (Branca et al., 2003; Monge, Bulone, Gia-
comazza, Bernik, et al., 2004, Monge, Bulone, Giacomazza, Negri,
et al., 2004; Monge et al., 2008; Lovino et al., 2005). The reproduc-
ibility was tested by comparing the individual signals of the quin-
tuplicate samples at the day O of the release.

The values of the sensor’s signals after reaching a plateau are
used for the analysis after the subtraction of a baseline (the sen-
sor’s response to air). All the experimental aspects related to pectin
matrix preparation have been extensively described elsewhere
(Monge et al., 2008).

Quintuplicate of the gels with the encapsulated essence were
initially kept closed for 3 h and then one of the replicates was
opened and measured with the e-nose. Along the consecutive days,
the replicates were opened and measured. Once a given replicate
was opened, it was kept opened and stored at 33 °C to be able to
follow the aroma release kinetics in the next days. The released
was followed since a “first day” (about 3 h since the gel was pre-
pared) up to the “fifth day” (about 120 h since preparation). Only
one replicate is opened (and measured) at the first day. At the sec-
ond day other replicate is opened and both samples are measured.
The number of days that the sample was left opened is referred as
D. A measurement associated to D =0 means that the measure-
ment was performed when immediately opened to the air. One
associated to D =1 indicates that the sample was measured after
being 24 h opened approximately (independently of the number
of days elapsed since prepared as far as it remained stored in a
closed vial). This procedure generates 20 measurements when
using quintuplicates. Experiments were performed following the

aroma release up to 5 days since gel preparation in each experi-
ment. Two experiments were performed using quintuplicates,
one with quadruplicates and one with triplicates thus generating
a set of 73 measurements.

2.2. General methodology and procedure for analysis

As outlined the aim of the work is to discriminate samples
according to the number of days that the sample was releasing
the aroma to the open air. The number of outputs (target groups)
used for grouping the data is indicated as N in Tables 1-3.

For this purpose we followed the methodology illustrated in
Fig. 1. Each e-nose measurement provides a vector s (the sensors
signals, size N x 1), where N indicates the number of sensors of
the array. These vectors can be used as obtained (raw data) or they
can be normalized to obtﬁ;n new vectors s’, whose elemenq§2are gi-
ven by s, = sn/<zf’zlsf) . The parameter NF = (SN ,s2) ' is the
so-called Normalization Factor, an indicator of the intensity of the
odour detected by the e-nose. Therefore, all sensor’s responses are
converted into [0, 1] after normalization. Additionally, when using
CA, K-SOM or the supervised methods two other alternatives are
possible: (a) the sensor data set are directly used and (b) the sensor
data are used as inputs for PCA and then the PCA outputs are used
as inputs for the other methods.

In this work the time dimension is discrete and represents the
criteria for grouping. In the unsupervised methods it is not possible
to incorporate this information. In the supervised methods this
information is provided in an implicit manner in the training data
set.

2.3. Unsupervised methods

2.3.1. Principal Component Analysis (PCA)

PCA is a very well-known unsupervised method for determining
similarity of the input data by comparing the relative location of its
associated so-called principal components in a PCA-plot (Johnson
& Wichern, 2002). If M measurements are performed with an
e-nose of N sensors, then the input data are introduced as a matrix
X of size M x N, where each row consists of the N signals for each of
the M measurements. In the present work are N=10 and M =73
and the covariance matrix was used.

Input data are extracted in PCA in a new base of the dimension
N: the so-called principal components {PCj, ..., PCy}. A new matrix
Y of size M x N is obtained where each row consists of the N prin-
cipal component for each of the M measurements. The first compo-
nents usually explain great part of the total variance. In those cases
the data points can be qualitatively discriminated by observing
how they group in a 2-D PCA-plot (e.g. PC; vs. PCy) or 3-D plot
(PC; vs. PC, vs. PC3). In these plots each point is associated to
one measurement with the e-nose.

2.3.2. Kohonen-Self Organizing Map (K-SOM)

SOM belongs to the category of competitive learning methods
and is based on unsupervised learning. It can be thought of as
way of projecting multiple dimensions onto a two-dimensional
output allowing the user to visualize the groupings and relation-
ships of the odours or chemical volatile compounds (Bermak,
Brahim Belhouari, Shi, & Martinez, 2006; Sinesio et al., 2000).

K-SOM is a neural network based on a single layer of neurons
arranged in a box having on its top a two-dimensional response
plane (Kohonen, 1988). The usual topology of the Kohonen
network adopts a toroidal boundary condition, implying that
the network at its right or top edge is continued (in a computa-
tional sense) at its left and low edge, respectively, and vice versa.
During the training of K-SOM, the same vector u (containing the
variables assigned to a given sample) is input to all neurons, and
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Table 1
Results of CA-PAM using the sensor’s signals as inputs (with and without normalization).

Cluster Analysis. Partition Around Medoids (CA-PAM)

Ng Non-normalized signal inputs: s Normalized signal inputs: s’

Number and percentages of errors” ASW Number and percentages of errors” ASW

2 4 (5%) 0.70 30 (41%) 0.26

3 12 (16%) 0.56 34 (46%) 0.28

4 34 (46%) 0.50 39 (53%) 0.25

ASW: Average Silhouette Width.

" In this case an error is a sample that was clusterized in the wrong group. This calculation is possible to assess because the identities of samples are known.

Table 2a
Artificial Neural Networks: conditions used for training and validation.

N Total number of  Total number of Total number of Output Distribution of the number of training Distribution of the number of
measurements measurements used measurements used for classes measurements among the output validation measurements among the
(M) for training validation classes output classes
2 73 58 15 D=0 25 7
D>1 33 8
3 73 58 15 D=0 25 7
D=1 12 3
D>2 21 5
4 73 58 15 D=0 25 7
D=1 12 3
D=2 8 2
D=>3 13 2

Number of data for each D: D=0,32; D=1,15; D=2,10; D=3,9; D=4,5; D=5, 2.

Ng = Number of target outputs.

Table 2b

Artificial Neural Networks: recovered parameters of the optimized networks.

ANN

N,  Non-normalized signals

Normalized signals

Inputs: s Inputs: principal components Inputs: s’ Inputs: principal components obtained with normalized signals
BP RBF (o) BP RBF (o) BP RBF (o) BP RBF (o)
2 10:8:8:2 0.5 3:12:2 0.5 10:13:2 0.1 7:14:2 0.1
tan:tan:tan:log lin:tan:log lin:tan:log tan:tan:log
1 =0.005 n=0.005 p=0.005 1=0.005
3 10:12:3 0.09 3:10:3 0.1 10:12:3 0.06 7:12:3 0.07
tan:log:log lin:log:log tan:tan:log lin:tan:log
1 =0.005 pu=0.05 p=0.005 1 =0.005
4 10:7:7:4 0.05 4:10:4 0.01 10:7:4 0.01 5:6:6:4 0.05
log:lin:log:log log:tan:log lin:tan:log tan:lin:tan:log
p=0.005 n=0.05 n=0.05 n=0.05

BP (Back Propagation ANN): the sequence of numbers indicates the number of neurons in each layer and the number of layers. For example 10:8:8:2 indicate four layers and
the respective number of neurons in each one. Transfer functions: tan = tangential sigmoid; lin = linear; log = logarithmic sigmoid. u =initial increment of the learning

process. RBF (radial basis function ANN): ¢ = spread value.

Table 3

Results of the different supervised methods. The number of classes is indicated by Ng.

Supervised methods

Ng Non-normalized signals Normalized signals
Inputs: s Inputs: principal components Inputs: s’ Inputs: principal components
LDA (%) BP (%) RBF (%) LDA (%) BP (%) RBF (%) LDA (%) BP (%) RBF (%) LDA (%) BP (%) RBF (%)
2 93 92 97 93 93 97 96 92 95 95 87 95
3 88 87 83 84 80 80 87 79 87 73 84 87
4 88 79 80 75 81 71 83 79 78 73 80 75
%: Average percentage of success.

a comparison is made between its elements and the neuron
weights (vector w). The vector u may be composed of the raw
sensor signals s, its normalized version s, or a vector of PCs, as

explained above.

The parameters used in training the K-SOM for the presently

analyzed data were: number of cycles, 1000, dimensions of the
neuron map, 20 x 20, form of function a(-), a triangle with a cut-
off distance of six neurons. These parameters were tuned on a trial
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Fig. 1. Scheme indicating the different combination of data treatment used in this work.

and error basis, until the best separation among groups was
achieved.

2.3.3. Cluster Analysis (CA)

In Cluster Analysis the input data can be the set of sensor’s sig-
nals s, its normalized values, s’ or the set of principal components
associated to those vectors as well. The number of desired clusters
for grouping the data (clusterization) must be fixed previously. CA
can be performed using different algorithms being the Partitioning
Around Medoids (PAM) the one used in the present work (Kaufman
& Rousseeuw, 1987). As outputs, CA-PAM indicates not only by
which data input are the clusters composed, but provides the so-
called Average Silhouette Width (ASW). Following the criteria for
the goodness of the clusterization indicated by Struyf, Hubert, and
Rousseeuw (1997), the ASW must be larger than 0.25 and grouping
is perfect when ASW is equal to one; the higher the ASW the better
the fit.

2.4. Supervised methods

Supervised approaches assume an a priori knowledge of the
number of classes as well as the class membership of every sample
in the training set. These methods involve training a pattern clas-
sifier to relate sensor values to specific odour labels.

We randomly varied five times the selection of the data for
training (80% of the data set) and validation (20% of the data set)
of the supervised methods.

2.4.1. Multiple Discriminant Analysis (MDA)

MDA is a supervised method based on the determination of a
discriminant function which is a combination of the original vari-
ables, such that maximize the ratio between-class variance and
minimize the ratio within-class variance. The MDA method can
be performed with many discriminant functions. The types used
in this work are the linear (LDA) and quadratic (QDA) functions.
The methods are well described by Berrueta, Alonso-Salces, and
Héberger (2007) and Scott, James, and Ali (2007).

2.4.2. Back Propagation Artificial Neural Network (BP-ANN)

In BP-ANN the network parameters are the weights and bias.
The number of neurons of the networks satisfy the following con-
dition: (number of network parameters)<(1/2) x (number of
training data) x (number of input channels) (Jurs, Bakken, & McC-
lelland, 2000). The Levenberg—-Marquardt algorithm, an approxi-
mation of the Newton’s method, is the training algorithm we
used for the BP-ANN (Marquardt, 1963). The u value, which defines
the initial increment of the learning process, was fixed to 0.005 ex-
cept when indicated.

The architecture of the networks was different depending on
the inputs used: the 10 sensors signals or the principal compo-
nents. The transfer function and their order between network’s lay-
ers were chosen from every possible combination of logarithmic
sigmoid, tangent sigmoid and linear functions, and selected
accordingly to their capacity for providing good classification re-
sults. The number of neurons and layers are related with the max-
imum number of parameters that can be used. In the present work,
the maximum number of parameters is equal to M x N/2. This con-
dition limits the total number of neurons; therefore different net-
works were designed containing 3, 4 and 5 layers under this
constraint. We performed BP-ANN analysis using 250 and 500
epochs, verifying that the classification results was the same for
both cases. All the information about number of data used for
training and validating are shown in Table 2a.

2.4.3. Radial Basis Function Artificial Neural Network (RBF-ANN)

The RBF neural network used in the present work was the Prob-
abilistic Neural Network (PNN) (Catelani & Fort, 2002; Specht,
1990). PNN operates by a probability density function for each data
class based on an optimized kernel width parameter, called spread
(o). The architecture consists of an input layer, a radial basis func-
tion layer, a competitive layer and an output layer. At each neuron
in the radial basis function layer, the dot product distance (L) be-
tween the inputs and the weight factors in that layer is calculated
and the output of the layer is calculated as proportional to exp(L/
¢2). The competitive layer sums the outputs from all hidden neu-
ron of each respective data class. The results of the competitive
layer are forwarded to the output layer. The parameter that needs
to be determined to obtain an optimal probabilistic neural network
is ¢. This value is crucial because determines the width of the ra-
dial basis function. A trial and error method was used to find the
best spread value (o). In addition, the architecture of the networks
can be different depending if the 10 sensors signals (non-normal-
ized) or the principal components are used as inputs.

3. Results

According to the experimental setup the greater number of
groups that could be differentiated by the e-nose is five, associated
todaysD=0,D=1,D=2,D=3and D > 4, respectively. Other pos-
sible discrimination groups corresponds to grouping the data into
four (D=0, 1, 2, =3), three (D=0, 1, >2) and two groups (D =0,
D > 1). The number of outputs (target groups) used in each case
is indicated as Ny in Tables 1-3. The numerical results obtained
by the different methods and alternatives are described below. A
typical aroma pattern taken at different days of release (D) is
shown in Fig. 2.
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Fig. 2. Typical aroma pattern taken at different days of release (D). The vertical axis
represents the common logarithm of the sensor’s signal. Each row in the sensor’s
axis is associated to one sensor of the array.

3.1. Unsupervised methods

Fig. 3 displays the results obtained using the Principal Compo-
nent Analysis methodology: the PCA-plot shows the two first prin-
cipal components PC;-PC, both for the non-normalized (3a) and
normalized (3b) sensor data. In the first case the samples could
be grouped visually into two classes belonging to D=0 and
D > 1 (Fig. 3a), while with normalized data the figure shows a con-
tinuous path from right to left with the increased number of day of
release. Similar results were obtained for 3-D PCA-plots using the
three first principal components. Therefore, at first glance it seems
that the PCA-plot does not allow to clearly discriminate graphically
more than these two main groups of samples.

With Kohonen-Self Organizing Maps (K-SOM) the results ob-
tained are positive in the aspect that a single neuron-sample rela-
tionship is obtained, that is: each sample is associated to only one
neuron and vice versa. However, the K-SOM plot (Fig. 4) shows the
samples spread along the plot in which only groups associated
with days one, two and three can be individualized only because
of the previous knowledge of sample identities. K-SOM maps per-
formed normalizing input data worsens the results, in accordance
with the tendency observed for the PCA analysis (data not shown).

In the case of using the unsupervised Partition Around Med-
oids-Cluster Analysis (CA-PAM) samples were satisfactorily
grouped up to three groups corresponding to release days D =0,
1 and >2 when using non-normalized signal inputs (see Table
1). Normalization of data induces a much less efficient clusteriza-
tion as can be seen on the columns at the right side of the Table
1, with ASW values near the lower acceptable limit for a good fit
(Struyf et al., 1997). The same trend with very similar numeric re-
sults is observed when the three first principal components were
used as inputs instead of sensor data, normalized or not (data
not shown).

Although the ASW values obtained with raw data are within
those corresponding to a good clusterization, knowing the real
identity of each measurement we can calculate the percentage of
errors in the clusterization procedure by checking to which group
are samples associated in the output of the PAM algorithm. In Ta-
ble 1 the number of errors (over a total of 73 measurements) and
the corresponding error percentage is detailed. It is clear that even
with an acceptable ASW of 0.50, the 46% of errors in the clusteriza-
tion with Ny =4 is unacceptable; while clusterization with Ng=2
(ASW = 0.70) yields 95% of the samples successfully assigned (5%
of error).

The analysis of the influence of normalizing sensor data on sam-
ple discrimination is considered in more detail below. In fact we
have described that crucially different results are obtained if data
are normalized before to be analyzed with the different algorithms.
Recalling the PCA analysis, it is worth noting that the first principal
component, PC;, accounts for 94.2% of the total variance in the
non-normalized case. PC; can be linearly correlated with the Nor-
malization Factor NF as shown in the inset of Fig. 5. This relation-
ship indicates that PC; is mainly defined by the intensity of the
aroma detected by the e-nose much more than by the “shape” of
the fingerprint (the relative relationships between the sensor’s sig-
nals). Therefore, as the intensities of the signals decrease through
the days accompanying the progressive release of the aroma from
the encapsulation matrix, a relationship is also expected between
PC; and the number of releasing days, D. In fact, a step decrease
of PC; with D was obtained during the first 2 days (Fig. 5), changing
thereafter to a less pronounced decrease. The most tender decrease
of the intensity after day two results in the poor clusterization ob-
tained with CA-PAM (see ASW results for Ng =3 and 4 in Table 1).
These relationships obtained between PC; and the intensities of
the signals and in consequence between PC; and D are lost when
normalized data are used.

3.2. Supervised methods

While Table 2a shows the conditions used for training and val-
idation of the Artificial Neural Networks (ANN), Table 2b displays
the recovered parameters for the optimized networks: number of
neurons in the hidden layers, corresponding transfer functions, u
value for BP-ANN and spread value for RBF-ANN. It was possible
to classify samples up to four classes (N;=4; D=0, D=1, D=2
and D > 3) using BP-ANN with average success between 79 and
81% for all cases assayed (Table 3). This percentage is almost the
same when classifying into three classes, but significantly in-
creases for classification into two classes (Ng=2; D=0 and
D > 1). Similar results were obtained for RBF-ANN.

When using MDA the average percentage of success were much
better for LDA than for QDA for all the classes (N, = 2, 3, 4). More-
over, QDA yield worst results than both of the neural networks as-
sayed, which is why QDA method was not included in Table 3.
Another aspect is that we obtained better results using raw data,
both in the non-normalized or normalized way. LDA brings the
best performance of all the supervised methods in the case of three
and four classes (Ng = 3 and 4, respectively). None training param-
eter are used by LDA which is very convenient because it is not
necessary an optimizing step like the one used with BP-ANN or
RBF-ANN.

4. Discussion

The signal’s pattern given by a sensor array such as the elec-
tronic nose is defined by two main factors: the shape (the distribu-
tion of signals intensities) and the intensity (the numerical value of
the signals). Although both factors can change in a multicompo-
nent aroma release experiment, the present results indicate that
intensity is a key factor when tutti-fruti essence is released
through several days from pectin gels. The intensity factor, which
accounts for the aroma concentration in the gas phase through
the release, is lost when using normalized data. We call the atten-
tion at this point because normalization is regularly used as a tool
for smoothing effects due to routine errors in sample manipulation,
as already mentioned by Peris & Escuder-Gilabert in a recent
review (2009). In the present work normalizing data induces a
noticeable decrease in the quality of sample grouping when using
unsupervised methods. As example, the ASW values of CA-PAM
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Fig. 3. PCA-plots using non-normalized (a) and normalized (b) sensor’s signals as inputs.

Each measurement is represented by a number indicating the associated value of D.

(0):D=0,(1):D=1,(2): D=2,(3): D=3, (4): D=4, (5): D=5. The insets show the relative contribution of each principal component vector to the total data variance.

obtained in the case of four clusters (Ng=4 in Table 1) are about
0.50 and 0.25 for raw and normalized data, respectively. The re-
sults of the K-SOM also show that grouping is much worst for
the normalized case with no possibilities of clusterizing data,
which becomes completely randomized.

This fact is not observed when using supervised methods: in
those cases the use of either normalized or non-normalized data
in the analysis does not alter the results. Therefore, it is necessary
to distinguish between supervised versus unsupervised, when dis-

cussing the discrimination efficiencies of normalized versus non-
normalized data because the obtained results were different. In
fact, good results were obtained with normalized-supervised
methods. In those cases, the lost of information (intensity) due to
normalization is compensated by the training process, which rec-
ognize changes of the aroma shape, as each class is associated to
a given release day (D) or range (class D > 3).

Hence, the results obtained herein are relevant for cases in
which the intensity of the odour decreases or increases along time,
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Fig. 4. Kohonen-maps using non-normalized sensor’s signals as inputs. Each measurement is represented by a number indicating the associated value of D.
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Fig. 5. Analysis of the first principal components (PC;) vs. D (number of days) obtained using non-ngymalized data as inputs for PCA. The numbers indicates the days that a
sample was left open before measurement. Inset: PC; vs. the Normalization Factor: NF = (ZLSE)

pointing the needs of keeping signal intensity and/or the time
dimension variable to help sample discrimination.

The evolution of the aroma pattern can be explained consider-
ing the sample composition. On one hand, the essence has an un-
ique majority component (limonene) so that release pattern in
terms of sensor’s signal ratio changes slightly its shape due to a dif-
ferential release of the different components along days. On the
other hand, after day O there is a sharp decrease in signal intensity
followed by a soft decrease since day 2 (see Fig. 4), suggesting that
after D = 2 diffusion becomes the rate limiting step inside the gel
until the essence reaches the gel-air interface releasing the aroma
to the vapour phase. This type of behaviour in the release pattern

of encapsulated molecules in swollen gels has been described be-
fore (Bernik, Zubiri, Monge, & Negri, 2006).

No differences in the efficiency of discrimination were observed
when using raw data or the relevant principal components as input
for CA and/or ANN classification, and raw data were better inputs
in the case of MDA. However these results (concerning the conve-
nience of using raw data) applies for the present study but can not
be generalized.

LDA and the neural networks are able to correctly classify
samples up to four classes (N, =4). Moreover, LDA yield the best
results in classification and is the faster of the supervised methods
assayed herein because no training parameter are needed. When
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comparing BP-ANN and RBF-ANN by inspecting Table 3 we see that
the average percentage of success was similar for both networks.
The main difference between BP and RBF is that RBF training is fas-
ter which significantly reduces the running time, as already men-
tioned by Catelani and Fort (2002). In the present case, RBF-ANN
requires an analysis time 10 times shorter than BP-ANN.

Last, it was noticeable the bad performance of PCA, one of the
most popular unsupervised methods used for visual grouping of
samples. This is not a minor point because PCA is still being regu-
larly used; Peris and Escuder-Gilabert (2009) show in their work
that more than 70% of e-nose users employ PCA and 22% of them
use exclusively PCA as discrimination method in food technology
areas such as process monitoring, shelf life investigation, freshness
and authenticity assessment. According with this study may run
the risk of finding false negative results. The possibility of using
supervised methods must be always explored if the amount of data
is large enough for training the networks or the algorithm (MDA), a
situation which, however, is not always experimentally possible in
terms of cost/benefit ratio. Therefore, it is crucial to find a balance
between the total number of measurements, the time necessary to
analyze data and the necessity of using supervised methods. Ful-
filling these equilibrium will make the e-nose technique a more
practical and confident tool at the industry and research levels.

5. Conclusions

The electronic nose device allowed a highly satisfactory classifi-
cation of the samples according to the day of aroma release of an
encapsulated essence. Discrimination is clearly improved using
raw data and supervised methods of analysis. In the present case
Linear Discriminant Analysis (LDA) outperformed the two neural
networks assayed, Back Propagation (BP-ANN) and Radial Basis
Function (RBF-ANN); therefore, it is suggested the LDA method
as the appropriate choice for use in data analysis.
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