Accepted Manuscript

Schistosomes with wings: how host phylogeny and ecology shape the global distribution of *Trichobilharzia querquedulae* (Schistosomatidae)

Erika T. Ebbs, Eric S. Loker, Norm E. Davis, Veronica Flores, Aylen Veleizan, Sara V. Brant

PII:	S0020-7519(16)30101-1
DOI:	http://dx.doi.org/10.1016/j.ijpara.2016.04.009
Reference:	PARA 3874
To appear in:	International Journal for Parasitology
Received Date:	27 January 2016
Revised Date:	19 April 2016
Accepted Date:	22 April 2016

Please cite this article as: Ebbs, E.T., Loker, E.S., Davis, N.E., Flores, V., Veleizan, A., Brant, S.V., Schistosomes with wings: how host phylogeny and ecology shape the global distribution of *Trichobilharzia querquedulae* (Schistosomatidae), *International Journal for Parasitology* (2016), doi: http://dx.doi.org/10.1016/j.ijpara. 2016.04.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	Schistosomes with wings: how host phylogeny and ecology shape the global
3	distribution of <i>Trichobilharzia querquedulae</i> (Schistosomatidae)☆
4	
5	Erika T. Ebbs ^{a,*} , Eric S. Loker ^a , Norm E. Davis ^b , Veronica Flores ^c , Aylen Veleizan ^c ,
6	Sara V. Brant ^a
7	
8	^a Department of Biology, Museum of Southwestern Biology Parasite Division,
9	Center for Evolutionary and Theoretical Immunology, University of New Mexico,
10	167 Castetter MSCO3 2020, Albuquerque, New Mexico 87131, USA
11	^b Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
12	^c Laboratorio de Parasitología (LAPAR), INIBIOMA (CONICET- Universidad Nacional
13	del Comahue) Avda. Quintral 1250 8400 San Carlos de Bariloche- Río Negro
14	Argentina
15	
16	
17	*Corresponding author.
18	<i>E-mail address:</i> <u>gendron@unm.edu (</u> Erika T. Ebbs)
19	
20	
21	
22	stNote: Nucleotide sequence data reported in this paper are available in the NCBI
23	database under the Accession Numbers KU057180-KU057206 and KP788760-
24 25	<u>KP788772</u> .
20	

26 Abstract

27 Migratory waterfowl play an important role in the maintenance and spread of 28 zoonotic diseases worldwide. An example is cercarial dermatitis, caused when larval 29 stages of schistosomes that normally develop in birds penetrate human skin. 30 Members of the genus *Trichobilharzia* (Schistosomatidae), transmitted mainly by 31 ducks, are considered to be major etiological agents of cercarial dermatitis globally. 32 To better understand the diversity and distribution of *Trichobilharzia* spp., we 33 surveyed ducks from the United States, eastern Canada, Argentina, South Africa 34 and New Zealand. To aid in species identification of the *Trichobilharzia* worms 35 recovered, regions of the Cox1, ND4 and ITS1 were sequenced. Furthermore, we 36 provide molecular phylogenetic evidence for the cosmopolitan distribution and trans-37 hemispheric gene flow for one species, Trichobilharzia guerguedulae, previously 38 thought to be restricted to North America. These new samples from endemic non-39 migratory duck species indicate that T. querquedulae transmission occurs within 40 each of the regions we sampled and that it is specific to the blue-winged + silver teal 41 duck clade. Prevalence within this host group is >95% across the known range of T. 42 *querquedulae*, indicating that transmission is common. Genetic divergence is evenly 43 distributed among continents, and no phylogenetic structure associated with 44 geography was observed. The results provide strong support for the global 45 distribution and transmission of *T. guerguedulae* and represent, to our knowledge, 46 the first report of a cosmopolitan schistosome confirmed by genetic data. These 47 data are the first known to support trans-hemispheric genetic exchange in a species 48 responsible for causing cercarial dermatitis, indicating that the epidemiology of this 49 group of poorly known zoonotic parasites is more complex than previously 50 expected. 51 52 53 54 55 Keywords: Trichobilharzia, Schistosome, Cercarial dermatitis, Anas, Zoonosis, 56 Emerging disease 57 58

59 **1. Introduction**

60 Maintenance of complex life cycles over time and space is influenced by a 61 myriad of both evolutionary and ecological forces. Determinants of host 62 associations are essential in understanding the dynamics of any host-parasite 63 system and for efforts to model the emergence of zoonotic parasites (Ostfeld and 64 Keesing, 2000; Taylor et al., 2001; McKenzie, 2007). For example, the degree to 65 which a parasite has phylogenetic and/or ecological constraints with its host range 66 will largely determine the predictability of transmission (Thompson, 2000; Hoberg 67 and Brooks, 2008). Within this context, we aimed to understand host associations 68 and factors shaping the diversity and distribution of a common group of 69 trematodes in waterfowl which are known for causing the globally re-emerging 70 zoonotic disease human cercarial dermatitis (HCD) (de Gentile et al., 1996; 71 Kolářová et al., 2010; Horak et al., 2015). This disease enters the human 72 population when avian schistosome (Schistosomatidae) cercariae penetrate 73 human skin, resulting in a severe, short-term allergic reaction (Horak et al., 2002; 74 Kourilova et al., 2004; Kolářová et al., 2013). Although the larvae are unable to 75 establish patent infections within a human host, there are intense immune 76 reactions that can be long lasting and painful (Kourilova et al., 2004). While HCD 77 is neither communicable nor fatal, it is still not without economic and epidemiologic 78 importance and is considered a substantial public health problem (Horak and 79 Kolarova, 2011; Soldánová et al., 2013; Horak et al., 2015). Relatively little is 80 known about the epidemiology of HCD due to the diversity of schistosome 81 species, the lack of data on the preferred hosts and the timing of transmission, and 82 the large geographical scale over which outbreaks occur. 83 An increase in the incidence of HCD outbreaks (de Gentile et al., 1996;

84 Larsen et al., 2004) has been linked to altered or managed habitats that support high 85 densities of migratory and resident anseriform birds and permissive snail host 86 species (Larsen et al., 2004; Horak and Kolarova, 2011) as well as to other forms of 87 environmental degradation such as eutrophication of water bodies (Valdovinos and 88 Balboa, 2008; Soldánová et al., 2013). These conditions have created an urgent 89 need to better understand avian schistosome species diversity, distribution, host use, 90 associated host ecology and life cycle maintenance, within a global framework. The 91 avian schistosome genus Trichobilharzia (Skrjabin and Zakharov, 1920) is most 92 frequently implicated in HCD outbreaks (Kolářová et al., 2010, 2013; Soldánová et

93 al., 2013; Horak et al., 2015) and is also the most speciose genus within the family 94 (Blair and Islam, 1983; Brant and Loker, 2009). Adults of Trichobilharzia spp. 95 primarily infect ducks and as larvae develop within freshwater pulmonate snails in 96 the families Physidae and Lymnaeidae (Blair and Islam, 1983; Horak et al., 2002; 97 Brant and Loker, 2009). Species diversity and host use of *Trichobilharzia* spp. are 98 best known in Europe and North America (Aldhoun et al., 2009; Brant and Loker, 2009; Jouet et al., 2009, 2010; Rizevsky et al., 2011; Christiansen et al., 2014; 99 Lawton et al., 2014). But even in these well-studied areas, the presence and 100 101 dynamics of particular Trichobilharzia spp. in other bird hosts and in other countries 102 that share those bird hosts remain unknown. For example, are *Trichobilharzia* spp. 103 shared across continents or does each continent have its own species, or both? 104 Brant and Loker (2009) investigated host-parasite associations among 105 Trichobilharzia spp. within North America and found that one species, 106 Trichobilharzia querquedulae (McLeod, 1937), has a clear association with a 107 globally distributed clade of dabbling ducks (the 'blue-wing' group) that includes 108 the holarctically distributed northern shovelers (*Anas clypeata*); the cinnamon 109 (Anas cyanoptera) and blue-wing teal (Anas discors) as well as several Southern 110 Hemisphere endemic species (Johnson and Sorenson, 1999). Species in the 111 'blue-wing' group share specific ecological preferences for shallow freshwater 112 bodies across both their summer and winter grounds (Baldassarre et al., 1996; Kear, 2005). Additionally, T. querquedulae infects Physa spp. snails, which are 113 114 ubiquitous in North America and one common species, *Physa acuta* (Draparnaud, 115 1805), is globally invasive (Bousset et al., 2014). Until recently, T. querquedulae 116 had been reported from only the North American 'blue-wing' species (A. clypeata, 117 A. cyanoptera and A. discors). Brant and Loker (2009) sampled a phylogenetically 118 diverse range of ducks (n = 299 individuals) within North America and found that 119 T. querquedulae occurred with a prevalence greater than 95%, exclusively within 120 blue-wing' ducks. Endemic, ecologically similar species of the 'blue-wing' group 121 also occur in the Southern Hemisphere (Kear, 2005), but heretofore, records for 122 T. guerguedulae or other schistosome species are largely lacking for these 123 species. Is the association between T. querquedulae and members of the 'blue-124 wing' group consistent across hemispheres, and if so, what factors contribute to 125 the global maintenance of this association?

126

127 **2. Materials and methods**

128 2.1. Parasite collection

129 Ducks were collected from several locations in both the Northern and 130 Southern Hemispheres (Table 1): North America (United States and Canada). South America (Argentina, 30°5' 56.4" S, 59°29' 56.4" W), Africa (South Africa, 29°12' 131 132 28.8" S, 27°11'20.4" E) and New Zealand (South Island, 44°21'3.6" S, 170°12' 133 32.4" E). For the purposes of this paper, reasonable sampling of hosts and localities 134 from Europe is represented in GenBank. The mesenteric and hepatic portal veins of 135 ducks and geese were examined for species of Trichobilharzia. Mesenteric veins 136 were inspected visually for adult worms, which were removed using Vanna's micro 137 scissors. Adult worms were removed from the hepatic portal vein and liver by either 138 crushing and washing the liver in a series of decantation steps to isolate the worms 139 or using a syringe to push saline through the hepatic portal vein to collect any worms 140 that washed out. Schistosome samples were preserved in 95% ethanol for genetic, 141 and 80% ethanol for morphological analyses. Parasites were deposited in the 142 Museum of Southwestern Biology, Division of Parasites, University of New Mexico, 143 USA (Table 1). All work with vertebrate hosts was conducted with the approval of the 144 Institutional Animal Care and Use Committee (IACUC) at the University of New 145 Mexico, USA (IACUC # 11-100553-MCC, Animal Welfare Assurance # A4023-01).

146

147 2.2. Genetic analysis

DNA from the samples was extracted using a DNeasy Tissue Kit (Qiagen, 148 149 Valenicia, California, USA) following the manufacturer's protocol or by HotShot 150 Lysis (Truett et al., 2000). We targeted two mitochondrial gene regions and one 151 nuclear region for PCR amplification (Takara Ex Tag kit, Takara Biomedicals, 152 Otsu, Japan), following protocols used by Brant and Loker (2009). The 153 mitochondrial cytochrome oxidase subunit I (*Cox*1) gene (743 bp region, 5' end) 154 (primers in Brant and Loker, 2009) and the NADH Dehydrogenase subunit 4 155 (ND4) gene (409 bp in the central portion of the gene), using the ND4 primers 156 TSND4 F4 5' - AGTCCTTATCCGGAGCGTTA-3', TSND4 R4 5'-157 AACCAGCAACACACAAAAACA-3'. The ND4 gene was targeted due to high 158 intraspecific variation relative to *Cox*1 and internal transcribed spacer 1 (ITS1) 159 (Blouin et al., 1995; Webster et al., 2007), with a goal of assessing intraspecific

160 relationships across hemispheres and host species. The nuclear gene region of

161 ITS1 (733 bp, including the 3' portion of 18S rRNA and the 5' portion of 5.8S) was

amplified and sequenced using primers from Dvorak et al. (2002). Sequencing

reactions were performed using the BigDye sequencing kit 3.1 (Applied

164 Biosystems, Foster City, California, USA). Sequences were edited using

165 Sequencher 5.3 (Gene Codes Corporation, Ann Arbor, MI, USA), aligned using

166 ClustalW (Larkin et al., 2007) and then modified manually. Sequences generated

167 during this study were submitted to GenBank (Table 1).

168

169 2.3. Reconstructing evolutionary relationships

170 Phylogenetic analyses included the samples collected herein as well as the 171 available T. guerguedulae samples and appropriate outgroups for Clade Q (sensu 172 Brant and Loker, 2009; Table 1). Each gene was treated as independent and the 173 best models of nucleotide substitution was chosen based on the Akaike information 174 criterion (AIC; Akaike, 1974) using JModelTest (Darriba et al., 2012) as follows: 175 TN93+G for Cox1 (Tamura and Nei, 1993), K2+G for ITS1 (Kimura, 1980), HKY + I 176 for ND4 (Hasegawa, Kishino and Yano, 1985). These specific models were 177 incorporated into Maximum Likelihood (ML) analyses. 178 Gene trees were analyzed independently using ML methods in the program 179 PAUP* 4.0 (Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony

179 PAOP^{**} 4.0 (Swofford, D. L. 2003. PAOP^{**}. Phylogenetic Analysis Using Parsimony
180 (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts,
181 USA). Five hundred bootstrap replicates were preformed within each gene tree
182 analysis to statistically assess the resulting topologies.

183 Bayesian Inference (BI) was performed using the program MrBayes 3.2.1 184 (Ronquist and Huelsenbeck, 2003), consisting of two replicated runs for each locus 185 with four Markov chain Monte Carlo (MCMC) chains, one cold and three heated 186 chains. Each analysis ran for 2,000,000 generations and was sampled every 1000 187 generations. The analysis was terminated when the S.D. of the split frequencies was 188 or fell below 0.01, supporting convergence. Likelihood parameters and convergence 189 between runs were assessed using the program Tracer v.1.5 (Rambaut et al., 2014 190 Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer). The first 25% of trees from each 191 analysis was discarded as burnin. Resulting phylogenetic trees were visualized and 192 manipulated using Fig Tree v. 1.4 (Rambaut and Drummond, 2009, FigTree v1. 3.1.

193 <u>http://tree.bio.ed.ac.uk/software/figtree</u>) and MEGA 6 (Tamura et al., 2013).

194	Genetic distances were estimated, based on uncorrected <i>p</i> -distances
195	between all sequences for each locus, and then averaged within lineages for
196	comparison (Table 2), using the program MEGA 6 (Tamura et al., 2013).
197	
198	3. Results
199	3.1. Parasite infection and molecular identification
200	From our collections of endemic ducks in the three countries in the
201	Southern Hemisphere, T. querquedulae was found to be globally distributed in
202	ducks from the 'blue-wing' clade as well as in the sister clade of silver teal ducks.
203	In all three countries sampled, endemic 'blue-wing' and allied species were
204	infected with a prevalence of 95% or greater, similar to what has been reported
205	from the United States (Table 2).
206	
207	3.2. Monophyly of T. querquedulae
208	Molecular phylogenetic analyses (ML, BI) show strong statistical support for
209	the monophyly of T . querquedulae populations, regardless of the hemisphere
210	sampled (Figs. 1 - 3). The resultant phylogenies show similar gene trees among
211	nuclear and mitochondrial genes, suggesting that Southern Hemisphere samples
212	belong to <i>T. querquedulae</i> and likely do not have a hybrid origin.
213	This study provides sequence data for the mitochondrial ND4 gene region of
214	T. querquedulae, which had more genetic variation (Fig. 3, Table 3) relative to Cox1
215	and ITS1. Gene tree analysis (ML, BI) shows a well supported monophyly of T.
216	querquedulae and a lack of phylogenetic resolution for internal nodes, concordant
217	with the Cox1 and ITS1 gene trees (Figs. 1, 2).
218	The low nodal support within the T. querquedulae clade, consistent with what
219	has been reported previously (Brant and Loker, 2009), is suggestive of a lack of
220	geographic structure and is consistent with gene flow across hemispheres (Bouzid
221	et al., 2008; Goulding and Cohen, 2014). Genetic distances within and between
222	continents and hemispheres support low intraspecific divergence (Table 3). On
223	average, for all genes analyzed, genetic divergence within North America
224	(approximately 2%) is comparable with genetic divergence between Northern and
225	Southern Hemisphere populations (approximately 2.7%).
226	

227 4. Discussion

228 The survey results reported here provide the first known genetic evidence for 229 an avian schistosome, T. querquedulae, to have a global distribution spanning three 230 continents and New Zealand. Our sampling indicates that the duck host range of T. 231 querquedulae extends in the Southern Hemisphere both to endemic members of 232 the 'blue-wing' group (Cape and New Zealand shovelers), and to members of a 233 sister clade containing the silver teal (see Johnson and Sorenson, 1999). Southern 234 Hemisphere worms were recovered from endemic non-migratory species (Kear, 235 2005), thus we can infer that the infections were acquired locally. For all loci 236 analyzed, genetic divergence within and between Northern and Southern 237 Hemisphere individuals was low, suggesting their populations are connected by 238 trans-hemispheric (specifically, between Northern and Southern hemispheres) 239 migration of particular duck species. The holarctically distributed northern shoveler 240 (A. clypeata), for which annual migrations between the Northern and Southern Hemispheres is common (Peters et al., 2014), is likely the primary host species 241 242 facilitating gene flow across the range of T. querquedulae. It is also likely that populations of blue-wing and cinnamon teal (A. cyanoptera and A. discors) that 243 244 breed in North America and winter in the Southern Hemisphere facilitate T. 245 querquedulae transmission, as they are seasonally sympatric with the endemic 246 'blue-winged' ducks and their allies (silver teal) (Wilson et al., 2011). Estimated 247 genetic distances (Table 3) indicate that across its range T. querquedulae 248 populations are connected and genetically homogenized, although increased 249 population sampling is necessary to fully elucidate phylogeographic patterns. More 250 variable genetic markers, increased sampling and population genetic analyses are 251 required to determine how much gene flow occurs across the hemispheres and the 252 relative importance of different duck species in maintaining the global transmission 253 of T. querquedulae.

254 Through targeted collections of Southern Hemisphere endemic host species, 255 we find evidence to support the phylogenetic association between T. querquedulae 256 and the 'blue-wing' group uncovered by Brant and Loker (2009) (host associations 257 are summarized in Fig. 4). Our data suggest that the duck host range of T. 258 querquedulae includes, in addition to the 'blue-wing' group, the sister clade that 259 includes the silver teal. It is clear that the definitive hosts of T. querquedulae are not 260 a random sample of *Anas* duck species and that definitive host phylogeny is 261 important in life cycle maintenance. Below we discuss several aspects of the host

and parasites biology which could maintain the observed phylogenetic association
among *T. querquedulae* and their specific duck hosts.

264 It is possible that these patterns are maintained as a consequence of 265 specialization that has occurred over an evolutionary time frame based on host 266 physiology or immune competence. It has been generally thought that definitive 267 host specificity is low within species of Trichobilharzia (Blair and Islam, 1983; Horak 268 et al., 2002), however with increased taxonomic sampling of hosts and the inclusion 269 of molecular data, patterns of duck host specificity are becoming increasingly 270 apparent in some Trichobilharzia spp. (Brant and Loker, 2009, 2013a; Jouet et al., 271 2015). Similar phylogenetic affinities are known to occur within other avian 272 schistosome genera. For example, Allobilharzia (Kolářová et al., 2006) in swans 273 and Anserobilhariza (Brant et al., 2013b) in geese, are just two examples where 274 avian schistosome transmission shows some phylogenetic constraints at the 275 definitive host level. The physiological, genetic and/or immunological barriers 276 mediating *Trichobilharzia* infections within duck hosts is currently unknown (Horak et al., 2002) and, as suggested by the present results, in need of experimental 277 278 study. Experimentally, non-'blue wing' ducks such as mallards (McLeod and Little, 279 1942) can support egg-laying infections of *T. querquedulae*. However, natural 280 infections of non-'blue wing' hosts appear to be rare, and our surveys over the last 281 10 years have recovered a single infection of an immature worm fragment within an 282 American wigeon (Anas americana) in North America (S.V. Brant, unpublished 283 data).

284 It is likely that host ecological preferences, which are also influenced by the 285 hosts' evolutionary history, play a key role in the persistence of the association of T. 286 querquedulae in one clade of ducks versus another. 'Blue-wing' ducks are 287 ecological specialists (Baldassarre et al., 1996), with a preference for shallow 288 marshy habitats. It can be hypothesized that shared habitat preferences specifically 289 relating to nesting site selection and natal habitats can act as an encounter filter 290 (Combes, 2001) among 'blue-wing' and allied species to restrain T. querquedulae 291 host use. Nesting sites, where the majority of *Trichobilharzia* transmission is likely 292 occurring (Rau et al., 1975; Brant and Loker, 2009), are non-randomly chosen (Clark and Shutler, 1999). Blums et al. (2002) showed that over a 23 year period 293 294 female northern shovelers (A. clypeata) exhibited greater than 88% nest site fidelity, 295 significantly more so than other sympatric duck species measured. Further,

296 northern shovelers and other 'blue-wing' species are known to select fragmented 297 small water bodies similar to wetland islands for nesting (Blums et al., 2002), where 298 the pair will live and breed. Males are known to guard these 'islands' and exhibit 299 territorial behavior (Poston, 1974), so much so that availability of nesting sites limits 300 population sizes (Vickery and Nudds, 1984). Generally, single to a few pairs occur 301 at individual nesting sites, in contrast to other dabbling and diving duck species 302 (Vickery and Nudds, 1984), which may have more concentrated nesting sites and may be sympatric with several different species of birds. Site and habitat fidelity 303 304 exhibited by the duck host likely results in stable transmission dynamics for T. 305 *querquedulae.* This also assumes that the intermediate host is present and that at 306 least peak cercarial shedding of *T. querquedulae* occurs during this time as well, 307 when the shovelers and teal are isolated for nesting and raising of ducklings.

308 It could also be the case that the potential for temporal isolation is a 309 mechanism for the maintenance of this global host-parasite association. Members of the 'blue-wing' group are the first duck species to migrate in both the spring and 310 the winter (Arzel et al., 2006), thus it would follow that their ducklings may be the 311 312 first to encounter schistosome cercariae in the spring. This hypothesis may hinge 313 on the importance of overwintering infected snails in sustaining a majority of the 314 transmission (Crews and Esch, 1986; Goater et al., 1989). This idea is plausible for 315 a snail host of *T. querquedulae, Physa gyrina,* as it is bivoltine, with overwintering 316 snails producing an early spring generation (Brown, 1979), and it is likely an 317 abundant permissive snail host within the duck host natal habitats (Pip, 1987). Data 318 from this study support the hypothesis that migrating birds transfer infections 319 among continents, in particular northern shovelers, suggesting that transmission 320 may not be strictly confined to natal habitats; however, habitat requirements by this 321 particular clade of ducks would be the same. Nonetheless, these stimulating ideas 322 require empirical studies documenting the dynamics of transmission at relevant 323 spatial and temporal scales.

It is clear that for *T. querquedulae* to persist in the Southern Hemisphere, suitable snail intermediate hosts must be present. Although the identity of the intermediate host(s) for *T. querquedulae* in the Southern Hemisphere remains unknown, several possibilities exist, some of which can help account for the broad geographic range and even definitive host associations observed. In North America, *Physa* spp. are confirmed hosts (McLeod and Little, 1942; Brant and

330 Loker, 2009; Brant et al., 2011). Physid diversity is highest in North America 331 (Wethingtion, 2007), but several species are native to, or have invaded, the 332 Southern Hemisphere. South America harbors several endemic physids, which 333 could sustain T. querquedulae transmission, for example, Physa marmorata 334 (Guilding, 1828), which has now invaded parts of South Africa (Appleton, 2003). 335 Physa acuta (Draparnaud, 1805), is a well-documented global invader that has 336 established in much of the Southern Hemisphere (Bousset et al., 2014) and may 337 well serve as a host for *T. guerguedulae*. Physid snails commonly colonize the 338 shallow freshwater habitats favored by 'blue wing' duck species.

339 Generally, Trichobilharzia spp. are specific to a single snail species or a 340 group of closely-related congeners (Kock, 2001; Rudolfova et al., 2005; Brant and 341 Loker, 2009; Jouet et al., 2009), and experimental and genetic confirmation that a 342 species of Trichobilharzia can infect multiple genera of snails within a family has 343 yet to be achieved. There is a report of an avian schistosome Dendritobilhariza 344 pulverulenta (Cheatum, 1941) found in both Gyraulus (North America, New 345 Zealand) and Anisus (Europe) snails but the genetic identity of the worms from 346 Anisus have not been confirmed as *D. pulverulenta*, since there exists more than 347 one species (Khalifa, 1976; Vusse, 1980; Brant et al., 2011) and Dendritobilhariza loossi has been found experimentally to use Anisus vortex in Europe (Akramova et 348 349 al., 2011). Snail surveys carried out in Europe (Rudolfova et al., 2005; Jouet et al., 2009b) and Africa (Appleton and Brackenbury, 1998; Laamrani et al., 2005), have 350 351 failed to recover any *Trichobilharzia* spp. from native or invasive physids. Two 352 studies report schistosome cercariae from other physids in Europe (Aplexa 353 hypnorum, Gerard, 2004; Physa fontinalis, Rudolfova et al., 2005), but neither 354 schistosome belongs to the genus Trichobilharzia. It should be noted, however, 355 that even within North America the prevalence of *T. querquedulae* in *Physa* spp. is 356 very low and snail surveys for trematodes frequently fail to recover T. querquedulae 357 and other Trichobilharzia spp. (Loy and Haas, 2001) from their presumptive snail 358 hosts. However, survey collections of physids at times of the year when these duck 359 host have ducklings are lacking, and that might be peak time for cercarial 360 shedding. 361 It is even less common to find a genetically confirmed schistosome

362 conspecific infecting two different families of snails (Blair et al., 2001). However one

363 species, *Trichobilharzia jequitibaensis* (Leite et al., 1978), has been reported to

364 infect both Physidae and Lymnaeidae. Miracidia obtained from naturally infected 365 domestic Muscovy ducks (Cairina moschata domestica) successfully infected both 366 *P. marmorata* and *Lymnaea columella* under experimental conditions. If such a 367 situation were confirmed and shown to be true for T. guerguedulae, then its broad geographic range would be more explicable since lymnaeid species diversity is much 368 369 greater in the Eastern Hemisphere than physid species diversity. It will be interesting 370 to pursue and verify these intriguing results with further experimentation, field 371 collections and sequence analyses. These details of both definitive and 372 intermediate host associations across a parasite's range are necessary to 373 understand transmission dynamics as well as to model zoonotic cycles. 374 The example of *T. guerguedulae* globally distributed within a rather narrowly 375 defined clade of ducks is instructive for those interested in the epidemiology of 376 HCD, and more broadly the transmission of waterfowl zoonoses. The trans-377 hemispheric occurrence of T. querquedulae is certainly aided both by the migratory 378 behavior (trans-hemispheric migration of the northern shoveler) and habitat 379 preferences of definitive hosts as well as habitat preferences of the snail hosts. 380 Perhaps the shared host ecology of duck hosts (habitat preference, nest site fidelity 381 and timing of migration) across both the Northern and Southern Hemispheres 382 sustain transmission and perpetuate the clear phylogenetic association between T. 383 querquedulae and the 'blue-wing' group. Further research is necessary to partition 384 the relative roles of host ecology and phylogeny in shaping the transmission of T. 385 querquedulae over evolutionary time. For example, experimental infections 386 evaluating permissiveness of non 'blue-wing' duck species and other snail host 387 species would be a logical next step providing data vital to model transmission 388 dynamics. The greater role duck host ecology plays, the more dynamic one would 389 expect host associations and transmission to be in response to ecological change 390 over evolutionary time, as opposed to a strict specialist model. Human-mediated 391 habitat alteration and climate change have been implicated in affecting the 392 transmission of other waterfowl zoonoses (Reed et al., 2003; Fuller et al., 2012; Dijk 393 et al., 2014) and are likely to alter *Trichobilharzia* host associations over time as 394 well. Together with the fact that avian schistosomes of other genera infect different 395 bird and snail lineages, we must remember that HCD is caused by a number of 396 schistosome species, with markedly different patterns of host use, posing a 397 challenge for those interested in understanding the epidemiology of HCD. Thus

398 future studies on the specific ecological relationships among hosts and worms, and 399 on how permissive other species of ducks and snails are for *T. querquedulae* will be 400 an exciting path forward to both understanding parasite-host biology as well as the 401 ability to more specifically model zoonotic disease emergence. 402 403 404

405 Acknowledgments

- 406 Thank you to the following for invaluable help collecting birds—South Africa:
- 407 Museum of Southwestern Biology Bird Division: Mr. Andy Johnson, Dr. Ernest
- 408 Valdez, Dr. Robert W. Dickerman and Dr. Chris Witt; National Museum
- 409 Bloemfontein: Mr. Rick Nuttall and Mr. Dawid H. de Swardt. We acknowledge
- 410 technical support from the University of New Mexico Molecular Biology Facility.
- which is supported by National Institutes of Health, USA grant P30GM110907 from 411
- 412 the Institute Development Award program of the National Center for Research
- 413 Resources, USA. This work was primarily funded through a National Science
- 414 Foundation, USA grant to S.V.B. (DEB 1021427) and a National Institutes of Health
- 415 grant RO1 AI44913 to ESL. We thank the following funding agencies; Agencia de
- 416 Promoción Científica y Técnica, Argentina PICT 1288-2011 and CONICET,
- Argentina PIP No.: 11220110100550 to VF. 417
- 418
- A COR 419

420

421 References 422 423 Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. 424 Automat. Cont. 19, 716-723. 425 Akramova, F.D., Azimov, D.A., Shakarboev, E.B. 2011. Morphology, biology and 426 taxonomy of *Dendritobilharzia loossi* Skrjabin, 1924 (Trematoda: 427 Bilharziellidae), a parasite of Pelecanus onocrotalus (Pelecanidae) and 428 Anas platyrhynchos (Anatidae). Parasite. 18, 39-48. 429 Aldhoun, J.A., Kolárová, L., Horák, P., Skírnisson, K. 2009. Bird schistosome 430 diversity in Iceland: molecular evidence. J. Helminthol. 83, 173-180. 431 Appleton, C.C., Brackenbury, T.D., Tonin, A.F.G. 1989. Physa mosambiguensis 432 (Clessin, 1886) rediscovered? South African J. Zool. 24, 340–344. 433 Appleton, C.C. 2003. Alien and invasive fresh water Gastropoda in South Africa. 434 African J. Aquatic Sci. 28, 69-81. 435 Arzel, C., Elmberg, J., Guillemain, M. 2006. Ecology of spring-migrating Anatidae: a 436 review. J. Ornithol. 147, 167-184. Baldassarre, G. A., Bolen, E. G. 1994. Waterfowl ecology and management. John 437 438 Willey & Sons. Inc. New York, USA. 439 Blair, D., Islam, K.S. 1983. The life cycle and morphology of *Trichobilharzia* 440 australis n. sp. (Digenea: Schistosomatidae) from the nasal blood vessels of 441 the black duck (Anas superciliosa) in Australia, with a review of the genus Trichobilharzia. Syst. Parasitol. 5, 89-117. 442 443 Blair, D., Davis, G. M., Wu, B. 2001. Evolutionary relationships between 444 trematodes and snails emphasizing schistosomes and paragonimids. 445 Parasitology. 123, 229-243. 446 Blouin, M. S., Yowell, C. A., Courtney, C. H., Dame, J. B. 1995. Host movement 447 and the genetic structure of populations of parasitic nematodes. Genetics. 448 141, 1007-1014. 449 Blums, P., Nichols, J. D., Hines, J. E., Mednis, A. 2002. Sources of variation in 450 survival and breeding site fidelity in three species of European ducks. J. 451 Animal Ecology. 71, 438-450. 452 Bousset, L., Pointier, J. P., David, P., Jarne, P. 2014. Neither variation loss, nor 453 change in selfing rate is associated with the worldwide invasion of *Physa* 454 acuta from its native North America. Biol. Invasions. 16, 1769-1783.

455	Bouzid, W., Štefka, J., Hypša, V., Lek, S., Scholz, T., Legal, L., Kalthoum, O.,
456	Hassine, B., Loot, G. 2008. Geography and host specificity: two forces behind
457	the genetic structure of the freshwater fish parasite Ligula intestinalis
458	(Cestoda: Diphyllobothriidae). Int. J. Parasitol. 38, 1465-1479.
459	Brant, S.V., Loker, E.S. 2009. Molecular systematics of the avian schistosome genus
460	Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol.
461	95, 941–963.
462	Brant, S. V., Bochte, C. A., Loker, E. S. 2011. New intermediate host records for the
463	avian schistosomes Dendritobilharzia pulverulenta, Gigantobilharzia
464	huronensis, and Trichobilharzia querquedulae from North America. J.
465	Parasitol. 97, 946-949.
466	Brant, S. V., Loker, E. S. 2013a. Discovery-based studies of schistosome diversity
467	stimulate new hypotheses about parasite biology. Trends Parasitol. 29, 449-
468	459.
469	Brant, S. V., Jouet, D., Ferte, H., Loker, E. S. 2013b. Anserobilharzia gen.
470	n.(Digenea, Schistosomatidae) and redescription of A. brantae (Farr &
471	Blankemeyer, 1956) comb. n. (syn. Trichobilharzia brantae), a parasite of
472	geese (Anseriformes). Zootaxa. 3670, 193-206.
473	Cheatum, E.L. 1941. Dendritobilharzia anatinarum n. sp., a blood fluke from the
474	mallard. J. Parasitol. 27, 165-170.
475	Christiansen, A. Ø., Olsen, A., Buchmann, K., Kania, P. W., Nejsum, P.,
476	Vennervald, B. J. 2014. Molecular diversity of avian schistosomes in Danish
477	freshwater snails. Parasitol. Res. 1-11.
478	Clark, R.G., Shuter, D. 1999. Avian habitat selection: Pattern from process in nest-
479	site use by ducks? Ecology. 80, 272-287.
480	Crews, A.E., Esch, G.W. 1986. Seasonal dynamics of Halipegus occidualis
481	(Trematoda: Hemiuridae) in <i>Helisoma anceps</i> and its impact on fecundity of
482	the snail host. J. Parasitol. 72, 646-651.
483	Darriba, D., Taboada, G.L., Doallo, R., Posada, D. 2012. jModelTest 2: more
484	models, new heuristics and parallel computing. Nature Meth. 9, 772.
485	de Gentile, L., Picot, H., Bourdeau, P., Bardet, R., Kerjan, A., Piriou, M., LeGuennic,
486	A., Bayssade-Dufour, C., Chabasse, D., Mott, K.E. 1996. Le dermatite
487	cercarienne en Europe: un probleme de la sante publique nouveau? Bulletin
488	de l'Organisation Mondiale de la Sante ⁷ . 74, 159–163.

489	Dijk, J. G., Hoye, B. J., Verhagen, J. H., Nolet, B. A., Fouchier, R. A., Klaassen, M.
490	2014. Juveniles and migrants as drivers for seasonal epizootics of avian
491	influenza virus. J. Anim. Ecol. 83, 266-275.
492	Draparnaud, J. P. R. 1805. Histoire naturelle des mollusques terrestres et fluviatiles
493	de la France. D Colas, Paris, France.
494	Dvorak, J., Vanácová, Š., Hampl, V., Flegr, J., Horak, P. 2002. Comparison of
495	European Trichobilharzia species based on ITS1 and ITS2 sequences.
496	Parasitology. 124, 307-313.
497	Ferté, H., Depaquit, J., Carré, S., Villena, I., Léger, N. 2005. Presence of
498	Trichobilharzia szidati in Lymnaea stagnalis and T. franki in Radix auricularia
499	in northeastern France: molecular evidence. Parasitol. Res. 95, 150-154.
500	Fuller, T., Bensch, S., Muller, I. Novembre, J., Perez-Tris, J., Rickfels, R.E., Smith,
501	T.B., Waldenstrom, J. 2012. The ecology of emerging infectious diseases in
502	migratory birds: an assessment of the role of climate change and priorities for
503	future research. Ecohealth. 9, 80-88.
504	Garvon, J. M., Fedynich, A. M., Peterson, M. J., Pence, D. B. 2011. Helminth
505	community dynamics in populations of blue-winged teal (Anas discors) using
506	two distinct migratory corridors. J. Parasitol. Res. 2011, Article ID 306257.
507	Gerard, C. 2004. First occurrence of Schistosomatidae infecting Aplexa hypnorum
508	(Gastropoda, Physidae) in France. Parasite. 11, 231-234.
509	Goater, T.M., Shostak, A.W., Williams, J.A., Esch, G.W. 1989. A mark- recapture
510	study of trematode parasitism in overwintered Helisoma anceps (Pulmonata),
511	with special reference to Halipegus occidulis (Hemuridae). J. Parasitol. 75,
512	553-560.
513	Goulding, T. C., Cohen, S.C. 2014. Phylogeography of a marine acanthocephalan: lack
514	of cryptic diversity in a cosmopolitan parasite of mole crabs. J. Biogeogr. 41,
515	965–976.
516	Hasegawa, M., Kishino, H., Yano, T. A. 1985. Dating of the human-ape
517	splitting by a molecular clock of mitochondrial DNA. J. Mol. Evo. 22,
518	160-174.
519	Hoberg, E. P., Brooks, D. R. 2008. A macroevolutionary mosaic: episodic
520	host switching, geographical colonization and diversification in
521	complex host-parasite systems. J. Biogeography. 35, 1533-1550.

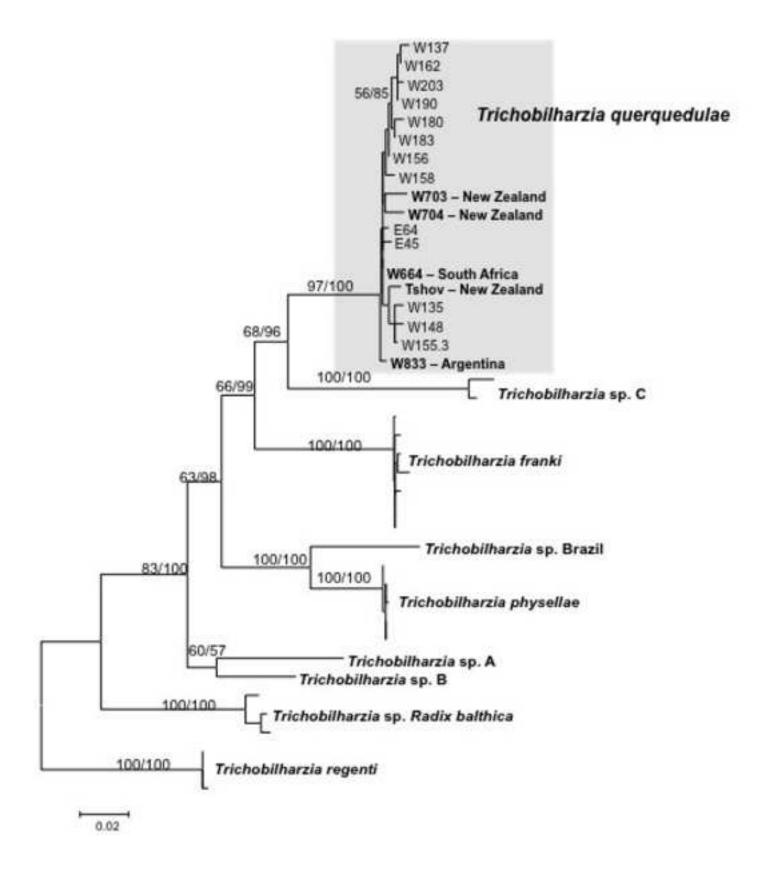
522	Horák, P., Kolářová, L., Adema, C. M. 2002. Biology of the schistosome genus
523	Trichobilharzia. Adv. Parasitol. 52, 155-233.
524	Horák, P., Kolářová, L. 2011. Snails, waterfowl and cercarial dermatitis. Freshwater
525	Biol. 56, 779-790.
526	Horák, P., Mikes, L., Lichtenbergova, L., Skala, V. Soldanova, M., Brant,
527	S.V. 2015. Avian schistosomes and outbreaks of Cercarial Dermatitis.
528	Clin Microbiol. Rev. 28. 165-190.
529	Johnson, K.J., Sorenson, M.D. 1999. Phylogeny and biogeography of the dabbling
530	ducks (Genus: Anas): A comparison of molecular and morphological
531	evidence. The Auk. 116, 792-805.
532	Jouet, D., Ferté, H., Hologne, D., Kaltenback, M.L., Depaquit, J. 2009. Avian
533	schistosomes in French aquatic birds: a molecular approach. J. Helminthol.
534	83, 181–189.
535	Jouet, D., Skirnisson, K., Kolarova, L., Ferte, H. 2010. Final hosts and variability of
536	Trichobilharzia regenti under natural conditions. Parasitol. Res. 107, 923-930.
537	Jouet, D., Kolarova, L., Patrelle, C., Ferte, H., Skirnisson, K. 2015. Trichobilharzia
538	anserin. sp. (Schistosomatidae: Digenea), a new visceral species of avain
539	schistosomes isolated from graylag goose (Anser anser L.) in Iceland and
540	France. Inf. Gen. Evol. 34, 298-306.
541	Kear, J. 2005. Ducks, Geese and Swans: Species Accounts (Cairina to Mergus).
542	Oxford University Press Inc. New York, USA.
543	Kimura, M. 1980. A simple method for estimating evolutionary rates of base
544	substitutions through comparative studies of nucleotide sequences. J. Mol.
545	Evol. 16, 111-120.
546	Kock, S. 2001. Investigations of intermediate host specificity help to elucidate the
547	taxonomic status of <i>Trichobilharzia ocellata</i> (Digenea: Schistosomatidae).
548	Parasitology. 123, 67-70.
549	Kolářová, L., Rudolfová, J., Hampl, V., Skírnisson, K. 2006. Allobilharzia visceralis
550	gen. nov., sp. nov.(Schistosomatidae-Trematoda) from Cygnus cygnus
551	(L.)(Anatidae). Parasitol. Int. 55, 179-186.
552	Kolářová, L., Horák, P., Skírnisson, K. 2010. Methodical approaches in the
553	identification of areas with a potential risk of infection by bird schistosomes
554	causing cercarial dermatitis. J. Helminthol. 84, 327-335.

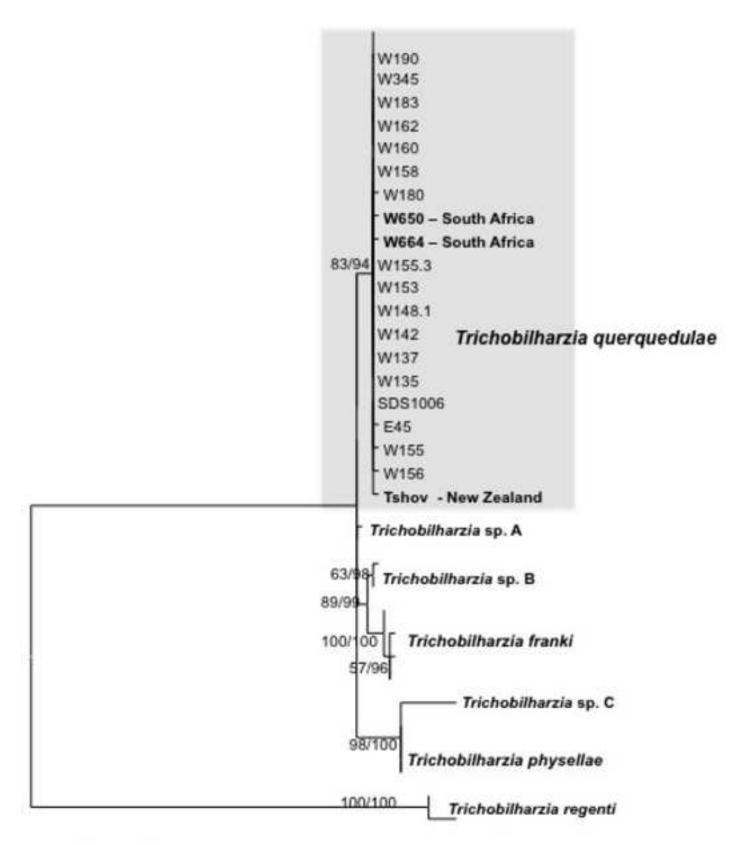
555	Kolářová, L., Horák, P., Skírnisson, K., Marečková, H., Doenhoff, M. 2013.
556	Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol.
557	45, 63-74.
558	Kourilova´, P., Hogg, K.G., Kolářová, L., Mountford, A.P. 2004. Cercarial dermatitis
559	caused by bird schistosomes comprises both immediate and late phase
560	cutaneous hypersensitivity reaction. J. Immunol. 172, 3766–3774.
561	Laamrani, H., Boelee, E., Madsen, H. 2005. Trematode infection among
562	freshwater gastropods in Tessaout Amont irrigation system, Morocco.
563	African Zool. 40, 77-82.
564	Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,
565	McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson,
566	J.D., Gibson, T.J., Higgins D.G. 2007. ClustalW and ClustalX version 2.
567	Bioinformatics. 23, 2947-2948.
568	Larsen, A.H., Bresciani, J., Buchmann, K. 2004. Increasing frequency of cercarial
569	dermatitis at higher latitudes. Acta Parasitologica. 49, 217-221.
570	Lawton, S. P., Lim, R. M., Dukes, J. P., Cook, R. T., Walker, A. J., Kirk, R. S. 2014.
571	Identification of a major causative agent of human cercarial dermatitis,
572	Trichobilharzia franki (Müller and Kimmig 1994), in southern England and its
573	evolutionary relationships with other European populations. Parasites
574	Vectors. 7, 277.
575	Leite, A. C. R., de Araujo Costa, H. M., Costa, J. O. 1978. Trichobilharzia
576	<i>jequitibaensis</i> sp. n. (Trematoda, Schistosomatidae) in <i>Cairina moschata</i>
577	domestica (Anatidae). Revista Brazileira de Biologia. 38, 843-846.
578	Loy, C., Haas, W. 2001. Prevalence of cercariae from Lymnaea stagnalis snails in a
579	pond system in Southern Germany. Parasitol. Res. 87, 878-882.
580	McKenzie, V.J. 2007. Human land use and patterns of parasitism in tropical
581	amphibian hosts. Biol. Conserv. 137,102-116.
582	McLeod, J.A. 1937. Two new schistosomid trematodes from water birds. J.
583	Parasitol. 23, 456-466.
584	McLeod, J. A., Little, G. E. 1942. Continued studies on Cercarial Dermatitis and the
585	trematode family Schistosomatidae in Manitoba: Part I. Canadian J. Res. 20,
586	170-181.
587	Ostfeld, R.S., Keesing, F. 2000. Biodiversity and disease risk: the case of lyme
588	disease. Conservation Biol. 14, 722–728.

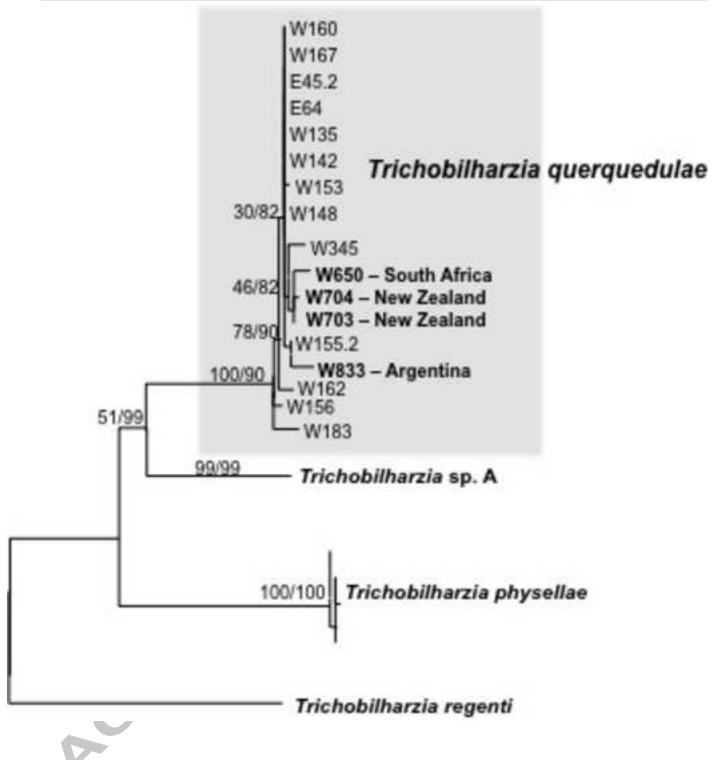
589	Peters, J. L., Winker, K., Millam, K. C., Lavretsky, P., Kulikova, I., Wilson, R. E.,
590	Zhuravlev, Y.N., McCracken, K. G. 2014. Mito□nuclear discord in six
591	congeneric lineages of Holarctic ducks (genus Anas). Mol. Ecol. 23, 2961-
592	2974.
593	Poston, H.J. 1974. Home range and breeding biology of the Shoveler. Canadian
594	Wildlife Serv. Rep. Ser. 25, 1–42.
595	Rau, M. E., Bourns, T. K. R., Ellis, J. C. 1975. Egg production by Trichobilharzia
596	ocellata (Trematoda: Schistosomatidae) after initial and challenge infection in
597	ducks. Canadian J. Zool. 53, 642-650.
598	Reed, K. D., Meece, J. K., Henkel, J. S., Shukla, S. K. 2003. Birds, migration and
599	emerging zoonoses: West Nile virus, Lyme disease, influenza A and
600	enteropathogens. Clin Med Res. 1, 5-12
601	Rizevsky, S. V., Cherviakovsky, E. M., Kurchenko, V. P. 2011. Molecular
602	taxonomic identification of Schistosomatidae from Naroch Lake and
603	Polonevichi Lake in Belarus. Biochem Sys Ecol. 39, 14-21.
604	Ronquist, F, Huelsenbeck, J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference
605	under mixed models. Bioinformatics. 19, 1572-1574.
606	Rudolfová, J., Hampl, V., Bayssade-Dufour, C., Lockyer, A. E., Littlewood, D. T. J.,
607	Horák, P. 2005. Validity reassessment of Trichobilharzia species using
608	Lymnaea stagnalis as the intermediate host. Parasitol. Res. 95, 79-89.
609	Rudolfová, J., Littlewood, D. T. J., Sitka, J., Horák, P. 2007. Bird schistosomes of
610	wildfowl in the Czech Republic and Poland. Folia Parasitologica 54, 88-93.
611	Skrjabin, K.I. and Zakharov, N.P. 1920. Zweineue Trematodengattugen aus den
612	Blutgefassen der Volgel. Izvestnik Donskovo Veterinarnovo Instituta 2, 1-6.
613	Soldánová, M., Selbach, C., Kalbe, M., Kostadinova, A., Sures, B. 2013. Swimmer's
614	itch: etiology, impact, and risk factors in Europe. Trends in Parasitol. 29, 65-
615	74.
616	Tamura, K., Nei, M. 1993. Estimation of the number of nucleotide substitutions in
617	the control region of mitochondrial DNA in humans and chimpanzees. Mol.
618	Biol Evol. 10, 512-526.
619	Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6:
620	molecular evolutionary genetics analysis version 6.0. Mol. Bio. Evo. 30, 2725-
621	2729.

622	Taylor, L.H., Latham, S.M., Woolhouse, M.E.J. 2001 Risk factors for human disease
623	emergence. Phil. Trans. R Soc. Lond. Biol Sci. 356, 983–989.
624	Thompson, R. A. 2000. Giardiasis as a re-emerging infectious disease and its
625	zoonotic potential. Int. J. Parasitol. 30, 1259-1267.
626	Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., Warman, M. L.
627	2000. Preparation of PCR-quality mouse genomic DNA with hot sodium
628	hydroxide and tris (Hot- Shot). Biotechniques. 29, 52-54.
629	Valdovinos, C., Balboa, C. 2008. Cercarial dermatitis and lake eutrophication in
630	South- central Chile. Epidemiol. Infect. 136, 391–394.
631	Vickery, W.L. Nudds, T.D. 1984. Detection of density dependent effects in annual
632	duck censuses. Ecology. 65, 96–104.
633	Vusse, F. J. V. 1980. A review of the genus Dendritobilharzia Skrjabin and Zakharow
634	1920 (Trematoda: Schistosomatidae). J. Parasitol. 1, 814-822.
635	Webster, B. L., Rudolfová, J., Horák, P., Littlewood, D. T. J. 2007. The complete
636	mitochondrial genome of the bird schistosome Trichobilharzia regenti
637	(Platyhelminthes: Digenea), causative agent of cercarial dermatitis. J.
638	Parasitol. 93, 553-561.
639	Wilson, R. E., Eaton, M. D., Sonsthagen, S. A., Peters, J. L., Johnson, K. P.,
640	Simarra, B., McCracken, K. G. 2011. Speciation, subspecies divergence, and
641	paraphyly in the Cinnamon Teal and Blue-winged Teal. The Condor. 113,
642	747-761.
643	
	0

644 Legends to Figures


645


043	
646	Fig. 1. Maximum likelihood (ML) tree based on mitochondrial cytochrome oxidase
647	subunit I (<i>Cox</i> 1) sequence data. Branch support values less than 50% were not
648	shown. Values are reported as bootstrap support from ML analysis/ posterior
649	probabilities from Bayesian analysis. The shaded box includes all Trichobilharzia
650	querquedulae individuals analyzed, bolded taxa indicate samples collected from the
651	Southern Hemisphere. Accession numbers of other analyzed Trichobilharzia
652	samples can be found in Table 1.
653	
654	Fig. 2. Maximum likelihood (ML) tree based on internal transcribed spacer region 1
655	(ITS1) sequence data. Branch support values less than 50% are not shown; values
656	are reported as bootstrap support from ML analysis/posterior probabilities from
657	Bayesian analysis. The shaded box includes all Trichobilharzia querquedulae
658	individuals analyzed, bolded taxa indicate samples collected from the Southern
659	Hemisphere. Accession numbers of other analyzed Trichobilharzia samples can be
660	found in Table 1.
661	
662	Fig. 3. Maximum likelihood (ML) tree based on NADH Dehydrogenase subunit 4
663	(ND4) sequence data. Branch support values less than 50% were not shown; values
664	are reported as bootstrap support from ML analysis/posterior probabilities from
665	Bayesian analysis. The shaded box includes all Trichobilharzia querquedulae
666	individuals analyzed, bolded taxa indicate samples collected from the Southern
667	Hemisphere. Accession numbers of other analyzed Trichobilharzia samples


analyzed can be found in Table 1.

669

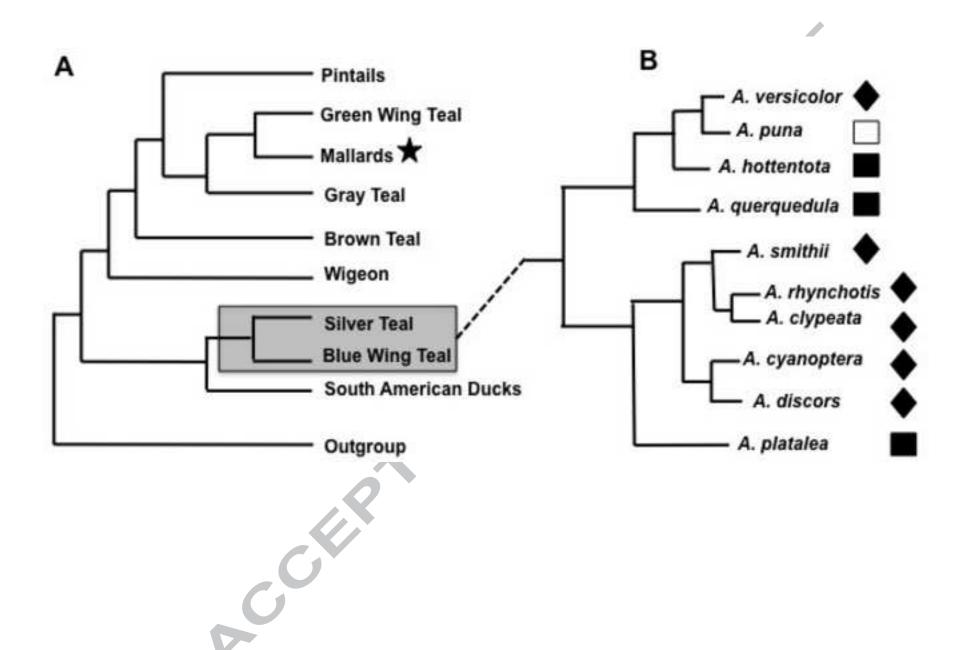

007	
670	Fig. 4. Simplified Anas phylogeny reconstructed from Johnson and Sorensen (1999).
671	(A) Tree depicts phylogenetic relationships within Anas. Clades are collapsed to
672	include: pintails (A. acuta, A. georgica, A. bahamensis, A. erythrorhyncha, A.
673	capensis), green-winged teals (A. flavirostris, A. carolinensis, A. crecca), Mallards
674	(A. laysanensis, A. luzonica, A. platyrhynchos, A. poecilorhyncha, A. zonorhyncha,
675	A. diazi, A. rubripes, A. fulvigula, A. superciliosa, A. melleri, A. undulata, A. sparsa),
676	gray teals (A. gibberifrons, A. castanea, A. bernieri), Brown teals (A. aucklandica, A.
677	chlorotis), Wigeons (A. americana, A. sibilatrix, A. penelope, A. strepera, A. falcata),
678	silver teals (A. versicolor, A. puna, A. hottentota, A. querquedula), blue-winged teals
679	(A. smithii, A. rhynchotis, A. clypeata, A. cyanoptera, A. discors, A. platalea), South
680	American ducks (Speculanas specularis, Amazonetta brasiliensis, Tachyeres
681	pteneres, Lophonetta specularioides), outgroup (Marmaronetta, Pteronetta,
682	Cyanochen, Aythya, Asarcornis, Chenonetta, Callonetta, Tadorna,Cairina, Aix,
683	Sarkidiorni). (B) Tree depicts interspecific relationships within the 'blue-winged' teal
684	clade (shaded in A). Host taxa are labeled by infection status with Trichobilharzia
685	<i>querquedulae</i> (\star · experimental host (McLeod and Little, 1942); \Box , host not
686	examined; \blacklozenge , host examined/positive; \blacksquare , host examined/negative). All survey data
687	summarized was preformed by the authors with the exception of A. querquedulae
688	(Kolarova et al.,1997).
689	
007	

Figure 4

					Gene Accessi on Number			
	Species	Host	Local ity	Cox1	ND4	ITS	MSB Catal og # ^a	Refere nce
W135	Trichobilh arzia querquedu lae	Anas clypeata	LA	FJ1744 97	KU05719 7	FJ174 557	18 3	Brant and Loker, 2009
W137	T. 7 querquedu lae	Anas discors	LA	FJ1744 98	-	FJ174 558	19 49 7	Brant and Loker, 2009
W142	T. 2 querquedu lae	A. discors	LA	-	KU05719 6	KP788 761	19 50 2	Brant and Loker, 2009
W148 1	3. T. querquedu lae	Anas cyanopte ra	NM	FJ1744 99	KU05719 4	FJ174 559	18 58 4	Brant and Loker, 2009
W148 2	3. T. querquedu lae	A. cyanopte ra	NM	FJ1745 00	-	-	18 58 4	Brant and Loker, 2009
W153	T. querquedu lae	A. clypeata	NM	-	KU05719 2	KP788 763	18 58 7	Brant and Loker, 2009
W155	T. querquedu lae	A. cyanopte ra	NM	-	-	FJ174 553	18 58 9	Brant and Loker, 2009
W155 2	5. T. querquedu lae	A. cyanopte ra	NM	-	KU05720 0	-	18 58 9	Brant and Loker, 2009
W155 3	5. T. querquedu lae	A. cyanopte ra	NM	FJ1745 01	-	KP788 764	18 58 9	Brant and Loker, 2009
W156	T. querquedu lae	A. discors	NM	FJ1745 02	KU05719 1	FJ174 554	18 59 0	Brant and Loker, 2009

Table 1. Host association and locality origin of the specimens used in this study.

	W158	T. querquedu lae	A. clypeata	NM	FJ1745 03	-	FJ174 549	18 59 2	Brant and Loker, 2009
	W160	T. querquedu lae	A. discors	NM	-	KU05720 1	KP788 766	18 59 4	Brant and Loker, 2009
	W162	T. querquedu lae	A. clypeata	NM	FJ1745 04	KU05719 0	FJ174 551	18 60 2	Brant and Loker, 2009
	W167	T. querquedu lae	A. discors	NM	-	KU05720 2	G	6	Brant and Loker, 2009
	W180	T. querquedu lae	A. cyanopte ra	CA	FJ1745 05		FJ174 556	18 57 3	Brant and Loker, 2009
	W183	T. querquedu lae	A. clypeata	CA	FJ1745 06	KU05718 9	FJ174 560	18 57 5	Brant and Loker, 2009
	W190	T. querquedu lae	A. discors	СА	FJ1745 07	-	FJ174 550	18 58 2	Brant and Loker, 2009
	W203	T. querquedu lae	A. clypeata	AK	FJ1745 08	-	FJ174 552	18 63 6	Brant and Loker, 2009
	W345	T. querquedu lae	A. clypeata	MB	FJ1745 09	KU05718 5	FJ174 547	18 62 6	Brant and Loker, 2009
	W650	T. querquedu lae	Anas smithii	ZA	-	KU05720 5	KP788 765	18 99 0	This study
C	W664	T. querquedu lae	A. smithii	ZA	KU0571 80	-	KP788 762	19 00 0	This study
V	W703	T. querquedu lae	Anas rhynchoti s	NZ	KU0571 81	KU05720 4	-	20 79 2	This study
	W704	T. querquedu lae	A. rhynchoti s	NZ	KU0571 82	KU05720 3	-	20 79 3	This study
	Tshov	T. querquedu	A. rhynchoti	NZ	KU0571 83	-	KP788 760	20 79	This study

		lae	s					4	
	W833	T. querquedu lae	Anas versicolor	AR	KU0571 84	KU05720 6	-	-	This study
	E45	T. querquedu lae	A. discors	FL	FJ1745 10	-	FJ174 555	-	Brant and Loker, 2009
	E45.2	T. querquedu lae	A. discors	FL	-	KU05719 9	-	-	Brant and Loker, 2009
	E64	T. querquedu lae	A. discors	FL	FJ1745 11	KU05719 8	G		Brant and Loker, 2009
	SDS1 006	T. querquedu lae	A. clypeata	NE	-	2	FJ174 548	-	Brant and Loker, 2009
	W206. 2	Trichobilh arzia sp. A	Anas american a	AK	NP.	_	KP788 771	-	Brant and Loker, 2009
	W210	Trichobilh arzia sp. A	A. american a	AK	-	-	KP788 772	-	Brant and Loker, 2009
	W213	Trichobilh arzia sp. A	A. american a	AK	FJ1745 27	-	FJ174 570	18 63 6	Brant and Loker, 2009
	W149	Trichobilh arzia sp. A	A. american a	NM	-	KU05719 3	-	18 58 5	Brant and Loker, 2009
P	W205	Trichobilh arzia sp. B	A. american a	AK	FJ1745 28	-	KP788 770	18 63 8	Brant and Loker, 2009
	W173	Trichobilh arzia sp. C	Lophodyt es cucullatu s	PA	FJ1745 29	-	FJ174 576	-	Brant and Loker, 2009
	W175	Trichobilh arzia physellae	Anas platyrhyn chos	PA	-	-	KP788 768	-	Brant and Loker,

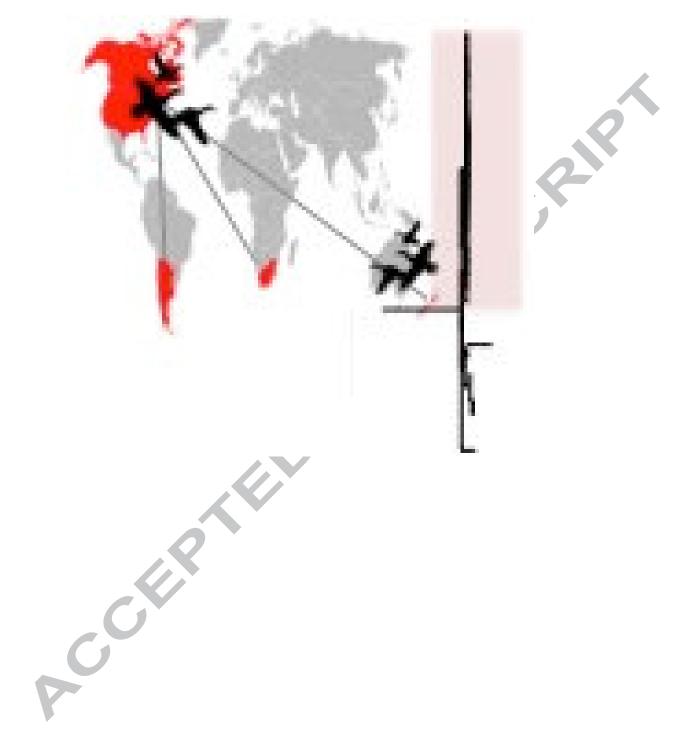
W196	Trichobilh arzia physellae	Aythya affinis	NM	-	-	KP788 767	-	Brant and Loker, 2009	
W263	T. physellae	Physa gyrina	NM	FJ1745 23	*	FJ174 562	17 8	Brant and Loker, 2009	
RSFO 1	Trichobilh arzia franki	Radix auriculari a	FR	-	-	AY795 572	-	Ferte et al., 2005	F
RSFO 3	T. franki	R. auriculari a	FR	HM1311 98	-	AY795 573	Ū	Ferte et al. 2005	
HamR a6	T. franki	R. auriculari a	GB	-	2	KJ775 868	-	Lawto n et al. 2014	
HamR a7	T. franki	R. auriculari a	GB	F	_	KJ775 869	-	Lawto n et al, 2014	
CYA1 8	Trichobilh arzia regenti	Cygnus olor	FR	HM4395 00	-	HM43 9497	-	Jouet et al. 2010	
DQ859 919	Trichobilh arzia regenti	Radix peregra		-	GenelD: 5333425	-	-	Webst er et al. 2007	
	W263 RSFO 1 RSFO 3 HamR a6 HamR a7 CYA1 8 DQ859	W196arzia physellaeW263T. physellaeRSFOTrichobilh arzia frankiRSFOT. frankiRSFOT. frankiHamR a6T. frankiHamR a7T. frankiCYA1Trichobilh arzia regentiDQ859Trichobilh arzia	W196arzia physellaeAytnya affinisW263T. physellaePhysa gyrinaRSFOTrichobilh arzia frankiRadix auriculari aRSFOT. frankiRadix auriculari aRSFOT. frankiR. auriculari aHamR a6T. frankiR. auriculari aHamR a7T. frankiR. auriculari aHamR a7T. frankiR. auriculari aHamR a7T. frankiC. auriculari aHamR a7T. frankiR. auriculari aHamR a7T. frankiR. auriculari <b< td=""><td>W196arzia physellaeAytnya affinisNMW263T. physellaePhysa gyrinaNMRSFOTrichobilh arzia frankiRadix auriculari aFRRSFOT. frankiR. auriculari aFRRSFOT. frankiR. auriculari aFRHamR a6T. frankiR. auriculari aGBHamR a7T. frankiR. auriculari aGBCYA1 8Trichobilh arzia regentiCygnus olorFRDQ859 919Trichobilh arziaRadix peregraFadix peregra</td><td>W196arzia physellaeAytnya affinisNM-W263T. physellaePhysa gyrinaNMFJ1745 23RSF0Trichobilh arzia frankiRadix auriculari aFRRSF0T. frankiRadix auriculari aFRRSF0T. frankiR. auriculari aFRHamR a6T. frankiR. auriculari aGBHamR a7T. frankiR. auriculari aGBHamR a7T. frankiR. auriculari aGBCYA1 8Trichobilh arzia regentiCygnus olorFRDQ859 919Trichobilh arziaRadix peregra</td><td>W196arzia physellaeAytnya affinisNMW263T. physellaePhysa gyrinaNMFJ1745 23*RSF0Trichobilh arzia frankiRadix auriculari aFRRSF0T. frankiRadix auriculari aFRRSF0T. frankiR. auriculari aFRHM1311 98-HamR a6T. frankiR. auriculari aGB-HamR a7T. frankiR. auriculari aGB-HamR a7T. frankiR. auriculari aGB-CYA1 8Trichobilh arzia regentiCygnus olorFRHM4395 00-DQ859 919Trichobilh arziaRadix peregraGeneID: 533425-</br></br></br></br></br></br></td><td>W196arzia physellaeAytnya affinisNMKP788 767W263T. physellaeT. gyrinaPhysa gyrinaNMFJ1745 23*FJ174 562RSFO 1Trichobilh arzia frankiRadix auriculari aFRAY795 572RSFO 3T. frankiRadix auriculari aFRAY795 572RSFO 3T. frankiR. auriculari aFRHM1311 98-AY795 573HamR a7T. frankiR. auriculari aGBKJ775 868HamR a7T. franki aR. auriculari aGBKJ775 869CYA1 8Trichobilh arzia regentiCygnus olorFRHM4395 00-HM43 9497DQ859 919Trichobilh arziaRadix perenraGeneID: 533425-</td><td>W196 $arzia$ $Aytnya$ $affinis$ NM $RP788$ 767 - W263 $T.$ $Physa gyrina$ NM $FJ1745$ $FJ174$ 17 562 8 RSFO $Trichobilh$ $Radix auriculari a$ FR $AY795$ 572 - 1 <math>RSFO T. franki R. $auriculari a$ FR $AY795$ 573 - RSFO T. franki R. $auriculari a$ GB - $S73$ - HamR $T. franki R. auriculari a$ GB - $KJ775$ 868 - RSFO T. franki R. $auriculari a$ GB - $KJ775$ - RSFO T. franki R. $auriculari a$ GB - $KJ775$ - RSFO T. franki R. $auriculari a$ GB $RJ75$ - RSFO T. franki R. $auriculari a$ RR $HM1311 - RSFO$ - RSFO T. franki R. auriculari a</math> GB $RJ75$ - RSFO T. franki R. auriculari a RR $RJ775$ - RSFO T. franki R. auriculari a RR $RJ775$ - RSFO T. franki RR RR $RJ775$ - RSFO $RSFO$ <math>RSFO RSFO</math> $RSFO$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></b<>	W196arzia physellaeAytnya affinisNMW263T. physellaePhysa gyrinaNMRSFOTrichobilh arzia frankiRadix auriculari aFRRSFOT. frankiR. auriculari aFRRSFOT. frankiR. auriculari aFRHamR a6T. frankiR. auriculari aGBHamR a7T. frankiR. auriculari aGBCYA1 8Trichobilh arzia regentiCygnus olorFRDQ859 919Trichobilh arziaRadix peregraFadix peregra	W196arzia physellaeAytnya affinisNM-W263T. physellaePhysa gyrinaNMFJ1745 23RSF0Trichobilh arzia frankiRadix auriculari aFRRSF0T. frankiRadix auriculari aFRRSF0T. frankiR. auriculari aFRHamR a6T. frankiR. auriculari aGBHamR a7T. frankiR. auriculari aGBHamR a7T. frankiR. auriculari aGBCYA1 8Trichobilh arzia regentiCygnus olorFRDQ859 919Trichobilh arziaRadix peregra	W196arzia physellaeAytnya affinisNMW263T. physellaePhysa gyrinaNMFJ1745 23*RSF0Trichobilh arzia 	W196arzia physellaeAytnya affinisNMKP788 767W263T. physellaeT. gyrinaPhysa gyrinaNMFJ1745 23*FJ174 562RSFO 1Trichobilh arzia frankiRadix auriculari aFRAY795 572RSFO 3T. frankiRadix auriculari aFRAY795 572RSFO 3T. frankiR. auriculari aFRHM1311 98-AY795 573HamR a7T. frankiR. auriculari aGBKJ775 868HamR a7T. franki aR. auriculari aGBKJ775 869CYA1 8Trichobilh arzia regentiCygnus olorFRHM4395 00-HM43 9497DQ859 919Trichobilh arziaRadix perenraGeneID: 533425-	W196 $arzia$ $Aytnya$ $affinis$ NM $RP788$ 767 - W263 $T.$ $Physa gyrina$ NM $FJ1745$ $FJ174$ 17 562 8 RSFO $Trichobilh$ $Radix auriculari a$ FR $AY795$ 572 - 1 $RSFO T. franki R. auriculari a FR AY795 573 -RSFO T. franki R. auriculari a GB - S73 -HamR T. franki R. auriculari a GB - KJ775 868 -RSFO T. franki R. auriculari a GB - KJ775 -RSFO T. franki R. auriculari a GB - KJ775 -RSFO T. franki R. auriculari a GB RJ75 -RSFO T. franki R. auriculari a RR HM1311 - RSFO -RSFO T. franki R. auriculari a$ GB $RJ75$ - RSFO T. franki R. auriculari a RR $RJ775$ - RSFO T. franki R. auriculari a RR $RJ775$ - RSFO T. franki RR RR $RJ775$ - RSFO $RSFO$ $RSFORSFO$ $RSFO$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

been deposited in the Museum of Southwestern Biology (MSB) Division of Parasites at the University of New Mexico, USA; parasite and hosts records (including GPS coordinates) can be accessed by the associated catalog number via the Arctos database (<u>http://arctos.database.museum/</u>).

LA, Louisiana USA; NM, New Mexico USA; CA, California USA; AK, Alaska USA; FL, Florida USA, NE, Nebraska USA; PA, Pennsylvania USA; FR, France; GB, England United Kingdom; MB, Manitoba Canada; ZA, Freestate South Africa; NZ, South Island New Zealand; AR, Corrientes Argentina; CO1, cytochrome oxidase subunit I; ND4, NADH Dehydrogenase subunit 4; ITS1, internal transcribed spacer 1.

2009

Table 2. Prevalence of *Trichobilharzia querquedulae* within members of the 'blue-wing' clade of dabbling ducks and their allies (Johnson and Sorenson, 1999).


Species	Location	Examined (n)	Infected (n)	Reference
Anas clypeata	North	22	20	Brant and
	America			Loker, 2009
Anas discors	North	20	20	Brant and
	America			Loker, 2009
Anas discors	North	184	175	Garvon et al.,
	America			2011
Anas	North	12	12	Brant and
cyanoptera	America			Loker, 2009
Anas smithii	South Africa	2	2	This study
Anas	Kenya	2	0	This study
hottentota	-			-
Anas	New Zealand	3	3	This study
rhynchotis				
Anas	Argentina	3	3	This study
versicolor	Argentina	1	0	This study
Anas platalea				

		Gene	
Species	Cox1	ND4	ITS1
<i>T. querquedulae</i> within NA	0.010	0.012	0.001
<i>T. querquedulae</i> within SH	0.012	0.017	0.004
<i>T. querquedulae</i> between NA and SH	0.012	0.015	0.003
T. querquedulae all sequences	0.011	0.012	0.002
T. querquedulae vs. Trichobilharzia franki	0.077	-	0.002
T. querquedulae vs. Trichobilharzia sp. A	0.082	0.11	0.002
T. querquedulae vs. Trichobilharzia physellae	0.082	0.13	0.002

Table 3. Genetic distances comparing internal transcribed spacer 1 (ITS1), cytochrome oxidase subunit I (*Cox*1) and NADH Dehydrogenase subunit 4 (ND4) gene regions within and between global samples of *Trichobilharzia querquedulae* and closely related *Trichobilharzia* spp.

NA, North America; SH, Southern Hemisphere.

Graphical abstract

Highlights

- Endemic Southern Hemisphere duck species were sampled for
 Trichobilharzia adults
- Trichobilharzia querquedulae were recovered from a clade of non-migratory
 Southern Hemisphere ducks
- A globally maintained phylogenetic association of *T. querquedulae* with a duck host clade was revealed
- We report the first known cosmopolitan schistosome species confirmed by molecular data

MAT