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We study theoretically the electron-spin relaxation rate in quasi-one-dimensional coupled semiconductor
quantum dots. The cross-sectional confinement or shape of these nanorods can be chosen so that either the
Rashba or the Dresselhaus spin-orbit coupling is present. We consider acoustic-phonon-mediated transitions
between the ground state and the next two higher-energy eigenstates. These three states are nondegenerate due
to the interdot coupling, which causes a symmetric-antisymmetric gap, and a competition with the Zeeman
splitting. With Rashba coupling and at fixed Zeeman splitting the two upper states display an anticrossing
versus interdot barrier width, which is shown to be associated with a sharp cusp in the spin relaxation rate.
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I. INTRODUCTION

Spin-related phenomena in semiconductors attract much
attention as they are the foundation of the emerging fields of
spintronics1 and quantum computing in semiconductor
systems.2 Quantum dots �QDs� are particularly promising
since they offer relatively long spin coherence times, a key
requirement in quantum information processing. Electron-
spin relaxation in QDs has been studied recently
theoretically3–24 and experimentally.25–29 In this paper, we
report calculations of spin relaxation rates in coupled double
QDs, a type of structure that offers a useful control param-
eter, i.e., the interdot separation, or barrier width. In particu-
lar, we consider here quasi-one-dimensional �quasi-1D� dot
structures produced in nanowhiskers or nanorods studied
experimentally.30–34 We have recently studied the electronic
states of such quasi-1D double dots, and analyzed their spin-
mixed character, which arises from the spin-orbit �SO�
interaction.35 An interesting and potentially useful character-
istic of these QD structures is that they can be designed so
that only the Rashba or the Dresselhaus spin-orbit couplings
are present in a given structure.35 Therefore, they lend them-
selves ideally to the experimental study of the individual
spin-orbit couplings, which is a desirable feature in quantum
dot systems.22

In this paper, we calculate rates of spin-flip transitions
induced by phonon scattering between Rashba spin-mixed
states, taking into account the different acoustic-phonon
modes present in zinc-blende semiconductors. Strictly speak-
ing, as we shall see below, the quantum transitions between
the ground state and the next two excited states of the struc-
tures can reasonably be termed spin-flip transitions only for
certain ranges of values of the interdot barrier width, due to
the spin-mixed nature of the first and second excited states.
On the other hand, the phonon-mediated transitions between
quantum states in the presence of only the Dresselhaus cou-
pling are never spin-flip transitions, due to the fact that in
these quasi-1D structures the Dresselhaus coupling is propor-
tional to Sz and therefore does not couple the up and down
spin states.

In the case where the Rashba coupling is active we find
that the relaxation rate shows a strong dependence on the
interdot-barrier width and can, furthermore, be tuned with an
external magnetic field. This provides interesting flexibility
in the control of electronic spin states and spin-flip rates. As
we will see, the double-well structure provides an interesting
system where the competition between the symmetric-
antisymmetric gap and the Zeeman splitting has important
consequences. The appearance of level anticrossings in the
spectrum, whenever these two energy scales coincide, pro-
duces strongly varying spin transition rates: a cusp in the rate
vs barrier width which shifts for different magnetic fields.

Similar cusps have been reported in other dot systems and
are due to geometrical effects.22,36 Apart from the different
physical nature of the level anticrossing giving rise to the
cusp reported here, one important feature of this effect is that
it can be accessed dynamically in a given system by varying
the applied magnetic field. It is also interesting that there is
such a strong dependence on structure and applied fields for
double quantum dots such as these, especially considering
that coupled dot systems are ubiquitous in a number of pro-
posals for quantum gates.

The paper is organized as follows. In Sec. II we describe
the systems studied and the calculation of the relaxation
rates. In Sec. III the main results of the study are given, and
in Sec. IV we provide concluding remarks.

II. QUANTUM DOT SYSTEM AND RELAXATION RATES

Let us denote by z the coordinate in the longitudinal di-
rection of the quasi-1D coupled double-quantum-dot struc-
ture. Vz�z� is the confining potential that defines the pair of
coupled QDs. In Fig. 1 we show Vz�z� for an InSb-based
structure along with the four bound single-particle states, lo-
cated next to their corresponding energy levels. We assume
that each dot has a length of 30 nm, and we take the width of
the barrier between dots, b, as a variable parameter. The
nanorod width �cross section� is roughly ten times smaller
than the dots’ length. Introducing a weak magnetic field in
the z direction that breaks the spin degeneracy �but produces
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no significant diamagnetic shift�, the Hamiltonian takes the
form35,37,38

H =
P2

2m* + Vz�z� + HSO + HZ, �1�

where P= �Px , Py , Pz�, �= ��x ,�y ,�z� is the Pauli matrix vec-
tor, and HZ= 1

2g�BB�z is the Zeeman term.40 The three-
dimensional problem is reduced to an efective one-
dimensional problem by taking the average, denoted in what
follows by �¯�, over the ground states of the lateral confin-
ing potentials.35,39 One obtains the following effective one-
dimensional Hamiltonian:

H1d =
pz

2

2m* + Vz�z� + HZ + H1dD + H1dR, �2�

H1dD =
�D

�3 ��px
2� − �py

2���zpz, �3�

H1dR =
�R

�
�� �Vy

�y
��x − � �Vx

�x
��y�pz, �4�

where H1dD is the one-dimensional Dresselhaus term, and
H1dR is the Rashba-like term enabled by the inversion asym-
metry of the laterally confining potentials Vx and Vy. �R and
�D are parameters that depend on the materials.

We diagonalize the Hamiltonian to take full account of the
SO effects. We consider two cases for the lateral confining
potentials Vx�x� and Vy�y�.35

�i� Vx�x�=Vy�y� without inversion symmetry, so that the
Dresselhaus terms cancel out while the Rashba terms do not.

�ii� Vx�x� and Vy�y� with inversion symmetry but Vx�x�
�Vy�y�, so that only Dresselhaus terms are present. We take
Vx�x� and Vy�y� as parabolic potentials with different curva-
ture.

It is important to note that the one-dimensional Dressel-
haus coupling Eq. �3� is proportional to �z and therefore does
not couple the up and down spin states. Thus, the electron-
phonon interaction will be unable to induce spin-flip transi-

tions. Therefore, there is no spin relaxation mediated by
electron-phonon interaction for nanorod geometries where
only Dresselhaus coupling is active. On the other hand, the
Rashba coupling Eq. �4� does mix the spin states and causes
a spin admixture in the eigenstates of the system. The
electron-phonon interaction can cause in this case transitions
between states which can be characterized as spin flips. Our
calculations will concentrate mostly on situations where only
Rashba coupling is present.

We calculate relaxation rates due to acoustic-phonon scat-
tering between the ground state and the next two energy
eigenstates in InSb and GaAs QDs via Fermi’s golden rule:

�i→f =
2�

�
	
Q,�


�f �UQ,��i�
2n	�
E − ���� , �5�

where Q= �qx ,qy ,qz�= �q ,qz� is the phonon momentum; �
indicates the acoustic-phonon modes, and can take the values
� for longitudinal and t=TA1 and TA2 for transverse modes;

E=Ef −Ei; and n is the Bose-Einstein phonon distribution
with energy ���=�c�Q, where c� is the sound velocity of
each mode. The kets �f� and �i� represent the final and initial
electronic states obtained by exact �numerical� diagonaliza-
tion of the Hamiltonian. The potential Uq,� includes both
deformation ���Q� and piezoelectric 
��Q� contributions:41

Uq,�=�,t = ����Q� + i
�,t�Q�
eiQ·r. �6�

For zinc-blende semiconductors, the phonon potentials
read �in cylindrical coordinates�24 ���Q�=�0� �

2DVc�

�Q,


��Q�=
6�eh14

�
� �

2DVc�
sin�2��

q2qz

Q7/2 , 
TA1�Q�=
4�eh14

�
� �

2DVcTA

�cos�2��
qqz

Q5/2 , and 
TA2�Q�=
2�eh14

�
� �

2DVcTA
sin�2�� q3

Q7/2
�2 qz

2

q2

−1�, where �0 and eh14 are the bulk constants, � is the
dielectric constant, D is the mass density, and V is the
volume.42

We assume throughout this work a temperature of 298 K.
When studying systems with Rashba coupling, we take a
Rashba structural parameter � �Vx

�x
�=5 meV/nm. For simplic-

ity we assume in our rate calculations that the lateral con-
finement is parabolic without a cutoff due to the finite width
of the nanowhisker, and we choose the harmonic frequency
so that the wave function has an extent of 2 nm �our results
are not sensitive to the precise value of the lateral width
within the regime studied here�. For InSb- and GaAs-based
systems, the wells are taken to be 100 and 220 meV deep,
respectively. For the systems with Dresselhaus coupling, we
assume harmonic oscillator confinements in the x and y di-
rections, with lengths of 2 and 5 nm, respectively. Other ma-
terial parameter constants are taken from the literature.42

III. RESULTS

Figure 2 shows results of varying the central barrier width
b between the dots. For case �ii� above, where only Dressel-
haus coupling is present, Fig. 2�a� shows the four lowest
energy levels for a double-dot structure, as function of the
barrier width b. A magnetic field of B=0.8 T is included. As
expected, the second and third levels, which do have oppo-

FIG. 1. Potential energy in the longitudinal direction of an InSb-
based double-dot structures. The energy levels and eigenfunctions
are shown. The energy difference between the lowest symmetric
and antisymmetric states is called 
SAS. The Zeeman energy Ez is
also illustrated when a field along z is present.
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site spins, do not mix, and only exhibit a true level crossing,
as the Dresselhaus coupling in Eq. �3� only shifts spin levels
and does not mix states.

In contrast, Figs. 2�b� and 2�c� show the mean values of Sz
and the four lowest energy levels, respectively, as functions
of the width of the central barrier, b, for double-dot struc-
tures with Rashba coupling �case �i� above, and also in the
presence of a magnetic field B=0.8 T
. Notice in Fig. 2�c�
that the second and third levels show an anticrossing at a
barrier width where their Sz mean values switch, bc�0.8 T�
=11.2 nm. At low b values, the second state is the spatially
symmetric double-dot state with spin down, while the third
state is the spatially antisymmetric state with spin up. In-
creasing barrier width decreases the symmetric-
antisymmetric splitting �
SAS, shown in Fig. 1�, allowing SO
coupling to produce strong mixing, which results in the an-
ticrossing and spin switching we see in Figs. 2�b� and 2�c�.
The same effect could be obtained by varying the barrier
height at fixed width. This “crossing value” is, naturally,
magnetic field dependent, as the magnetic field controls
whenever the Zeeman splitting equals the 
SAS gap �notice
the field is along the z direction or whisker length, and it
does not change 
SAS�. We should stress that the differences
seen in Figs. 2�a� and 2�c� �crossing vs anticrossing of dif-
ferent spin states� illustrate the striking effect of symmetry of

the cross-sectional confinement potential of the double-dot
system in the nanowhiskers, and the role of spin-orbit cou-
pling. If one could control the x-y confinement potential in
the whiskers, one could in principle control the spin mixing
and corresponding relaxation rates of the different electronic
states. Let us explore this point quantitatively.

Figure 3 shows the contributions to the spin relaxation
�SR� rate in InSb and GaAs coupled QDs with only Rashba
coupling �case �i�
. The four different acoustic-phonon po-
tentials, deformation, piezoelectric longitudinal �LA�, and pi-
ezoelectric transverse 1 �TA1� and transverse 2 �TA2� poten-
tials, are studied and compared. The rates shown correspond,
more precisely, to the transition between the two lowest-
energy states. In InSb QDs, we note that the SR rate is domi-
nated by the deformation potential �for B�0.3 T�, while in
GaAs it is dominated by the piezoelectric TA1 potential �no-
tice, however, that the different contributions are also size
dependent22,24�. Furthermore, in InSb QDs, the contributions
from the TA2 and LA potentials can be neglected against
those of the other two potentials for magnetic fields beyond

FIG. 4. Relaxation rates as functions of central barrier width in
InSb QDs, for two different values of the magnetic field �B=0.5 and
0.8 T�, and spin-flip ��↑↓�, and non-spin-flip ��↑↑� transitions.
Rashba coupling is allowed by the confinement symmetry �case �i�
.

FIG. 2. �a� Energy levels for the four lowest-energy eigenstates
as functions of the width of the central barrier, b, for InSb structures
with Dresselhaus coupling �case �ii�
. �b� and �c� Mean value of Sz

and energy levels, respectively, for structures with Rashba coupling
�case �i�
. Level anticrossing occurs only in this case �i�. B=0.8 T
for both types of system. Arrows next to curves indicate spin of
state away from the �anti�crossing. Notice 
SAS gap separates same-
spin curves in �a� and �c� and decreases with increasing b.

FIG. 3. Spin relaxation rates due to the different acoustic-
phonon potentials: deformation �DP�, piezoelectric longitudinal �Pi-
ezo LA�, transverse 1 �Piezo TA1�, and transverse 2 �Piezo TA2�
potentials, for InSb �thick lines� and GaAs �thin lines� QDs as func-
tions of the applied magnetic field. Here, we consider b=3 nm.
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roughly 0.1 T, since they are several orders of magnitude
smaller than the latter. The same is true of the deformation
potential in GaAs in comparison to the other three potentials.
Due to the strong spin-orbit interaction and small band gap
of InSb, the SR is in general much larger for that material
than for GaAs, as one can observe in Fig. 3.

Figure 4 shows the total transition rate from the first
�GS-1� and second �GS-2� excited states to the ground state
of InSb QDs, and two values of the magnetic field, B=0.5
and 0.8 T, as function of the barrier width b. The up-to-down
spin-flip transition corresponds to GS-1 at low b and to GS-2
at high b, and the rate associated with spin flip, �↑↓, is shown
as dotted �for B=0.8 T� and dash-dotted �B=0.5 T� curves.
For a given magnetic field, the spin-flip rate shows a cusp at
a barrier width that coincides with the crossing width bc, as
introduced in Fig. 2. Accordingly, the cusp position in �↑↓
shifts to lower b values with increasing magnetic field. An
analogous situation can be seen in Fig. 5 for GaAs QDs, with
B=0.1 and 0.8 T. Here the cusp is sharper than for InSb, due
to the weaker SO coupling. It must be noted that these are
not strictly speaking “spin-flip” transitions, particularly at
and around the cusp, since the excited states involved are not
spin eigenstates. The rates of the non-spin-flip transitions,
�↑↑, on the other hand, show slight dips at the same bc posi-
tion, reflecting also the mixed-spin character of the states 1
and 2. The appearance of the cusp on the SR rates clearly
arises from the enhanced level mixing when the symmetric-
antisymmetric states anticross in the double QD. This effect
is similar to that described recently in single quasi-2D

dots,22,24 although in that case the level mixing is associated
with anticrossing of different angular momentum states.

For comparison of different spin-orbit mechanisms, Fig. 6
shows the transition rates between the first excited state and
the ground state of structures with only Dresselhaus coupling
�case �ii�
. As mentioned earlier, these are not spin-flip tran-
sitions, but rather regular orbital-type transitions mediated by
phonon scattering. It is clear that the sharp cusp present with
Rashba coupling does not appear here, since the Dresselhaus
spin-orbit does not introduce spin mixing in this geometry,
and there is no enhancement of the spin relaxation in turn.

IV. CONCLUSION

To summarize, we have studied the phonon-mediated
electronic transitions between Rashba spin-mixed states in
GaAs and InSb coupled QDs. The spin relaxation rate shows
a cusplike maximum as a function of the separation between
the dots. The position of this maximum can be controlled
with a small external magnetic field, and can in principle be
used to significantly change the electronic SR rates in the
system. In contrast, Dresselhaus spin-orbit interaction does
not produce spin mixing or spin relaxation.
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