
International Journal of Heat and Mass Transfer 86 (2015) 826–831
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Evaluation of the spreading thermal resistance for rough spheres
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.048
0017-9310/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Centro de Investigación y Desarrollo en Ciencias
Aplicadas ‘‘Dr. J. J. Ronco’’ (CINDECA) CCT La Plata – CONICET – UNLP, calle 47 No.
257, CP B1900AJK La Plata, Argentina.

E-mail address: nmariani@quimica.unlp.edu.ar (N.J. Mariani).
Carlos D. Luzi, Sergio D. Keegan, Néstor J. Mariani ⇑, Guillermo F. Barreto
PROIRQ, Departamento de Ingeniería Química, Facultad de Ingeniería, UNLP, La Plata, Argentina
Centro de Investigación y Desarrollo en Ciencias Aplicadas ‘‘Dr. J. J. Ronco’’ (CINDECA) CCT La Plata – CONICET – UNLP, calle 47 No. 257, CP B1900AJK La Plata, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 December 2014
Received in revised form 13 March 2015
Accepted 13 March 2015

Keywords:
Spreading thermal resistance
Effective thermal conductivity
Overall contact resistance
The solid–solid contact of rough spherical particles in packed beds takes place by the deformation of
individual asperities that transmit the stresses to the main body of the particles. This causes an elastically
deformed area (a disk of radius a, most usually much smaller than the particle radius) enclosing the
micro-contacts. Micro thermal resistances around the contact spots can be described in terms of a profile
of thermal conductance h(r) that decreases toward the disk edge. An additional thermal resistance, the
spreading resistance, is caused by the convergence of flux lines in the bulk of the spheres towards the
reduced section of the disk. The described mechanism has been modeled by Bahrami et al. (2006) and
a formulation was provided to predict the contribution of contact areas to the effective thermal conduc-
tivity. The spreading resistance Xa is re-evaluated in this work on account of the h(r) profile, by means of
numerical calculations. It is found that the shape of h(r) has a large impact on Xa and a weaker, but still
significant, effect on the overall contact resistance. The results of Xa have been suitably correlated for a
conductance profile of the form h(r) = h0 [1 � (r/a)2]p.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The effective thermal conductivity of packed beds is known to
be determined by a large number of factors (e.g. [1]). This paper
is concerned with the contribution of the solid–solid contact areas
that play a relevant role under vacuum conditions or for particles
with high thermal conductivities, such as metals, alloys or other
materials like high-density alumina and carbon.

Compression forces increase the areas of solid contacts. The
own weight of the bed in industrial applications (bed heights are
in the order of meters) will build enough pressure to enhance sig-
nificantly the contact contribution to the effective thermal conduc-
tivity. The assumption of ideally smooth surfaces simplifies greatly
the estimation of such a contribution, but unfortunately most
particles of practical use show rough surfaces and real contact
spots occur by deformation of the asperities. The general problem
of contact between rough surfaces and the associated heat transfer
effects have been extensively studied in the past decades [2].
Although the basic features of the problem seem to be fairly well
understood, there is not at present a procedure generally accepted
to predict the magnitude of the heat transfer rate through rough
surfaces in contact, in particular in the case of granular beds.
This is a consequence of the interplay between the mechanical,
geometric and thermal aspects of the problem, and perhaps most
important, the distributed nature of the size and shape of asperities
that in turn are specific for each particle surface. Among a number
of models to evaluate the thermal contact contribution (some of
them have been summarized and evaluated in the recent pub-
lication by Abyzov et al. [3]), we appraise the approach of
Bahrami et al. [4] as a relevant alternative to predict the effect of
the solid contact contribution to the effective thermal conductivity.
Based on an ample body of previous theoretical and experimental
studies, the authors have been able to formulate a relatively simple
model requiring a basic characterization of roughness. The contact
contribution, or alternatively expressed as a thermal contact resis-
tance, is evaluated along with the gas contribution, but the former
can be implemented with alternative formulations for the latter, as
in the model of van Antwerpen et al. [5]. The overall contact resis-
tance according to Bahrami et al. [4] is expressed for spherical par-
ticles in contact by adding the micro-contact thermal resistance
due to the deformation of the asperities in the plastic regime to
the macro thermal resistance due the spreading/constriction of
flux lines from/towards the area enclosing all micro-contacts (a
disk), as defined by the elastic deformation of the bulk material.

This paper presents a re-assessment of the macro-thermal resis-
tance (herein referred to as spreading resistance for short) in the
Bahrami et al. [4] formulation to account for the usually strong
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variation of the local thermal resistance within the disk of micro-
contacts. After outlining the Bahrami et al. [4] model and giving
examples of its application, the spreading resistance is evaluated
correctly from numerical calculations, the results are expressed
in simple correlations and the effect on the Bahrami et al. formula-
tion is finally assessed.
2. Bahrami et al. [4] formulation for the contribution of solid
contact areas to the effective thermal conductivity

Even when the Bahrami et al. [4] model to predict the overall
contact resistance can be taken as a starting point to more general
cases, it has been specifically formulated for contact between
spheres. This case will be treated here, and further, to simplify
the analysis, spheres of the same size and material will be consid-
ered without restricting the conclusions.

For a brief outline of their model, only the evaluation of the
thermal contact resistance regarding a single contact zone between
two spheres will be considered, while the evaluation of heat trans-
fer through the interstitial gas is disregarded.

Around a nominal contact point between the spheres subject to
a compression force F, the main bodies suffer a macro-deformation
of elastic nature covering a disk of radius a, which except if F is
unusually high, will be typically of the order of a hundredth of
the sphere radius Rp. Considering rough spheres, the contact within
the disk is not uniform, but takes place by means of isolated spots
generated by the deformation of the asperities that come into con-
tact to sustain the compressive force. Plastic asperity deformations
are considered in the Bahrami et al. [4] model.

For each hemisphere in contact, the (macro) spreading resis-
tance Xa is evaluated by the following expression corresponding
to the case in which the temperature over the disk is uniform
(Xa,T):

Xa;T ¼ 1=ð4aksÞ ð1Þ

where ks is the solid thermal conductivity. It should be noted that
the Bahrami et al. [4] formulation is given for the joint resistance
exerted by both hemispheres in contact. Instead, we will write
expressions for only one of the hemispheres, i.e. as for the heat
exchange between such a hemisphere and the hypothetical plane
tangent to the surfaces in contact. Therefore, expressions for ther-
mal resistances given here (e.g. Eq. (1)) are half of those in
Bahrami et al. [4].

The evaluation of the radius a follows from the solution of the
elastic deformation equations applied to the surfaces subject to
an axisymmetric pressure distribution resulting from the plastic
deformations of the asperities. The results are primarily obtained
via a numerical solution [6], but the authors developed approxi-
mate explicit expressions for a and for the pressure distribution
P(r), in terms of Hertzian parameters (contact of ideally smooth
surfaces). In the form given by Bahrami et al. [4] the relationships
are:

a ¼ aH �
1:605=

ffiffiffiffiffi
P�0

p
; if 0:01 6 P�0 6 0:47

3:51� 2:51P�0; if 0:47 6 P�0 6 1

(
ð2aÞ

P�0 ¼ P0=PH;0 ¼ ð1þ 1:22av�0:16Þ�1 ð2bÞ

PðrÞ ¼ P0½1� ðr=aÞ�p; p ¼ 1:5P�0ða=aHÞ2 � 1 ð2cÞ

In Eqs. (2) P0 is the (maximum) pressure at r = 0, PH,0 = 1.5F/(p
aH

2) is the Hertz pressure at r = 0, aH = (0.75 FR0/E0)1/3 is the
Hertzian disk radius, and the parameters in Eq. (2b) are a = r0 R0/
aH

2, v = (H162/E0)(R0/r0)0.5. Furthermore, for two identical spheres,
R0 = Rp/2 and 1/E0 = 2(1 � t2)/E, where t is the Poisson ratio and E
is the Young’s modulus. H162 is an effective micro-hardness evalu-
ated as H162 = c1[1.62 (r0/m0)/r1]c2, where c1 and c2 are micro-hard-
ness constants depending on the sphere material and the state of
its surface, r1 = 1 lm, r0 =

p
2 r, m0 =

p
2 m, with r and m the root

mean roughness and mean asperity slope, respectively, of the
sphere surface.

As the deformed asperities within the disk are assumed to be far
enough apart from each other, each contact spot will also induce a
micro-spreading resistance. In terms of the local conductance h(r),
Bahrami et al. [7] expressed

hðrÞ ¼ 2ksPðrÞ=ð0:565H0r0=m0Þ ð3Þ

In Eq. (3) the true micro-hardness and the true mean contact
radius are assumed to be proportional to H0 = c1[(r0/m0)/r1]c2 and
(r0/m0) respectively, while the numerical coefficient 0.565 is an
empirical constant obtained from comparison with experimental
data.

It is noted that an underlying assumption in writing Eq. (3) is
that the fraction of the local nominal area in contact fA is small.

Assuming that the local thermal driving force is constant on the
disk of radius a, the heat transfer rate will be proportional to the
sum of local contributions within the disk. Thus, the micro contact
resistance is defined as

Xc ¼
1

2p
R a

0 hðrÞrdr
ð4Þ

Since F = 2p
R a

0 PðrÞrdr, Eq. (4) can be written as

Xc ¼
0:565

2
1
ks

H0

F
r0

m0
ð5Þ

Finally, Bahrami et al. [4] evaluated the overall contact resis-
tance by adding the spreading resistance caused by the disk of
radius a, Xa �Xa,T (Eq. (1)), and Xc from Eq. (5). The result denoted
XT is then

XT ¼ Xa;T þXc ð6Þ

The contribution of solid contacts to the effective thermal con-
ductivity of the bed (keff) will be inversely proportional to the pro-
duct (Rp XT).

Employing Eq. (2c) for P(r), it will be useful in the next sections
to rewrite Eq. (3) in the form

hðrÞ ¼ h0½1� ðr=aÞ2�
p

ð7Þ

where h0 = h(0) = 2ksP0/(0.565 H0r0/m0) and P0 is evaluated from
(2b). Then, Xc becomes alternatively written as

Xc ¼
1þ p
h0pa2 ð8Þ
3. Numerical examples from Bahrami et al. [4] formulation

Table 1 lists results from the formulation summarized in
Section 2 applied for spheres made of a relatively soft metal, with
properties similar to those of a bronze. The thermal resistances Xa,
Xa,0, X and X0, also listed in Table 1, will be defined and evaluated
as explained in Sections 4 and 5. Besides, the fraction of area in
actual contact at r = 0 is calculated as fA0 = P0/H162, and the signifi-
cance of parameter (a/ks)h0/(p + 1) will be discussed in Sections 5
and 6.

The effects of three variables have been analyzed: particle
radius (1.5 and 15 mm), the compression force, assumed imposed
by the own weight (light load, experimental bed of height
Lbed = 0.15 m and high load, full-size bed, Lbed = 2.5 m), and the sur-
face roughness (r0/m0: 1 lm/0.07 and 10 lm/0.25). According to



Table 1
Values of thermal resistances for E = 100 GPa, t = 0.35, c1 = 4 GPa, c2 = �0.26; d = 7000 kg/m3, ks = 100 W/(m K).

Run# 1 Lbed = 0.15 m 2 Lbed = 0.15 m 3 Lbed = 2.5 m 4 Lbed = 2.5 m 5 Lbed = 2.5 m

Rp [mm] 1.5 15 1.5 15 15
F [N] 0.065 6.5 1.08 108 108
r0 [lm] 1 1 1 1 10
m0 0.07 0.07 0.07 0.07 0.25
P�0 0.073 0.49 0.34 0.86 0.33
a/aH 5.93 2.29 2.75 1.35 2.79
fA0 0.017 0.115 0.205 0.518 0.260
p 2.86 2.82 2.86 1.35 2.86
Xc [K W�1] 1251 12.5 75.0 0.75 1.61
Xa,T [K W�1] 48.9 12.7 41.3 8.43 4.07
Xa [K W�1] 81.2 19.8 65.7 10.4 6.14
Xa,0 [K W�1] 82.5 21.3 69.7 11.7 6.87
XH [K W�1] 290 29.0 114 11.4 11.4
XT [K W�1] 1300 25.2 116 9.18 5.68
X [K W�1] 1332 32.3 141 11.1 7.75
X0 [K W�1] 1333 33.8 145 12.4 8.47
(a/ks)h0/(p + 1) 0.05 1.29 0.7 14.3 3.22
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Fig. 1. Conductance profile in a disk of radius a according to Eq. (7) for different
values of p.
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our estimations, the force on each particle increases proportionally
to Lbed and R2

p .
The solid conductivity ks is not relevant for the present evalua-

tions, as heat conduction through the fluid is neglected and all
thermal resistances involving solid contact depend on k�1

s . The
value ks = 100 W/(mK) is assumed for the reported thermal
resistances.

The Hertzian contact resistance, XH = 1/(4aHks) = [E0/(0.75
FR0)]1/3/(4ks), for ideally smooth surfaces can be taken as a

reference for the data in Table 1. Accordingly, XH / 1/(L1=3
bed Rp) and

keff / L1=3
bed , while being independent of particle size (Rp).

The effect of particle size (Rp) under a light load (Lbed = 0.15 m)
can be appreciated by comparing runs #1 and 2. The micro contact
resistance Xc is reduced by 100 times when Rp increases from 1.5
to 15 mm, because the force F between particles is raised. The
spreading resistance Xa,T also decreases, although moderately,
due to a larger contact radius a. As a net result, the overall contact
resistance XT (Eq. (6)) decreases by a factor of around 50.
Noticeably, XT is even somewhat lower than XH for Rp = 15 mm.
This feature, which is also shared by run#4 and 5 discussed later
on, is not intuitively evident, since the overall contact area is
always larger for smooth surfaces. However, the contact
spots between the rough spheres are distributed on a larger area
(a/aH > 1) in the case of rough particles, a fact that facilitates the
heat distribution in the main body of the particles (Xa,T < XH). If
in addition Xc is low enough (as in run #2), the result XT < XH

can arise.
At the high load (Lbed = 2.5 m), the micro contact resistance Xc is

relatively low, even for the small particle (run#3), and the varia-
tion of XT as Rp is raised (runs#3 and 4) follows closely that of XH.

The results for run#5 have been obtained with the remaining
parameters as for run#4, but with a rougher surface r0 = 10 lm
and m0 = 0.25 (m/r0.52 was considered, according to Lambert
and Fletcher [8]). The larger value of r0 in run#5 causes the
enlargement of radius a with respect to that of run#4, reducing
the value of the spreading resistance Xa,T to less than half. As
Xa,T is the dominant resistance in runs#4 and 5, its effects out-
weighs the larger micro contact resistance Xc in run#5, and a
lower overall contact resistance XT arises for the rougher surface.
In addition, XT in run#5 is half the value of XH for a smooth
surface.

As in the above discussed examples, the role of the spreading
resistance will be frequently most relevant, except for relatively
light loads and small particles (e.g., run#1). As recalled in
Section 2, the spreading resistance is evaluated in the Bahrami
et al. [4] approach by assuming that the temperature over the con-
tact disk is uniform (Xa,T in Eq. (1)). To examine this assumption,
the shape of the thermal conductance h(r) over the contact disk,
as defined by the exponent p in Eq. (7), should be further analyzed.
If P�0 < 0:47, p = 2.864 (from Eq. (2a), as happens in runs#1, 3 and
5), while for 0:47 < P�0 < 1, p decreases down to 0.5. High values
of p means that h(r) will decrease rapidly from the maximum
(h0) at r = 0, and will attain very low values even far from the edge
r = a (Fig. 1). It can be visualized in Fig. 1 that when p is high the
‘‘effective’’ size of heat transfer zone will be smaller than the disk
of radius a, and consequently the actual spreading resistance will
be higher than evaluated by Eq. (1). In other terms, the tempera-
ture profile inside the disk of radius a cannot be expected to be uni-
form, as assumed by Eq. (1), and Xa,T (Eq. (1)) will provide a low
estimate of the spreading resistance. The magnitude of this effect
will be found to be significant in Sections 5 and 6, where results
are presented to evaluate correctly the spreading resistance by
considering the distributed heat flux over the disk, as arises from
the profile of the heat conductance h(r) given in Eq. (7).

Before undertaking such a task, it should be noted from Table 1
that the fraction of surface in actual contact close to r = 0 becomes
‘‘large’’. Except for run#1, such fraction just at r = 0, fA0, is larger
than 0.1. The significance of this fact is that the assumption of
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isolated micro-contacts starts to be unsound. Thus, it has been fre-
quently proposed (see. e.g. Yovanovich and Marotta [9]) that the
micro-spreading resistance should decrease approximately by a

factor 1� f 0:5
A

� �1:5
. When fA = 0.1, such factor is �0.57 and the con-

ductance h will be nearly twice the value in Eq. (3). This effect
would lead to a further increase of an effective exponent p in Eq.
(7). However, at this stage it cannot be directly introduced in the
Bahrami et al. [4] formulation, as their basic Eq. (5) for Xc does
not account for other possible effects, such as the variation of the
micro-contact size with the local load P(r), which would partially

counteract the effect of 1� f 0:5
A

� �1:5
.

4. Discussion on the definition of the spreading resistance Xa

Mikic [10] gave a definition of the spreading resistance based on
a cylindrical flux-tube (radius b) that exchanges heat through its
base (z = 0). Here, we will limit the definition to the case when
the heat exchange only takes place through a disk of radius a at
the cylinder base, while the remaining of the base is maintained
adiabatic. The disk itself exchanges heat with an external source/
sink kept at uniform temperature T0 at a local rate

q ¼ hðrÞðTc � T0Þ; at z ¼ 0 over 0 < r < a ð9Þ

where Tc(r) is the temperature of the flux tube at z = 0. Eq. (9) is a
Robin (or 3rd type) boundary condition on 0 < r < a. The heat
exchange rate will be

Q ¼ 2p
Z a

0
hðrÞðTc � T0Þrdr ð10Þ

The tube is assumed long enough so that at high enough values
of z the temperature gradient can be regarded as being uniform,
(dT/dz)1. Defining Ts as the hypothetical temperature obtained at
z = 0 by the extrapolation of the linear profile with slope (dT/
dz)1, Eq. (10) can be re-written as

Q ¼ 2pðTs � T0Þ
Z a

0
hðrÞrdr � 2p

Z a

0
hðrÞðTs � TcÞrdr ð11Þ

The spreading resistance Xa is then defined by expressing the
overall contact resistance as

Xc þXa ¼ ðTs � T0Þ=Q ð12Þ

where the micro contact resistance Xc is set as

Xc ¼
1

2p
R a

0 hðrÞrdr
ð13Þ

From Eqs. (11)–(13), Xa is expressed as

Xa ¼
1
Q

R a
0 hðrÞðTs � TcÞrdrR a

0 hðrÞrdr
ð14Þ

When h(r) = h0 f(r), where f(r) is a shape function such as [1 �
(r/a)2]p in Eq. (7) and h0 a constant, the situation h0 ? 0 (e.g., when
a low force is applied) can be considered. In this case, the tempera-
ture field T in the flux-tube will be nearly uniform. Introducing a
reference value TL far enough from the disk, both Tc and Ts will
not depart significantly from TL. Then, the heat flux through the
disk can be written as q = h(r)(TL � T0). Therefore, this case corre-
sponds to a variable and prescribed flux problem. As such, the differ-
ence (T � T0) is proportional to h0, and particularly (Ts � Tc) will be
so. Having this fact in mind and re-writing Eq. (10) as

h0 ! 0 : Q ¼ ðTL � T0Þ2p
Z a

0
hðrÞrdr; ð15Þ

Eq. (14) for Xa becomes
Xa;0 ¼
R a

0 hðrÞðTs � TcÞrdr

2pðTL � T0Þ½
R a

0 hðrÞrdr�2
ð16Þ

where on account of the specific case h0 ? 0, the corresponding
value of the spreading resistance is denoted Xa,0. As (Ts � Tc) / h0,
Xa,0 does not depend on h0.

In his work, Mikic [10] presented a solution for the prescribed
flux condition q / h0 f(r), without considering the magnitude of
h0. The result for the thermal resistance is the same as that in Eq.
(16), but the analysis made above shows that Xa,0 represents a lim-
iting value of Xa (Eq. (14)) when h0 ? 0, for the Robin boundary
condition Eq. (9) with h(r) = h0 f(r). On the other hand, when
h0 ?1 (e.g. when a high force is applied), (Tc � T0) should tend
to zero to keep q bounded and the problem will correspond to a
Dirichlet boundary condition with temperature T0 prescribed on
the disk. The solution for Xa is the one already given in Eq. (1),
Xa,T = 0.25/(aks). For any finite value of h0, Xa will be a function
of h0, further depending on the shape function f(r), and we will
see in the Section 5 that Xa,T < Xa < Xa,0.

It is relevant to note that a definition of Xa different to that of
Mikic [10] is customarily found in the literature (e.g. Yovanovich
and Marotta [9]). Instead of Eq. (12),

Xa ¼ ðTs � �TcÞ=Q ð17Þ

where

�Tc ¼
2
a2

Z a

0
TcðrÞrdr ð18Þ

Then, Eq. (17) is alternatively written as

Xa ¼
2

a2

R a
0 ½Ts � TcðrÞ� rdr

Q
ð19Þ

When Eq. (9) is prescribed and Q is given by Eq. (10), the def-
initions in Eqs. (14) and (19) will render the same Xa only if
h(r) ?1 over 0 < r < a (case in which the solution (aks)
Xa,T = 0.25 is again retrieved) or when h is uniform. In particular,
when h ? 0 uniformly on 0 < r < a, the very well known result
(aks) Xa,0 = 8/(3p2) � 0.2702 is obtained from both definitions.

Coming back to the specific case of interest here for h(r) in Eq.
(7), Yovanovich and Marotta [9] reported for h0 ? 0 and p = 0.5
the value (aks) Xa,0 = 0.281 from Eq. (19), and the calculation based
on Eq. (14) renders (aks) Xa,0 = 0.297. The difference at p = 0.5 is
low, but it increases as p increases. Thus, for p = 2.85, (aks)
Xa,0 = 0.298 from Eq. (19) and (aks) Xa,0 = 0.422 from Eq. (14).

In the general case with a finite value h0, Xa from both def-
initions will depend on h0. However, knowing just the value of
Xa according to Eq. (19) does not suffice to evaluate the rate Q in
a given case, as �Tc should also be known to use Eq. (17) (Eq. (10)
is not an option either, as the profile Tc(r) is required). Instead,
knowing Xa from (14) suffices to evaluate Q, using Eqs. (12) and
(13). Therefore, it seems that the definition (14) is more practical
when a Robin condition with variable h(r) (e.g. Eq. (7)) is under-
taken, and the concept of a spreading resistance is to be applied.
The definition (14) will be employed in Section 5 to evaluate Xa

for h(r) defined in Eq. (7).

5. Assessment of Xa from Eq. (14) and h = h0[1 � (r/a)2]p

According to our knowledge, a general analytical solution of the
Laplace equation r2T = 0 in the flux tube and boundary condition
(9) is not available. Therefore, we have evaluated the temperature
field numerically by employing the Comsol Multiphysics platform.
This task was carried out by taking a finite height of the tube L,
T(L) = TL uniform over 0 < r < b, and the adiabatic condition at
r = b over 0 6 z 6 L and at z = 0 over a < r < b. The calculations were



Table 2
Comparison of (aks) Xa,0 using Comsol Mutiphysics and from Eqs. (20) and (21).

p (aks) Xa,0

Numerical values Eqs. (20) and (21)

0 0.270 0.267
0.5 0.297 0.299
1 0.327 0.328
2.85 0.422 0.421
6 0.549 0.546
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made with ratios L/b = 1/4 and b/a = 200. It has been found that the
results are insensitive for larger values of these ratios. Therefore,
values of Xa (Eq. (14)) presented here correspond to a/b ? 0. The
mesh was refined so as to achieve values of Xa within a precision
of 0.5%. The results are expressed as

Xa ¼ Xa;T þ DXa; ð20Þ

recalling that Xa,T = 1/(4aks) is the value when Tc is constant on
0 < r < a, or equivalently when h0 ?1 (Tc = T0).

The range chosen for parameter p was 0 < p < 6. The upper
bound was chosen on account that p = 2.864 is a typical value for
the Bahrami et al. [4] formulation, but even higher values cannot
be ruled out if some other effects are included in the evaluation
of h(r).

The case h0 ? 0 (i.e. prescribed non-uniform flux on the disk) is
first undertaken. The corresponding values of the spreading resis-
tance obtained by using Comsol Multiphysics are expressed,
according to Eq. (20), as Xa,0 = Xa,T + DXa,0, and DXa,0 was approxi-
mated by means of the following expression
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Fig. 2. Values of Q/[aks(Ts � T0)] = [aksX]�1 evaluated for different values of p (cases a,b,
Comsol Mutiphysics for Xa; : results using Eqs. (20)–(22) for Xa; : results u
ðaksÞDXa;0 ¼ 0:446 lnð1:04þ 0:15pÞ; ð21Þ

which compares quite well with the numerical results (Table 2).
Note the significant variation of Xa,0 (up to 100%) in the range
0 < p < 6.

For finite values of h0 (i.e. for a Robin boundary condition on the
disk), the following approximate expression was developed on the
basis of the numerical results obtained from Comsol Multiphysics

DXa ¼
DXa;0

1þ ½0:04ða=ksÞh0=ðpþ 1Þ�1=
ffiffiffiffiffiffi
pþ1
p ð22Þ

When the heat exchange rate Q is calculated using Eq. (12), Eq.
(8) for Xc and Eqs. (20)–(22) for Xa, the results deviate by a maxi-
mum of 4% from the numerical values calculated using Comsol
Multiphysics within the ranges 0 < p < 6, 0 < h0 <1. Such a devia-
tion is acceptable for most practical purposes.

Defining from Eq. (12) the overall contact resistance X

X ¼ Xc þXa; ð23Þ

the dimensionless heat-exchange rate Q/[aks(Ts � T0)] = [aks X]�1 is
plotted in Fig. 2 as a function of parameter (4/p) Xa,T/
Xc ¼ ða=ksÞh0=ðpþ 1Þ; using numerical and approximate (Eqs
(20)–(22)) values of Xa. Fig. 2 illustrates the good agreement
between approximate and numerical results.

Results by taking Xa �Xa,T, i.e. as employed by Bahrami et al.
[4] to evaluate the overall thermal resistance XT (Eq. (6)), are also
plotted in Fig. 2. The values of the dimensionless heat-exchange
rate thus calculated approach those numerically evaluated either
for low or for high values of the ratio (4/p) Xa,T/Xc . This behavior
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reflects the fact that when this ratio is low Xc controls the rate of
heat transfer irrespective of the spreading resistance (Xa or Xa,T),
while when the ratio is large the overall heat transfer process
becomes controlled by nearly the same spreading resistance, as
Xa ? Xa,T. At intermediate values of (4/p) Xa,T/Xc; very significant
differences arise when p is large enough (e.g. p = 2.85, 6).

The results here provided correspond to h(r) defined in Eq. (7).
For a more general expression h(r) = h0 f(r), where the shape func-
tion monotonically decreased from r = 0 to r = a, it is tentatively
proposed employing Eqs. (21) and (22) with an effective value of
p evaluated from

2
Z a

0
f ðrÞrdr ¼ a2

pþ 1
ð24Þ

In addition, when a/b is finite in a flux tube or for a sphere with
b � Rp, the spreading resistance, say (Xa)finite (a/b), will also depend
on the ratio a/b. For an isothermal contact disk, the approximate
expression (Xa,T)finite(a/b) = (1 � a/b)1.5Xa,T, with Xa,T given by Eq.
(1), has been proposed (e.g. Yovanovich and Marotta [9]). In the
more general case considered here, it was discussed in Section 3
that the ‘‘effective’’ size of the contact spot will be smaller than
a, in relation to Eq. (1). If we evaluate such a size as (a Xa,T/Xa),
with Xa from Eqs. (20)–(22), the following approximation is tenta-
tively proposed to estimate the spreading resistance for finite
ratios (a/b):

ðXaÞfiniteða=bÞ ¼ 1�Xa;T

Xa

a
b

� �1:5

Xa
6. Further analysis of the examples from Bahrami et al. [4]
formulation

Table 1 includes values of Xa,0 (Eqs. (20) and (21)), Xa (Eqs
(20)–(22)) and X (Eq. (23)) for the different runs. According to
the considerations in this work, the correct spreading resistances
Xa largely exceed the values of Xa,T assumed in the Bahrami
et al. [4] formulation. For the four cases with p = 2.85, the increase
ranges from 50% to 66%. Nonetheless, the overall resistances, as
expressed by XT or X, should be ultimately compared. For run#1,
the micro contact resistance is definitely dominant (parameter
(4/p) Xa,T/Xc = (a/ks)h0/(p + 1) also given in Table 1 reflects this
fact) and X is close to XT. For the remaining four runs, the overall
contact resistance X, is 20–36% larger than XT in Bahrami et al. [4]
formulation. Clearly, these differences are significant. The largest
difference (36%) is reached for run#5 at an intermediate value of
(a/ks)h0/(p + 1), which according to the discussion in Section 5
should lead to larger differences between both ways to evaluate
the overall thermal resistances or, equivalently, between the heat
exchange rates. It is also noted that only for run#5 X becomes sig-
nificantly lower than the Hertz value XH.

It is finally remarked that, at least for the range of conditions
spanned in Table 1, the limiting spreading resistance
Xa,0 (h0 ? 0) provides a better approximation than Xa,T (h0 ?1),
as values X0 = Xa,0 + Xc are in closer agreement with X than values
XT = Xa,T + Xc.

7. Conclusions

The solid–solid contact of rough spherical particles in packed
beds takes place by the deformation of individual asperities that
transmit the stresses to the main body of the particles, causing a
usually elastically deformed area (a disk) enclosing the micro-con-
tacts. To evaluate the effect of the solid–solid contact on the effec-
tive thermal conductivity of packed beds, Bahrami et al. [4]
integrated the local conductance h(r), as defined by the micro-
contacts, over the disk enclosing them, leading to a micro contact
resistance Xc. Another thermal resistance, called spreading resis-
tance Xa, arises due to the convergence of flux lines in the bulk
of the spheres towards the disk. Thus, the overall contact resistance
X can be calculated as Xc + Xa. In the quoted reference the spread-
ing resistance is evaluated as if the temperature were uniform
within the disk, Xa,T. However, h(r) according to the own formula-
tion of Bahrami et al. [4] will usually drop to very small values far
from the disk edge and consequently Xa,T underestimates the
actual spreading resistance. Considering that under normal condi-
tions the size of the disk is much smaller than the radius of the
spheres and recognizing that the flux on the disk imposes a
Robin type of boundary condition for the Laplace equation inside
the spheres, the correct spreading resistance Xa was numerically
evaluated for the conductance distribution h(r) = h0 [1 � (r/a)2]p

proposed in the work of Bahrami et al. [4].
The spreading resistance Xa depends on the exponent p and on

the parameter (4/p)Xa,T/Xc = (a/ks)h0/(p + 1). Values of Xa can be
noticeably higher than Xa,T even for p = 0.5, while for the largest
exponent tried (p = 6) Xa can reach twice the value of Xa,T. In terms
of the overall contact resistance, the differences between Xa,T and
Xa will not have a large impact when the micro contact resistance
Xc is dominant, i.e. for low compression forces, but the overall con-
tact resistance can become significantly underestimated in the case
of relatively large loads, in particular when rough particles are
involved.

The results of Xa have been satisfactorily correlated
according to Eqs. (20)–(22) in terms of p and parameter
(4/p) Xa,T/Xc = (a/ks)h0/(p + 1).
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