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We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC
4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via
zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase
activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal
domain in Bacillus subtilis resulted in the functional verification of the enzymatic activity.

Surface layers (S-layers) have been recognized ubiquitously
in both Eubacteria and Archaea. Their respective structures
and functionalities have been investigated intensively in the
past (3, 4). Several species of the genus Lactobacillus possess
an S-layer. The S-layer of Lactobacillus acidophilus ATCC
4356 is composed of a single S-protein (SA protein) of around
45 kDa, which has been extensively characterized by Peter H.
Pouwels and coworkers (5, 6, 7, 8, 9, 23, 24, 25). The function
of the S-layers of these organisms is unknown, but they may be
important for bacterial adhesion to intestinal epithelial cells
and extracellular matrix components (11, 12, 15, 16). Lactoba-
cillus acidophilus is one of the main species of the genus Lac-
tobacillus found in human and animal intestines. Several lac-
tobacilli have been proposed to have probiotic characteristics.
Probiotics are live microorganisms, usually contained in food,
traditionally regarded as safe for human and animal use. When
ingested in sufficient numbers, probiotics are believed to play
an important role in the control of the host intestinal micro-
biota and in the modulation of host immune responses (26).
An antagonist action of the Lactobacillus S-layer bearing S
traits has been suggested (11, 15). Different groups have found
probiotic activity in Lactobacillus acidophilus strains (13, 14,
15, 18), particularly in strain ATCC 4356, used in this study
(12, 18, 21).

In an attempt to evaluate whether there was any cell wall
polymer hydrolysis activity, purified S-layers extracted from L.
acidophilus cells (statically grown overnight in MRS medium at
37°C) by using 6 M LiCl as described previously (6, 9) were
subjected to a zymogram assay. For that purpose, 2% purified
peptidoglycan (PG) was prepared from several species accord-
ing to the method of Bousfield et al. (10) and was incorporated
into a 12% polyacrylamide gel. Zymography was performed as
described by Kakikawa et al. (17) and was used to detect the
lytic activity. Gels were cast with only 0.01% sodium dodecyl
sulfate (SDS). After the run, hydrolase activity was detected by
a clear zone (27). We observed an intense clear band when PG

from Salmonella enterica serovar Newport was used (Fig. 1C).
The lytic band corresponds to the molecular weight of SA

protein (Fig. 1A) and was confirmed by Western blotting (Fig.
1B) with an antibody against the S-layer. A polyclonal anti-S-
layer antibody was produced by injecting the protein obtained
from SDS-polyacrylamide gels into a mouse and was used at a
1:10,000 dilution. A biotin-conjugated anti-mouse antibody
was detected, with a second biotinylated antibody conjugated
to alkaline phosphatase, by chemiluminescence using CDP-
Star (GE-Biosciences).

Also, PGs from Escherichia coli and Micrococcus luteus gave
positive results, whereas no activity was observed against PGs
from Bacillus cereus, Lactobacillus casei, and L. acidophilus
(data not shown). Although L. acidophilus ATCC 4356 has
been extensively characterized by Peter H. Pouwels and co-
workers (5, 6, 7, 8, 9, 23, 24, 25), this novel activity had not been
visualized previously. Here we describe a true uncharacterized
murein hydrolase activity associated with this S-layer, with lytic
activity toward the cell walls of several Eubacteria. A role of
murein hydrolases for an S-layer protein had previously been
described only for Bacillus anthracis (1). This activity of the
S-layer protein as a murein hydrolase is also expected for
proteins sharing extensive homology with the SA protein in the
carboxy-terminal portion, such as those described by Boot et
al. (8).

To compare this in vitro effect, in vivo assays with whole
viable cells were also performed. Viable cells and cell walls
from Salmonella serovar Newport were isolated, washed once
with phosphate-buffered saline, and mixed with S-layer protein
at the concentrations indicated. Lysis was monitored by the
decrease in absorbance (optical density at 600 nm [OD600])
(Fig. 2A and B). With cell wall preparations, the best lytic
performance was achieved at the lowest S-layer concentration
(0.02 to 0.1 mg). Reassembling of S-proteins at high concen-
trations may mask the lytic activity, which would explain the
decrease in the lytic activity observed (Fig. 2A). With viable
cells at this low S-layer concentration, no significant decrease
in the OD was observed (data not shown); this may be due to
the presence of lipopolysaccharides in the Salmonella cell wall.
However, at higher S-layer concentrations (0.5 to 1 mg), lysis
was obtained but took longer.
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To determine the specificity of the lytic activity, we analyzed
the newly exposed groups of the PG after hydrolysis with the
S-layer protein. An increase in the number of sugar-reducing
groups will be detected if the enzyme is a muramidase or a
glucosaminidase, and an increase in the number of free amino
groups will be detected if the enzyme is an amidase or an
endopeptidase. Free amino groups released during hydrolysis
of the cell walls were determined in the presence of 2,4-dini-
trofluorobenzene (DNFB) and analyzed by thin-layer chroma-
tography (TLC) as described previously (20). The lysis of the
Salmonella serovar Newport cell walls was accompanied by an
increase in the level of free amino groups; particularly, we were
able to quantify the increase in the level of the dinitrophenyl-
alanine (DNF-Ala) (Fig. 3), while there was no change in the
number of reducing ends, determined, as described previously
(20), with 8-amino-naphthalene-1,3,6-trisulfonic acid (ANTS;
Molecular Probes) (data not shown). These results are consis-
tent with the absence of activity toward the glycan strand of PG
but allow us to postulate that this lytic activity works as an
endopeptidase or even a PG amidase as defined by Vollmer
et al. (28).

In silico sequence analysis with the BLASTp tool (2) showed
that the C-terminal motif has homology with lytic enzymes of
several Lactobacillus strains. ClustalW alignments (http://www
.ebi.ac.uk/Tools/clustalw2/index.html) are shown in Fig. 4.

Primers were designed to amplify the carboxy-terminal do-
main of the protein, and a 968-bp amplicon was obtained,
cloned into the pGEM-T Easy vector (Promega), and se-
quenced. Primers 5�-CAGAAAATGCAGGTAAGACTGTT

A-3� (forward) and 5�-GCGGAATTCGAGCTCAGCGTTAG
TGCTACGACT-3� (reverse) were used. Complete homology
with the previously reported sequence (EMBL accession num-
ber X89375) (4) was obtained. The 968-bp fragment (323
amino acids) in the pHCMC05 shuttle plasmid, kindly pro-

FIG. 1. SDS, Western blot, and zymography profiles of the S-layer
obtained from L. acidophilus. (A) SDS-polyacrylamide gel electro-
phoresis after isolation with LiCl and staining with Coomassie blue;
(B) Western blot detection with the anti-S-layer antibody; (C) zymo-
gram of the S-layer showing lytic activity over the cell wall from Sal-
monella serovar Newport. Mk, molecular mass standard.

FIG. 2. Hydrolase activities against isolated cell walls and viable
cells of Salmonella serovar Newport. Mixtures of cell walls (0.5 mg/ml)
(A) or whole cells (OD660, 1) (B) and the S-layer at the indicated mass
were incubated, and the OD600 was measured.

FIG. 3. Correlation between hydrolysis and increased levels of
DNFB-treated free amino groups. (A) Hydrolysis with 0.1 mg of S-
layer protein was followed by determination of the OD600 (F) and the
amount of DNF-Ala (Œ) by TLC and densitometry. (B) TLC analysis
of hydrolysis with two S-layer concentrations and different times (in
hours) as indicated. DNF-amino acids (100 nmol) are Glu (E), Lys (K),
and Ala (A). The arrow indicates the position of DNF-Ala.

FIG. 4. Identities of the primary sequence of the SA protein to
those of other lytic enzymes analyzed by ClustalW. The cloned C-
terminal portion of the SA protein is underlined. Asterisks indicate
residues identical in all sequences in the alignment; colons, conserved
substitutions; periods, semiconserved substitutions. CAA61560, SA
protein (Lactobacillus acidophilus ATCC 4356); YP_618401, putative
amidase (Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842);
YP_812313, N-acetylmuramoyl-L-alanine amidase (L. delbrueckii
subsp. bulgaricus ATCC BAA-365).
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vided by the Bacillus Genetic Stock Center (19), was subcloned
in order to express this fragment under the control of the
isopropyl-�-D-thiogalactopyranoside (IPTG)-inducible Pspac
promoter, allowing us to produce the pC1C2 plasmid (recom-
binant plasmid of pHCMC05 containing the 968-bp insert).
When introduced into E. coli JM109 (grown in LB medium at
37°C with aeration), the plasmid showed high instability and
decreased growth, particularly when IPTG was present (data
not shown). The lack of success in expressing the cloned hy-
drolase motif in E. coli was certainly related to the PG struc-
ture of this host bacterium, since we found that it was a sub-
strate for this lytic activity. This may explain the instability that
other authors (9, 25) encountered when they attempted to
clone the entire slpA gene of ATCC 4356 into E. coli.

Therefore, we introduced the plasmid into Bacillus subtilis
168 competent cells. For expression, cells were induced by the
addition of 0.5 mM IPTG. B. subtilis was grown in LB medium
at 37°C with aeration in the presence of 1 M NaCl to avoid the
presence of proteases (22) that might degrade the heterolo-
gous product. To prepare for the analysis of expression by
zymograms and Western blotting, cells were disrupted by son-
ication after harvest at the indicated times. Western blot and
zymogram analyses showed the predicted 33-kDa band when
the plasmid was expressed in Bacillus subtilis (Fig. 5A). When
IPTG was added to the growth medium, a lytic band corre-
sponding to the molecular mass of this fragment was seen;
expression of this fragment was confirmed by Western blotting
with an antibody against the S-layer (Fig. 5B).

Murein or PG hydrolases comprise a large family of enzymes
with roles in daughter cell separation, PG turnover, autolysis,
spore formation, and antibiotic-induced lysis within their own
cells (27, 28, 29). However, these enzymes are also important
for an adaptive response to environmental conditions that
might result from an antagonistic relationship in the same
ecological niche. The gastrointestinal tract will determine the
coexistence of gram-negative and gram-positive species, deal-
ing with high osmotic strength, pH gradients, anaerobic con-
ditions, and nutrient variability, resulting in a competition for
survival. The murein hydrolase activity provides S-layer-bear-
ing strains of lactobacilli with an additional means to succeed
and survive. Due to the lytic activity against whole cells of
Salmonella serovar Newport that we observed, one might won-
der if these S-layer characteristics may account for the probi-
otic properties of Lactobacillus acidophilus. In vivo assays
would be required to address the question of whether the
inhibition of adhesion of gram-negative bacteria and the com-
petitive exclusion of pathogens that have been reported for
S-layer-bearing strains (12, 13, 14) are associated with the
antibacterial activity reported here. The precise characteriza-
tion of murein hydrolase activity will be the aim of our future
investigation.
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