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Summary

In many molecular epidemiologic and clinical investigations multiple biomarkers are measured 

simultaneously using high throughput technologies. The analysis of multi-marker data poses two 

challenges. First, the fairly high dimensionality of the correlated markers makes modeling and 

variable selection challenging. Second, censoring of marker measurements due to lower and upper 

limits of detection needs to be accommodated in the analysis. To directly address the question how 

censored markers relate to a particular outcome we propose several approaches of varying 

computational complexity to analyzing censored predictors using likelihood-based sufficient 

dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR 

framework in two ways: (a) we accommodate censored predictors directly in the likelihood, and 

(b) we incorporate variable selection in the likelihood via a penalty term. We find linear 

combinations that contain all the information from correlated markers, i.e. are sufficient for 

modeling and prediction of an outcome variable, while accounting for left and right censoring of 

the markers. These methods apply to any type of outcome, including continuous and categorical 

outcomes and are efficient. Careful evaluations and comparisons of the methods using data from a 

study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, and 

in simulations show that explicit accounting for the censoring in the likelihood set-up can lead to 

appreciable gains in efficiency and prediction accuracy.
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1. Introduction

New technologies allow investigators to measure multiple biomarkers simultaneously for 

research on disease etiology, diagnosis, and outcomes following diagnosis. A recent example 

is the development of a marker panel to study the impact of chronic inflammation on cancer 

risk. Chronic inflammation and immune dysregulation are now recognized as important 

etiologic factors for many cancers (see e.g. Mantovani et al., 2008). To comprehensively 
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evaluate a wide range of markers to elucidate pathways involved in carcinogenesis, 

investigators at the National Cancer Institute and various companies designed a multiplex 

immune panel capable of measuring up to 79 analytes simultaneously. This panel has been 

used in several epidemiologic investigations of cancer, including one on the risk of lung 

cancer (Shiels et al., 2013). Our work was motivated by a study conducted to replicate and 

expand on the associations of inflammatory markers and lung cancer risk found in Shiels et 

al. (2013) using the same marker panel, and to assess the potential of an ”inflammation 

score” for lung cancer risk prediction (Shiels et al., 2015).

The analysis of multimarker panel data poses two challenges. First, the fairly high 

dimensionality of the correlated markers makes modeling and variable selection challenging. 

Second, censoring of marker measurements due to lower and upper limits of detection needs 

to be accommodated in the analysis to avoid inconsistent or inefficient results. For example, 

in the original lung cancer study serum levels of 68 inflammation markers were analyzed. 

The percentage of values below the lowest limit of detection (LLOD) was < 25% for 38 

markers, 25% to 50% 5 markers, 50% to 75% for 7 markers, and 75% to 90% for 18 

markers. Five markers had both, lower and upper limits of detection. For analyses, marker 

levels were categorized, where the choices of category cut-points were dependent on the 

amount of censored data. For example, markers with < 25% of individuals below the LLOD 

were categorized into quartiles and markers with 75% to 90% of individuals below the 

LLOD were categorized as ”undetectable” and ”detectable”. Using these categories, eleven 

markers were associated with lung cancer risk in marginal logistic regression models (Shiels 

et al., 2013). However, categorization of continuous markers can lead to a loss of 

information and thus loss of power to detect associations. Categorization also distorts 

correlations among the markers which limits joint analysis of all the markers and the ability 

to fully interpret any findings.

Only a few approaches have been proposed to combine information from multiple correlated 

markers that are also left and/or right censored. For a binary outcome, Dong et al. (2014) 

estimated the moments of correlated biomarkers with LLODs separately in the two outcome 

groups assuming multivariate censored normal distributions, and used the estimated 

moments to combine the markers into a linear score for prediction. In contrast, the focus of 

etiologic research is features of the model itself, such as odds ratios from logistic regression. 

One approach to handle censored values is to impute them, then analyze the data using 

standard regression models, and combine results from multiple imputed datasets to 

accommodate the uncertainty due to imputation (Rubin, 1987). As censored data are not 

missing at random (see, e.g. Rubin, 1987), the missing data mechanism needs to be 

modeled. General software packages for multiple imputation, e.g. mice in R (van Buuren 

and Groothuis-Oudshoorn, 2011), do not allow the specification of censored distributions. 

Lee, Kong, and Weissfeld (2012) used Gibbs sampling to impute left censored marker values 

assuming multivariate normality of the markers, and also allowed the marker mean to 

depend on covariates or the outcome. The imputed marker values were then included in a 

regression model and the additional variability from the imputation accommodated in the 

variance estimation (Rubin, 1987). However, this approach is computationally challenging 

with a large number of correlated markers, and in simulations and the data example the 

authors used only two and three markers, respectively. Another limitation of multiple 
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imputation is that it may not yield fully efficient results and methods for variable selection 

are limited (Chen and Wang, 2013).

To directly address the question how censored markers relate to a particular outcome we 

propose several approaches of varying computational complexity to analyzing censored 

predictors using sufficient dimension reduction (SDR) approaches, specifically likelihood-

based SDR (Cook and Forzani, 2009, 2008) assuming that the markers given the response 

are jointly normal. We extend the theory and the likelihood-based SDR framework in two 

ways: (a) we accommodate censored predictors directly in the likelihood, and (b) we 

incorporate variable selection in the likelihood via a penalty term. We find linear 

combinations that contain all the information in correlated markers, i.e. are sufficient, for 

modeling and prediction of an outcome variable, while accounting for left and right 

censoring of the markers. The methods we develop are appealing as they apply generally to 

any type of outcome, including continuous and categorical outcomes, and are efficient.

The rest of the paper is organized as follows. After a brief overview of SDR, and specifically 

likelihood-based SDR (Section 2), we introduce likelihood-based SDR for censored data and 

propose an EM algorithm for computation (Section 3). In Section 4 we apply the methods to 

inflammatory markers from the lung cancer replication study and comprehensively compare 

the results from various SDR approaches to those obtained using multiple imputations. We 

assess the performance of our methods extensively in simulations in Section 5.

2. Background: sufficient dimension reduction (SDR)

We briefly introduce linear SDR methodology to provide the context for SDR for regression 

or classification with censored predictors.

2.1 Overview of dimension reduction approaches

We are interested in inferring the relationship between a univariate response variable Y and a 

covariate vector Z = (Z1, …, Zp)T ∈ ℝp. When p is large, modeling is challenging as it is 

difficult to visualize how Y changes as a function of the covariates. The goal of dimension 

reduction is to reduce the complexity of the regression/classification problem. In particular, 

Sufficient Dimension Reduction (SDR) (Cook, 1998) aims to find a function R: ℝp → ℝd 

with d ≤ p, that contains the same information about Y as Z. That is, F(Y|Z) = F(Y|R(Z)), 

where F(·|·) is the conditional distribution function of Y given the second argument. This 

version of dimension reduction is called sufficient because R(Z) replaces the predictor 

vector Z without any loss of information on Y.

With a few exceptions (e.g. Fukumizu, Bach, and Jordan, 2004), mostly linear sufficient 

transformations, R(Z) = αTZ with α ∈ ℝp×d, have been studied and used in SDR 

methodology, (e.g. Li, 1991; Cook and Forzani, 2008). The reduction αTZ is not unique 

since for any invertible matrix A ∈ ℝd×d, F(Y|αTZ) = F(Y|AαTZ), and therefore the 

parameter of interest is not α per se but the span of its columns. In the sequel α = (α1, …, 

αd) denotes a basis of the linear subspace spanned by the columns of α, and 

R(Z) = αTZ = (α1
TZ, …, αd

TZ) a linear sufficient reduction for the regression of Y on Z. The 

dimension d of α is called the structural dimension of the regression of Y on Z, and can take 
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on any value in the set {0, 1, …, p}. When d < p the complexity of the regression is reduced. 

A detailed exposition of linear SDR methodology is given in Cook (1998).

Originally, SDR methods estimated α using functions of moments of the conditional 

distribution of Z|Y, i.e. using inverse regression (IR). IR has the advantage that modeling p 
predictors given a univariate response is much simpler than the forward modeling of Y as a 

function of p variables. A few examples include Sliced Inverse Regression (SIR; Li, 1991), 

Sliced Average Variance Estimation (SAVE; Cook and Weisberg, 1991), and Directional 

Regression (DR; Li and Wang, 2007). These methods require different conditions on the 

marginal distribution of the predictors to hold to yield sufficient reductions.

Recently, likelihood-based IR has been proposed, which assumes that Z|Y has a specific 

distribution or belongs to a family of distributions (Cook, 2007; Cook and Forzani, 2009, 

2008). It derives from the fact that

Y ∣ Z =d Y ∣ R(Z) iff Z ∣ (R(Z), Y) =d Z ∣ R(Z) . (1)

The equivalence in (1) means that if one treats Y as a parameter and finds a sufficient 
statistic R(Z) for Y using the distribution of Z|Y, then R(Z) is also a sufficient reduction for 

Z in the forward regression of Y on Z. It also reveals that the intrinsic dimension of the 

regression of Y on Z is the dimension of the sufficient statistic for Y in the inverse model Z|

Y. This result, which first appeared in Cook (2007), yields a powerful tool for obtaining 

sufficient reductions in regression and is the basic premise of likelihood-based IR which has 

two main features: (a) the reduction is sufficient, in contrast to moment-based approaches; 

and (b) the maximum likelihood estimates (MLEs) of the reduction can be obtained, which 

are thus optimal under the true model with respect to efficiency.

2.2 Likelihood-based SDR

We focus on two likelihood-based SDR methods to find the efficient estimator of the linear 

reductions of the predictors: Principal Fitted Components (PFC, Cook and Forzani, 2008) 

and Likelihood Acquired Directions (LAD, Cook and Forzani, 2009). Before we discuss the 

application and extension of these methods to censored data we first summarize them.

Both LAD and PFC require that Z|Y be normally distributed to find the sufficient reduction 

and its MLE. Both methods yield consistent estimators of the sufficient reduction when the 

normality assumption is relaxed, and conditions are placed on the first two moments of the 

predictors (Section 4 and Section 3.2 of Cook and Forzani, 2009, 2008, respectively). The 

two methods differ in that for PFC, Z depends on Y only through its conditional mean, 

whereas in LAD the dependence extends to the conditional variance. Consider the following 

multivariate model for the inverse regression of Z on Y

Zy: = Z ∣ (Y = y) = μy + ε, ε N p(0, Δy), (2)
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where μy ∈ ℝp×1 and var(Z|Y = y) = Δy in LAD, or var(Z|Y = y) = Δ in PFC. The 

conditional mean μy, as well as Δy, are unknown functions of y, with Δy and Δ positive 

definite and otherwise unconstrained.

Let μ = E(μy) and Δ = E(Δy). The goal is to find a sufficient reduction R(Z) = αTZ with α ∈ 
ℝp×d and rank(α) = d < p. Under model (2), Theorem 1 of Cook and Forzani (2009) 

determines that

span(α) = Δ−1span(μY − μ, Y ∈ SY) ∪ span(ΔY
−1 − Δ−1, Y ∈ SY), (3)

where SY is the sample space of Y. Notice that when ΔY does not depend on Y, 

span(ΔY
−1 − Δ−1) is an empty set and the shifted and scaled conditional mean μY contains all 

the information about the reduction α. When ΔY is not constant, (3) states that to recover 

span(α), the contribution of the inverse regression variance is also needed. If orthogonal 

directions to Δ−1span(μY − μ) lie in the span(ΔY
−1 − Δ−1), these directions together with Δ

−1span(μY − μ) comprise a sufficient reduction. From (3) we can rewrite the parameters as 

(Cook and Forzani, 2009, Proposition 1)

μY − μ = ΔανY and ΔY − Δ = ΔαTYαTΔ, (4)

where νY ∈ ℝd×1, d = dim (Δ−1span(μY − μ, Y ∈ SY) ∪ span(ΔY
−1 − Δ−1, Y ∈ SY)) with E(νY) 

= 0 and TY ∈ ℝd×d with E(TY) = 0.

To facilitate the optimization of the likelihood for Z|Y with respect to the parameters of 

interest in (2), based on Proposition 2 in Cook and Forzani (2009), an alternative way to 

write model (2) under (4) is

αTZ ∣ Y N(αTνY + αTΔανY, αTΔYα), (5)

α0
TZ ∣ (αTZ, Y) N(HαTZ + (α0

T − HαT)μ, D), (6)

where νY ∈ ℝd×1, D = (α0
TΔ−1α0)−1, H = (α0

TΔα)(αTΔα)−1
, and α0 ∈ ℝp×(p−d) is the semi-

orthogonal complement of α. Under the PFC assumption of constant variance, ΔY is 

replaced by Δ in (5).

For a random sample (Yi,Zi), i = 1, …, n, and using (5) and (6), the likelihood is
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Ld(Z ∣ Y = y) = − np
2 log 2π − n

2 log ∣ D ∣ − 1
2 ∑

y
ny log ∣ αTΔyα ∣

− 1
2 ∑

y
ny [αT(z∼y − μ − Δανy)]

T(αTΔyα)−1[αT(z∼y − μ − Δανy)]

− 1
2 ∑

y
ny (z∼y − μ)TKD−1KT(z∼y − μ) − 1

2 ∑
y

nytr αTΔ∼yα (αTΔyα)−1

− 1
2 ∑

y
nytr KD−1KTΔ∼y ,

(7)

where ny denotes the sample size, z̃y is the sample mean and Δ̃
y is the corresponding sample 

covariance matrix in the outcome group Y = y (see (10) in Cook and Forzani, 2009). The 

matrices D and H are defined in the text below equation (6) and K = α0−αHT. Under LAD, 

the parameters in (7) are θLAD = (α, μ, νy, D, H, Δ, αTΔyα), and under PFC (ΔY = Δ) θPFC 

= (α, μ, νy, D, H, αTΔα). To compute the MLE α̂ of the sufficient reduction αTZ, 

maximizing (7) for all the parameters θLAD or θPFC is required.

Remark—The above likelihood can be modified to accommodate continuous Y. For PFC, 

this is done by using a linear model for νY, νY = βfY, where β ∈ ℝd×r, d ≤ r has rank d and 

fY ∈ ℝr is a known vector-valued function of the response with E(fY) = 0 (see Adragni and 

Cook (2009) for details). The choice of fY can be guided by the p plots of Zj versus Y, j = 1, 

…, p, as described e.g. in Chapter 10 of Cook (1998). For LAD, the sample space SY for a 

continuous Y is divided into H non-overlapping slices S1, …, SH and then modeled based on 

equation (2), where μh = E(Z|Y ∈ Sh) and Δy = var(Z|Y ∈ Sh), h = 1, …, H are the within 

slice moments.

3. Likelihood-based SDR for censored predictors

We present several approaches for applying likelihood-based SDR to censored data and then 

extend the theory and the likelihood framework of Section 2.2 in two ways: (a) we 

accommodate censored predictors directly, and (b) we incorporate variable selection in the 

LAD likelihood via a penalty term.

3.1 Sufficient dimension reduction for censored predictors

As in Section 2, Y denotes the response variable and Z = (Z1, …, Zp)T ∈ ℝp the markers 

(covariates) that relate to Y through equation (2). However, instead of Z, we only observe a 

censored version X = (X1, …, Xp)T, defined component-wise as

X j =

a j if Z j ≤ a j,
Z j if Z j ∈ (a j, b j)
b j if Z j ≥ b j,

(8)
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where aj and bj, denote the known lower and upper limits of detection for marker j = 1, …, p.

Theorem 1—Assume Z and Y are related through model (2) and X are the censored 
observations based on Z defined in (8). If α satisfies (3), i.e. R(Z) = αTZ is the sufficient 
reduction for the regression of Y on Z, then R(X) = αTX is a sufficient reduction for the 
regression of Y on X.

Proof: From Section 2.2, R(Z) = αTZ with α given by (3) is such that Z|(R(Z), Y) does not 

depend on Y, and therefore X|(R(X), Y) does not depend on Y. In fact, for any realization x 
of X, let S(x) be the set of possible values of Z given by (8). Then

f (X = x ∣ R(X) = R(x), Y) = f (Z ∈ S(x) ∣ R(Z) ∈ R(S(x)), Y)
= f (Z ∈ S(x) ∣ R(Z) ∈ R(S(x))) = f (X = x ∣ R(X) = R(x)) .

Following Cook (2007), the above equality implies that R(X) = αTX is a sufficient reduction 

for the regression of Y on X, i.e. the coefficients in the linear combinations of the reduction 

of the censored X are the same as the coefficients of Z, if the latter were observed.

3.2 PFC and LAD for censored predictors

We propose several approaches to estimating the sufficient reduction for censored predictors 

that we compare extensively using the inflammation marker data example and in 

simulations.

PFC and LAD—The simplest approach is to apply standard PFC or LAD to the observed 

X given by (8). Under model (2) for Z, the censored observations X satisfy moment 

conditions that ensure consistent estimation of R(X) = αTX based on LAD and PFC (Cook 

and Forzani, 2009). However, the resulting estimates α̂ are not efficient, as they are no 

longer MLEs.

PFC and LAD with moments computed under censoring—A somewhat improved 

approach is to replace the moment estimates in (7) with those estimated under censoring, 

e.g. using the algorithm proposed by Lee and Scott (2012). We call this approach cmLAD 

(cmPFC) for ”censored moments LAD (PFC)”. It also leads to consistent but not efficient 

estimates α̂.

PFC and LAD applied to data with censored values imputed—We estimated μ̂
y, 

Δ̂y using a censored normal distribution separately in the groups defined by Y and then 

created ten imputed datasets by imputing censored values zio for study subject i from the 

conditional normal distribution zio|zim, with parameters derived from μ̂
y, Δ̂

y. We analyzed 

the imputed data sets using PFC and LAD (”MI-LAD” and ”MI-PFC”).

PFC and LAD likelihood for censored predictors—Here we extend the theory for 

PFC and LAD estimation to censored predictors (cPFC and cLAD) and obtain MLEs of α.
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All coordinates of Z that fall outside the detectable range, ∏ j = 1
p (a j, b j), are censored and 

their exact values are unknown. For a given sample (Yi, Xi), i = 1, …, n, each vector Xi may 

have different censoring patterns. We thus index the censored (missing) and uncensored 

(observed) coordinates by mi and oi, respectively, so that the related random vector Zi can be 

partitioned into Zi = [Zmi
T , Zoi

T ]T, where Zmi
= (Zi

( j), j = 1, …, ∣ mi ∣ ) denotes the censored and 

Zoi
= (Zi

( j), j = 1, …, ∣ oi ∣ ) denotes the uncensored components of Zi. We do not re-arrange 

the vector Zi in this pattern, this representation is used merely for notational convenience. 

The distribution of the observed vector Xi|Yi for sample i, accounting for the censoring, is

f (Xi ∣ Y i) = ∫
𝒳cmi

f (Zoi
, Zmi

∣ Y i)dZmi
= f (Zoi

∣ Y i)∫𝒳cmi

f (Zmi
∣ Zoi

, Y i)dZmi
(9)

where the integration is only over the censored coordinates, and cmi denotes the 

corresponding integration range, cmi
 = Πk∈mi (−∞, ak]I(Zmik=ak)(bk,∞]I(Zmik=bk). To 

estimate α we need to maximize the observed likelihood

Ld(X ∣ Y = y) = ∏
y

∏
i = 1

ny 1
(2π ∣ Δy ∣ )p/2∫𝒳cmi

exp ( − 1
2(ziy − μy)

TΔy
−1(ziy − μy))dZmi

= ∏
y

∏
i = 1

ny ∫
𝒳cmi

Ld(Zi ∣ Y i)dZmi
= ∏

y
∏
i = 1

ny ∫
𝒳cmi

Ld(Zi ∣ Y i)dZmi

(10)

where μy and Δy satisfy conditions (4).

3.3 Estimation of the reduction: the cPFC and cLAD algorithms

To avoid dealing with the integral form of (9), we employ an EM algorithm similar to Lee 

and Scott (2012) to iteratively maximize the auxiliary function

Q(θ ∣ θ(t)) = ∑
y

∑
i = 1

ny
E

Zmiy
∣ Zoiy

, 𝒳cmi
; θ(t)ℓd(Zi ∣ Y i = y), (11)
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where ℓd(Zi|Yi) = log Ld(Zi|Yi) is the joint log-likelihood of the observed and censored 

components of Zi|Yi under the model specified by (7) and 

θ(t) = (α(t), μ(t), νy
(t), D(t), H(t), α(t)TΔy

(t)α(t)) denotes the estimate of θ at iteration t of the 

algorithm. The EM algorithm has the following steps:

Initialization—we start with values 

θ(0) = θncLAD(α(0), μ(0), νy
(0), D(0), H(0), Δ(0), α(0)TΔy

(0)α(0)), obtained by maximizing (7) with 

the first and second moments computed under censoring using the algorithm in Lee and 

Scott (2012).

E-step—For fixed θ(t) the auxiliary function Q(θ|θ(t)) in (11) is given by (7), with the first 

and second sample moments replaced by

z∼y = 1
ny

∑
i = 1

ny
E

Zmiy
∣ Zoiy,, 𝒳cmi

; θ(t){ziy}, (12)

Δ∼y = 1
ny

∑
i = 1

ny
E

Zmiy
∣ Zoiy

, 𝒳cmi
; θ(t){(ziy − z∼y)(ziy − z∼y)

T}, (13)

These expectations are computed following the approach of Lee and Scott (2012) (see 

details in Appendix A in the Supplemental Material).

M-step—To maximize Q(θ|θ(t)) with respect to θ, we partially maximize it sequentially 

with respect to νy, μ, αΔyα, H and D, considering α fixed and then compute α̂. Finding α̂ is 

a Grassmann manifold optimization problem. A Grassmann manifold (d,p) is defined as the 

subspace of ℝp with dimension d ≤ p that corresponds to a hyperplane through the origin 

(Edelman et al., 1999). More specifically, to obtain α̂ we proceed as follows.

Estimating α̂ for cLAD: To find α̂ for cLAD, we maximize the log likelihood function

− np
2 (1 + log 2π) + n

2 log ∣ Pα∑∼Pα ∣0 − n
2 log ∣ ∑∼ ∣ − 1

2 ∑
y

ny log ∣ PαΔ∼yPα ∣0, (14)

over span(α) ∈ (d,p). In (14), Pα = α(αTα)−1αT denotes the projection operator onto 

span(α), |A|0 the product of the non-zero eigenvalues of the positive semi-definite symmetric 

matrix A, and
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Δ∼ = 1
n ∑

y
nyΔ

∼
y and ∑∼ = Δ∼ + M∼ , (15)

where

M∼ = 1
n ∑

y
ny(z∼y − z∼)(z∼y − z∼)T and z∼ = 1

n ∑
y

ny z∼y . (16)

Further details on the M-step and on estimating α are provided in Appendices B and C, 

respectively.

Estimating α̂ for cPFC: To find α̂ for cPFC, i.e. when ΔY = Δ, is much simpler. The last 

term of (14) is replaced by − n
2 log ∣ PαΔ∼Pα ∣0. and an explicit solution is given by span(α) = 

Δ̂−1/2 span(γ), where γ are the first d eigenvectors of Δ̂−1/2 Σ̂Δ̂−1/2.

Once α̂ is obtained, the maximum likelihood estimates for the other parameters are:

Δ∼ = ∑∼−1 + α αTΔ∼α
−1

αT − α αT∑∼α
−1

αT −1
,

Δy = Δ + Δα αTΔ∼α
−1

αT(Δ∼y − Δ)α αTΔ∼α
−1

αTΔ,

∑ = Δ + 1
n ∑

y
ny(μy − μ)(μy − μ)T

μ = 1
n ∑

y
nyz∼y, and μy = μ + Δανy .

After the algorithm has converged, the final estimate θ(T) yields the MLE of the model 

parameters and the reduced predictors are estimated by α̂TX.

3.4 Variable selection

In addition to reducing the dimension of the markers X, it is desirable to identify the 

variables associated with the outcome Y and remove irrelevant and redundant ones when 

computing linear combinations. This is important for etiologic research, as in the lung 

cancer study, to make results more interpretable and facilitate replication and translation of 

any findings to clinical settings. It is also important for prediction purposes, as the accuracy 

of a classifier may be diminished if it includes many noisy variables.

To identify the predictors that are conditionally independent of Y, we follow a proposal by 

Chen et al. (2010) and incorporate a group lasso type penalty (Yuan and Lin, 2006) into the 

log-likelihood (10)
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Ld(X ∣ Y) − λ ∑
j = 1

p
‖α j‖2, (17)

where αj, the jth row of α, corresponds to all the coefficients for the jth predictor Xj, and ||·||

2 denotes the Euclidian norm. This penalty term exploits the non-differentiability of ||αj||2 at 

αj = 0, setting whole rows αj exactly to zero. Thus Xj does not contribute to the projection 

αTX and can be discarded for modeling Y. The sparsity of the solution is determined by the 

tuning parameter λ. Chen et al. (2010) show that the penalty in (17) is coordinate 

independent and has the oracle property.

When the EM algorithm is used for estimation, the penalty term should be added to the 

auxiliary function Q in (11). As choosing an optimal value of λ in each EM iteration is 

computationally challenging, we first estimate the non-regularized parameters for any of the 

likelihood-based methods, and then select variables in an additional step. For the PFC based 

methods this is done following the approach in Chen et al. (2010). For the LAD based 

methods however, optimization of (17) is computationally difficult.We thus find a 

regularized estimator based on a simpler convex approximation to Ld(X|Y) based on a trace 

operator. Let S = log(Δ̂−1/2Σ̂Δ̂−1/2) − n−1 Σy ny log(Δ̂−1/2 Δ̂
y Δ̂−1/2), with Σ̂ and Δ̂

y estimated 

using the non-penalized algorithm for the model of choice (e.g. LAD, mcLAD, or cLAD). It 

can be shown (Cook et al., 2014) that under model (4) the maximizer γ* of the population 

version of the objective function Jd(X|Y) = tr(γTSγ) is the same as the maximizer α* of the 

population version of (10), in the sense that span(α*) ≡ Δ−1/2span(γ*), and Ld(X|Y)|α* = 

Jd(X|Y)|γ*, where Δ = E(Δy). The solution γ* that maximizes tr(γTSγ) is easily computed as 

it is given by the d leading eigenvectors of S. Though the equivalence between (14) and the 

trace approximation holds in the population, in our experience in any finite sample the trace-

based estimates γ̂ are indeed very close to α̂. Thus, instead of (17) we maximize

Jd(X ∣ Y) − λ ∑
j = 1

p
‖(Δ−1/2γ) j‖2 = Jd(X ∣ Y) − ρ(V), (18)

with V = Δ̂−1/2γ.

The solution to (18) is computed using an iterative procedure based on quadratic local 

approximations of ρ(V) described in detail in Chen et al. (2010). In each iteration irrelevant 

variables are removed, until the subspace spanned by γ(t) does not change from one iteration 

to the next. In the initial step, γ(0), the non-penalized solution for (14) serves as a starting 

value and MLE of the covariance matrices estimated by the chosen reduction method (e.g. 

LAD, cmLAD, cLAD) are used to compute S. In the t-th iteration we use that the matrix 

derivative of ∂ρ/∂V is approximated around Ṽ(t) = Δ̂−1/2γ(t) by 
∂ρ
∂V ≈ diag(1/‖v∼1

(t)‖, …, 1/‖v∼p
(t)‖)V: = G(t)V, where vi denotes the i-th row vector of V, and 
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thus after a second order Taylor expansion, ρ(V) ≈ 1
2 tr{VTG(t)V} + C0, where the constant C0 

does not depend on V. Finding the minimizer of (18) in the k-th step of the iteration can thus 

be done by finding

γ (t + 1) = arg min γT(1
2Δ−1/2G(t)Δ−1/2 − S)γ . (19)

The iteration is stopped when the angle between the subspace spanned by γ(t) and γ(t−1) is 

less than a given tolerance level ε. The regularization parameter λ in (18) is chosen using a 

BIC type criterion, following (Chen et al., 2010).

Algorithm 1 (Supplemental Material) summarizes the procedure to select the subset of 

variables that are truly associated with the outcome Y.

4. Data Example: Analysis of Inflammation Markers

We illustrate the methods using data from a lung cancer study conducted to independently 

replicate findings from Shiels et al. (2013), and to identify further associations of serum 

inflammation markers with lung cancer risk (Shiels et al., 2015). In addition to providing 

biologic insights into lung carcinogenesis, assessing the utility of an ”inflammation score” 

based on marker combinations for risk stratification is of interest.

Study subjects were 526 lung cancer cases diagnosed in the Prostate, Lung, Colorectal and 

Ovarian Cancer Screening Trial and 625 matched controls (Shiels et al., 2015). After 

excluding 11 markers that performed poorly in Shiels et al. (2013), levels of 51 

inflammation markers were measured in serum (Supplemental Table 1). We excluded 4 

markers with poor performance characteristics, leaving 47 markers with 0–75% censoring 

for analysis.

We first estimated associations of the markers with binary case-control status, Y = 0 and Y = 

1. Information on all 47 markers was available for 509 cases and 606 controls. We also 

assessed marker associations with smoking status in three categories (never, former, current; 

Y = 0, 1, 2) in controls, and we used data on 146 never, 247 former and 213 current smokers.

For each outcome, we estimated the sufficient reduction using cLAD and cPFC, by applying 

LAD and PFC directly to the data ignoring the censoring, by cmLAD and cmPCF, with 

moments computed under censoring and based on imputed data (MI-LAD and MI-PFC) (see 

Section 3.2) with the intrinsic dimension d inferred using AIC.

4.1 Results for marker selection

For the binary outcome (lung cancer status), the estimated dimension of the sufficient 

reduction was d = 6 for all LAD based methods, and d = 1 for all PFC based approaches. 

Note, however, that for binary Y PFC methods can identify at most a single dimension. 

Table 1 shows the markers selected by each method. cLAD selected ten markers, LAD and 

MI-LAD seven, and cmLAD selected eight markers. Among them, five markers were 
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identified by all LAD based methods (Table 1). On the other hand, cPFC and cmPFC 

selected two markers, while PFC and MI-PFC selected the same two and one additional 

marker. The two markers selected by cPCF were also identified by cLAD. Several markers, 

including CXCL9MIG, CRP and IL1RA, that were associated with lung cancer risk in 

Shiels et al. (2013) were also identified in this replication study by some or all of our 

methods. All methods selected CXCL9MIG. With the exception of LAD and MI-LAD all 

methods identified CRP. However, only cLAD and cmLAD identified IL1RA as an 

associated marker.

For the smoking outcome, we estimated d̂ = 8 for cLAD and cmLAD, and d = 9 for LAD 

and MI-LAD, while all PFC based methods estimated d̂ = 2. cLAD identified ten markers, 

LAD thirteen, cmLAD eleven and MI-LAD twelve. Seven markers were selected by all 

LAD based methods. cPFC, cmPFC and MI-PFC identified eight markers, and PFC seven 

and the methods had six selected markers in common. Of the ten markers selected by cLAD, 

six were also selected by cPCF. All methods identified IL7, IP10, SAP, TARC and TNFβ.

As CRP and CXCL9MIG were only associated with lung cancer risk but not smoking, it 

strengthes the evidence for their etiologic role in lung cancer development rather than 

through inflammation caused by smoking.

4.2 Predictive performance

To assess the utility of an ”inflammation score” for lung cancer risk prediction, we studied 

the performance of a prediction model based on the d linear predictors α̂TX, where α̂ was 

estimated by the various methods. The prediction rules ψ(αT̂X) we used were quadratic 

discriminant analysis (QDA) and polytomous or binary logistic regression where the d linear 

combinations were included as main effects. The predictive performance of the proposed 

methods was also compared to that of SAVE, a standard second moment-based IR method 

(Cook and Weisberg, 1991). SAVE estimates were computed both using the measured 

predictors (SAVE) and using moments computed under censoring (cmSAVE). For the LAD 

based methods and SAVE we used fixed d = 1, 2 and d = 5 and for the PFC based methods 

we let d = 1 or d = 1, 2 (for the smoking outcome), and the optimal d selected by AIC. We 

also assessed the performance of a classifier that included all X directly in QDA or logistic 

models and after multiple imputation using moment estimates computed for censored data as 

in Lee and Scott (2012).

To quantify predictive performance, we estimated the prediction error EP[I{Y ≠ ψ(αT̂X)}], 

based on twenty-fold cross validation. For the binary outcome we also computed the AUC, 

the area under the receiver operating characteristic (ROC) curve, that can be expressed as the 

probability that the scalar predictive score for a randomly selected case exceeds that for a 

randomly selected control (see Pepe (2004), page 67). Of two prediction models the one 

with the larger AUC has ”better” predictive performance. The predicted probability P̂(Y = 1|

X) obtained with each prediction rule was used as a score in the AUC computation.

For binary Y, the prediction error for cLAD was 0.25 for QDA with the optimal d̂ = 6, and 

0.35 for logistic regression with the d̂ = 6; for categorical Y it was 0.26 for QDA with d̂ = 6 

and 0.31 for logistic regression. cmLAD had only slightly worse predictive performance 
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than cLAD. The prediction errors for LAD with the optimal d and cPCF were similar for 

QDA for binary Y and much higher than other LAD based methods (0.41 for LAD and 0.40 

for cPFC). For logistic regression the differences between methods were somewhat less 

pronounced, with prediction errors for LAD based methods ranging from 0.35 for cLAD to 

0.40 for LAD and from 039 for cPFC to 0..43 for cmPFC (Table 2). Using all the predictors 

directly in QDA resulted in higher prediction errors than using the predictors after 

imputation, while logistic regression yielded similar predictive performance. This difference 

was most pronounced for binary Y with QDA as the classifier, where the prediction error 

using the measured X was 0.60, while it was 0.47 after imputation of censored values. 

Similar patterns were observed for the categorical smoking outcome, however, the difference 

in predictive performance between the LAD or PFC based methods was less pronounced 

than for binary Y. Again, cLAD with estimated dimension and QDA as the classifier had the 

lowest prediction error (0.26) of all methods. All likelihood based dimension reduction 

methods led to better predictive performance than SAVE based methods or using the 

predictors.

cLAD had the highest AUC= 0.676, i.e. the best discriminatory performance, for d̂ = 6, 

when the α̂TX predictors were used in a logistic regression model followed by cPFC with an 

AUC=0.651 (Table 6). When QDA was used as the classifier, cPFC had the highest AUC, 

0.644, and cLAD with d̂ = 6 resulted in the second highest value, AUC = 0.641. While for 

all PFC based methods the AUC was between 0.60 and 0.65 for d = 1, LAD based methods 

had noticeably improved discriminatory performance when more dimensions were used, e.g. 

for cLAD with QDA and d = 2 AUC=0.591, while it was 0.631 for the optimal d̂ = 6. Both 

SAVE, applied to the censored predictors directly or cmSAVE had worse performance than 

using the censored predictors directly in QDA or logistic regression or after imputing X. 

Overall, using α̂X in logistic models produced higher AUC values than using QDA as the 

classifier. (Table 3)

5. Simulation study

To study the impact of the number of predictors p, the dimension of the central subspace d, 

the amount of censoring (%C) and the sample size, ny, in each group defined by Y on the 

performance of the methods, we conducted simulations based on censored data generated 

from normal populations for binary and categorical Y. The mean and covariance parameters 

depend on Y through (4) and were chosen to yield correlations between predictors ranging 

from 0.2 to 0.35, similar to the real data example. We also assessed robustness of the 

methods to violations of normality.

We let p = 10, 20 and 30, d = 1 and d = 3, and ny = 100 and ny = 500. For each setting we 

assumed 10% and 30% censoring for all markers. All results in the tables are means over 

200 repetitions based on the same setting. For all calculations d was assumed to be known.

Similar to the data example, we compared the performance of cLAD and cPFC to that of 

applying standard LAD, PFC and SAVE naively to the censored measurements, and that of 

cmLAD, cmPFC, and cmSAVE that use moments computed accounting for the censoring.
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5.1 Accuracy of estimates of α and the moments

First we assessed how well α and the moments in each group defined by Y are estimated. As 

the distance between the true and estimated spaces span(α) and span(α̂) (e.g. Li and Wang, 

2007) we used ||Pα̂ − Pα||F, where ||.|| is the Frobenius norm and Pα is the orthogonal 

projection onto span(α). The differences in the estimated moments from the truth are 

measured by the Euclidean and Frobenius norms, respectively as ||μ̂
Y − μY||/||μY||, ||Δ̂

Y − 

ΔY||F/||ΔY||F.

Table 4 shows results for ny = 100 with p = 20, and for ny = 500 with p = 30 markers with 

true dimension d = 3 when Δ0 ≠ Δ1. cLAD was substantially better in estimating α and all 

moments than all other methods, including cPFC. The improvement was 35% compared to 

cPFC even for ny = 100 with p = 20. The difference in performance between cLAD and 

cPFC was more pronounced for larger p and larger values of n/p. The percent of censoring 

had little impact on these findings, with only slightly better results obtained for 10% 

censoring for all methods than for 30% censoring. The improvement in estimating α using 

cLAD compared to LAD was 40% or greater for all settings, while the improvement in 

estimating α using cPFC instead of PFC was slightly lower at 35 – 40%. The improvement 

in estimation based on cLAD compared to cmLAD was around 20%. Applying SAVE to the 

censored predictors yielded worse results than applying any other method, while cmSAVE 

resulted in better performance than LAD and PFC directly applied to X. As findings were 

qualitatively similar when d = 1, these results are presented in Supplemental Tables.

When ΔY = Δ, as expected, cPFC performed somewhat better in estimating α and the 

moments of the distributions than cLAD. Otherwise the performance of the methods was 

similar to those in Table 6, and are presented in Supplemental Tables.

5.2 Predictor selection

Here we first generated data for binary Y from multivariate normal models with Δ0 ≠ Δ1. We 

then also assessed the impact of violations to normality by generating Z|Y from a mixture, 

0.85N(μya, Δya) + 0.15N(μyb, Δyb). The moments (μya, Δya) were the same as for the normal 

model, and μyb = μya + τ1, to perturb the right tails of the corresponding marginals. The 

covariance matrices Δyb were chosen to have the same correlations as Δya, but with smaller 

variances. Only left censoring was used in this scenario.

To study the ability of regularized versions of cLAD, LAD, cmLAD, cPFC, PFC and 

cmPFC to identify predictors truly associated with the outcome we computed the average 

number of true positives (TPs) as

TP = 1
I ∑

i = 1

I ∑k = 1
p I(Xik correctly selected)

∑k = 1
p I(Xik selected)

,

where I = 500 was the number of repetitions using the same setting.
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cLAD and cmLAD followed by cPFC had the highest TP rate among all methods (Table 5). 

Even with 30% censoring, TP was greater than 84%, 78%, 77% and 75% for cLAD, 

cmLAD, cPFC and cmPFC, respectively. LAD and had a somewhat higher TP than PFC, but 

both were lower than 75% for all settings we studied. For all methods the TP rate decreased 

as censoring increased. For cLAD the TP was reduced by 5% when 30% of the data were 

censored compared to 10% for all choices of ny, p and d.

While the TP rates were slightly lower when Z was generated from a mixture of normal 

distributions, the overall pattern of performance of the methods was similar to the normal 

settings. However, censoring had a stronger impact, e.g. for ny = 500, p = 30 and d = 1 with 

10% censoring the TP rate for cLAD was 0.808, while it was 0.781 and 0.759 for 20% and 

30% censoring, respectively. The reduction in performance as the percent of censoring 

increased was less pronounced for cLAD and cmLAD than for LAD.

5.3 Predictive performance

We assessed the predictive performance of the proposed methods for binary and categorical 

Y for ny = 500, p = 30, d = 2 and 30% censoring. The basis matrix α was obtained by letting 

α∼ = (α∼1
T 0d × 10)T, with the entries in α1̃ randomly sampled from {0, 1} and then applying 

orthonormalization. We used cLAD, LAD, cmLAD, cPFC, PFC and cmPFC with 

regularization for variable selection, and QDA and polytomous or binary logistic regression 

as prediction rules, with the d linear combinations included as main effects. The prediction 

error was estimated using five-fold cross-validation. We also computed the prediction error 

for an “oracle” procedure, using the true α and uncensored predictors Z.

First we generated data from normal distributions with means and covariances given in (4), 

with a different covariance matrix for each outcome group. For the binary outcome Y, the 

prediction error for the oracle procedure was 0.091 for both QDA and logistic regression 

(Table 6). Using cLAD resulted in only slightly higher prediction errors, 0.121 for QDA and 

0.097 for logistic regression, followed by cmLAD and cPFC. LAD and PFC had prediction 

errors around 20% for both QDA and logistic regression for binary outcomes. The 

performance of all methods was slightly worse for categorical outcomes for all methods. 

However, the improvement in prediction based on cLAD was more pronounced than for 

binary Y. E.g. cLAD with QDA had a 56% and 34% better prediction error compared to 

LAD and cmLAD with QDA, respectively. For categorical Y, using polytomous logistic 

regression models resulted in a slightly greater improvement in prediction over QDA than 

seen for binary Y. The performance of methods in estimation of α̂ corresponded closely to 

the prediction performance, with cLAD providing the best estimation of the subspace, 

followed by cmLAD, cPFC, cmPFC then LAD and PFC.

We also assessed the performance of the methods when Z|Y were generated from a mixture 

0.85N(μya, Δya) + 0.15N(μyb, Δyb), with parameters set as in Section 5.2 and only left 

censoring. The “oracle” results were obtained by using the true α and the uncensored 

predictors Z for classification, but assuming that Z|Y arose from a single normal density.
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In this setting all methods had higher prediction errors than for normal data, including the 

oracle, however, the relative performance of the methods was similar to the normal case for 

the prediction error and also for the estimation of α (Table 6). cLAD had a 30% higher rate 

than the oracle, followed by cmLAD, cPFC, cmPFC and LAD and PFC.

6. Discussion

In molecular epidemiology, measurements of biomarkers often fall outside an assay’s lower 

or upper limits of detection (LODs) due to technological limitations of the measurement 

process, leading to censored observations. Numerous approaches are available to model 

single censored measurements (see, e.g. Dinse et al., 2014). When the number of markers is 

small, multiple imputation has been proposed (Lee et al., 2012), but in addition to the 

computational burden, procedures for variable selection for imputed data are limited.

Here we extended likelihood-based sufficient dimension reduction methods, particularly 

Principal Fitted Components (PFC, Cook and Forzani, 2008) and Likelihood Acquired 

Directions (LAD, Cook and Forzani, 2009), to regression or classification with censored 

predictors. We compared the performance of the full likelihood approaches (cLAD, cPFC), 

to applying LAD/PFC directly to the censored data without further accounting for the 

censoring, to cmLAD/cmPFC, that use moments estimated under censoring and to MI-

LAD/MI-PFC that applied LAD/PFC after imputing censored values. While all methods 

provide consistent estimates of the sufficient reduction, as moment conditions are satisfied 

even for the censored data, only cLAD and cPFC are fully efficient. We also extended the 

coordinate-independent sparse estimation (CISE) algorithm proposed by Chen et al. (2010) 

to cLAD to combine dimension reduction with variable selection. Our method thus allows to 

parsimoniously describe the data structure and discover scientifically interesting features.

When we analyzed inflammation markers in relation to risk of lung cancer and smoking 

status, all LAD-based approaches resulted in fairly high estimates of dimension d, which 

was six or more for case-control status, and 8 or higher for the smoking outcome. This 

indicates, not surprisingly, that the relationship between the markers and outcomes is 

complex, and simple modeling may result in a loss of power to detect associations and for 

prediction. For binary case-control status, the AUC for cLAD was approximately 7% higher 

than the AUC for a score that was computed using all markers after multiple imputations and 

6% higher than the AUC based on a score from LAD applied directly to the censored 

predictors, which is a substantial improvement in discriminatory performance. This is an 

important finding, as multiple imputation is a popular approach for dealing with missing 

data.

In our simulations the improvement in estimating the central subspace and the moments of 

the distributions using cLAD was substantial in all settings that had different within-group 

covariance matrices. The small gain in using cPFC over cLAD when the within-group 

covariance matrices were the same does not warrant the possible trade off in robustness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 6

Prediction error for cLAD, LAD, cmLAD, cPFC, PFC and cmPFC based on five-fold cross validation

outcome Y prediction error based on

||Pα − Pα̂||/||Pα||QDA logistic regression

Normal data

binary cLAD .121 .097 .458

LAD .194 .173 .816

cmLAD .138 .132 .569

cPFC .153 .152 .653

PFC .218 .211 .937

cmPFC .171 .169 .711

oracle .091 .091

categorical cLAD .126 .112 .394

LAD .287 .258 .843

cmLAD .184 .169 .515

cPFC .183 .167 .582

PFC .314 .288 .901

cmPFC .237 .225 .744

oracle .108 .109

Non-normal data (mixture of normals)

binary cLAD .219 .197 .541

LAD .272 .251 .896

cmLAD .246 .228 .517

cPFC .236 .224 .602

PFC .291 .286 .958

cmPFC .262 .253 .863

oracle .167 .149

categorical cLAD .206 .183 .466

LAD .273 .249 .887

cmLAD .231 .214 .601

cPFC .241 .216 .624

PFC .280 .266 .903

cmPFC .256 .228 .859

oracle .158 .126
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