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Application of the differential method to uniaxial gratings
with an infinite number of refraction channels: Scalar case
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Abstract

The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves
at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric–magnetic
medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented
and compared with those obtained by means of the Rayleigh method, showing that both the differential method
and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted
Floquet harmonics.
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1. Introduction

This communication is in the context of materi-
als exhibiting negative-phase-velocity characteris-
tics [1,2]. In such materials, the angle between
the phase velocity vector and the time-averaged
Poynting vector is obtuse [3], thereby leading to
interesting and exploitable effects [4]. Our focus
is on surface-relief gratings made of materials with
anisotropic dielectric and magnetic properties.
ed.

mailto:rdep@df.uba.ar 
mailto:mei@ 
mailto:akhlesh@psu.edu 


-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

n=-1 (II)

 p
 s

n=1 (I)

k y/k
0

k
x
/k

0

R.A. Depine et al. / Optics Communications 258 (2006) 90–96 91
2. Boundary value problem

Let us consider the diffraction of plane waves
at a periodically corrugated boundary between vac-
uum and a linear, homogeneous, uniaxial, dielectric–
magnetic medium. The relative permeability and
permittivity tensors of the diffracting medium share
the same optic axis denoted by the unit vector ĉ,
and their four eigenvalues are denoted by �^,i and
l^,i, where the subscript ^ indicates the element
of the tensor in the plane perpendicular to the optic
axis and the subscript i corresponds to the element
along it. We are interested in both constitutive ten-
sors being indefinite, in the sense that they have po-
sitive and negative eigenvalues (i.e., �^�i < 0 and
l^li < 0). Planewave propagation is then charac-
terized by hyperbolic dispersion equations, which
leads to the refraction of an incident plane wave
into an infinite set of propagating Floquet harmon-
ics [5]. Materials with such properties are rapidly
becoming possible [6,7] and can be expected to play
a significant role in flat lenses made with metama-
terials [8].

In order to understand their unusual charac-
teristics, let us begin with a Cartesian coordinate
system, chosen so that the x- and z-axis are per-
pendicular and parallel respectively to the grat-
ing grooves. A grating with sinusoidal profile
g(x) = 0.5hcos(2px/d) (h is the groove depth
and d is the grating period) is illuminated from
the vacuous side by either an s or a p polarized
plane wave, with its wavevector lying on the
mean section of the grating (xy plane). The optic
axis ĉ ¼ ðcx; cy ; czÞ lies in the incidence plane
(cz = 0), forming an angle hc with the y-axis;
hence, the diffracted plane waves have the same
linear polarization state as the incident plane
wave. An exp(�ixt) time-dependence is as-
sumed, with x as the angular frequency. The
vacuum wavenumber and wavelength are de-
noted by k0 and k0.
Fig. 1. Reciprocal space map for �^ =«2.1, �i = ±1.9, l^ =
±1.3 and li =«1.6 (Cases I (upper sign) and II (lower sign))
and for hc = 60�. kx and ky denote, respectively, the x and y com-
ponent of the wavevectors. The horizontal gray, doubled-arrow
indicates the value of k0 = 1.5d and the black arrows indicate the
incident and the specularly reflected wavevectors. Wavevectors
for n = 1 for Case I and n = �1 for Case II, both corresponding
to orders of the electric type (p polarization), are plotted.
3. Dispersion equations

The dispersion equations for the Floquet har-
monic of order n 2 Z in the diffracting medium
are as follows [9]:
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Eqs. (1) and (2) hold for waves of the electric and
magnetic types, respectively, and need to be solved
for bðjÞ

n (j = E, M); whereas an ¼ k0 sin h0 þ n 2p
d

with h0 2 [�p/2, p/2] being the angle between the
incident wavevector and the y-axis.

For illustration, let us consider the two follow-
ing sets of constitutive scalars:

� Case I. �^ = �2.1, �i = 1.9, l^ = 1.3 and
li = �1.6;

� Case II. �^ = 2.1, �i = �1.9, l^ = �1.3 and
li = 1.6.

The dispersion Eqs. (1) and (2) then describe
hyperbolas, as shown in Fig. 1 for k0 = 1.5d,
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wherein we have plotted the reciprocal space maps
for both cases. The circle refers to Floquet harmon-
ics in the medium of incidence, the inner hyperbolas
correspond to harmonics of the electric type and the
outer ones correspond to harmonics of themagnetic
type in the diffracting medium. Both bðEÞ

n and bðMÞ
n

are real-valued 8n 2 Z. Thus, in contrast to the case
of gratings made of conventional materials, for
which the refracted field consists of a few propagat-
ing and the remaining evanescent harmonics, grat-
ings of materials with indefinite constitutive
tensors may refract a plane wave into an infinite
number of propagating harmonics. This unusual
feature requires that close attention be paid when
available theoretical methods are applied for grat-
ings of these kinds of materials.
4. Differential method

For gratings made of isotropic materials exhib-
iting negative-phase-velocity characteristics, sev-
eral commonplace grating methods have been
applied. These methods include the perturbation
method [10], the Rayleigh method [11], and the dif-
ferential method [12,13]. The dispersion equations
were elliptic, and all methods performed as well as
for gratings made of isotropic materials with posi-
tive-phase-velocity characteristics.

Turning our attention to anisotropic gratings
exhibiting negative refraction, we commenced with
an application of the Rayleigh method [5].
Although it yielded satisfactory results for very
shallow sinusoidal gratings, the method com-
pletely failed for deeper gratings (even within the
expected validity range of the Rayleigh hypothe-
sis), giving non-convergent results. If this lack of
convergence were related to the existence of an
infinite number of refraction channels, the prob-
lem would have to be shared by other available
theoretical methods for gratings. Therefore, we
decided to investigate the applicability of the
widely used differential method of Chandezon
et al. [14–18], also known as the C method.

For the grating configuration chosen, the dif-
fraction of s and p plane waves can be considered
separately. Starting from the Maxwell equations,
and using the change of variables v = x and
u = y � a(x), we obtain a pair of differential
equations
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where _a=da/dv, F = Ez (F = Hz) for s (p) polariza-
tion, and F 0 ” �ioF/ou. Whereas
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for p polarization, the expressions for Aj (j = 0, 3)
for s polarization are obtained from Eq. (4) after
substituting �i ! li and �^ ! l^. Parenthetically,
Eq. (3) reduces to Eq. (8) of Li et al. [18] when
�^ = �i and l^ = li. Subsequent steps of the differ-
ential method are skipped as they are the same as
for isotropic gratings [14,18]. Most notably, one
has to restrict |n| 6 N for computations.
5. Numerical results

Numerical results with the differential and the
Rayleigh methods were first compared for
�^ =«2.1, �i = ±1.9, l^ = ±1.3, li =«1.6, h/d =
0.1, k0 = 1.5d, and h0 = 27� [5]. Tables 1 (for
ĉ ¼ x̂) and 2 (for ĉ ¼ ŷ) show the computed reflec-
tion and refraction efficiencies. We used Floquet
harmonics of orders |n| 6 11, which sufficed to en-
sure that the principle of conservation of energy
was satisfied to an error of 1 ppm. No significant
difference between the results from the two meth-
ods was observed.

Both tables show that the zeroth-order (i.e., spec-
ular) harmonic (refracted in Table 1 or reflected in
Table 2) carries a large part of the energy incident
onto the grating whereas the higher-order efficien-
cies are small, a fact that ensures convergence,



Table 1
Reflection (r) and refraction (t) efficiencies for a sinusoidal grating for both linear polarization states of the incident plane wave (s and
p); ĉ ¼ x̂, �^ =«2.1, �i = ±1.9, l^ = ±1.3, li =«1.6, the upper (lower) sign corresponds to Case I (II); h/d = 0.1, k0 = 1.5d and
h0 = 27�. The differential method was used with |n| 6 11

Efficiency s (I) p (I) s (II) p (II)

r0 0.1337 · 10�1 0.1505 · 10�3 0.1929 · 10�1 0.1355 · 10�2

t�2 0.3427 · 10�2 0.3465 · 10�3 0.4381 · 10�4 0.3215 · 10�2

t�1 0.6386 · 10�1 0.2394 · 10�2 0.8579 · 10�3 0.7690 · 10�1

t0 0.8313 0.9821 0.9573 0.8475
t1 0.8052 · 10�1 0.1443 · 10�1 0.2139 · 10�1 0.6632 · 10�1

t2 0.6416 · 10�2 0.4874 · 10�3 0.1050 · 10�2 0.4164 · 10�2

Table 2
Same as Table 1, but for ĉ ¼ ŷ

Efficiency s (I) p (I) s (II) p (II)

r0 0.9815 0.9526 0.9729 0.9626
t�2 0.3074 · 10�4 0.7550 · 10�3 0.1751 · 10�3 0.1163 · 10�3

t�1 0 0 0 0
t0 0 0 0 0
t1 0.1624 · 10�1 0.4403 · 10�1 0.2633 · 10�1 0.3375 · 10�1

t2 0.2045 · 10�2 0.2226 · 10�2 0.5720 · 10�3 0.3068 · 10�2

1 The quantity indicated as PC in Tables 4–7 should equal
unity, if the principle of conservation of energy is satisfied. The
greater the value of |1 � PC|, the less satisfactory are the
computed results.
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although there is an infinite set of refracted harmon-
ics available. Furthermore, the specularly refracted
orders of both types are of the evanescent kind,
when ĉ ¼ ŷ. Moreover, for the parameters chosen
in our example, the order n = �1 of the magnetic
or of the electric type (depending on the polariza-
tion of the incident wave) is also evanescent.

When the corrugation depth was increased to
h/d = 0.2, we were unable to obtain convergent re-
sults, thereby confirming that the lack of conver-
gence, already observed for the Rayleigh method,
is also present when the differential method is
applied.

We then examined a slightly different situation
in which an infinite number of refracted harmonics
propagate in the diffracting medium for s polariza-
tion, but all refracted orders are evanescent
(b2

n < 0 8n 2 Z) for p polarization. The constitu-
tive parameters for this example are �^ = �2.1,
�i = �1.9, l^ = 1.3, li = �1.6; furthermore, ĉ ¼ ŷ
and k0 = 1.1d. As for our previous examples, the
differential method performs well for shallow grat-
ings but is inadequate for deep gratings for s polar-
ization. On the other hand, for p polarization,
results converge satisfactorily, even for gratings
with h/d up to 0.3, as can be deduced from Table
3. These results indicate the connection between
the lack of convergence and the existence of an
infinite set of propagating Floquet harmonics in
the diffracting medium.

For further investigation, we reoriented the
optic axis to hc = 60�, the other parameters
remaining the same as for Table 1. For both Cases
I and II, we found that the differential method
does not converge for h/d > 0.05. Results for
h/d = 0.05 are presented in Tables 4–7. For p-
polarized incidence, the convergence is very good
for both Cases I and II (Tables 4 and 5). For s-
polarized incidence, the principle of conservation
of energy1 is poorly satisfied for low values of N
but is not satisfied as N is increased, although
the efficiencies of the lower-order harmonics seem
to converge. For Case II, despite the satisfaction of
the principle of conservation of energy, the effi-
ciencies of the higher-order harmonics diverge



Table 6
Reflection (r) and refraction (t) efficiencies for a sinusoidal grating with h/d = 0.05 for Cases I and II and for a s-polarized incident
plane wave. Several values of N are considered. Other parameters are h0 = 27�, hc = 60� and k0 = 1.5d

Case Efficiency N = 7 N = 9 N = 11 N = 13 N = 15

I r0 0.5537 · 10�2 0.5538 · 10�2 0.5538 · 10�2 (*) (*)
t�2 0.1081 · 10�2 0.1084 · 10�2 0.1085 · 10�2

t�1 0.8720 · 10�2 0.8706 · 10�2 0.8704 · 10�2

t0 0.8759 0.8760 0.8760
t1 0.8320 · 10�1 0.7819 · 10�1 0.7866 · 10�1

PC 1.0636 1.0790 1.1121

II r0 0.2622 · 10�2 0.2622 · 10�2 0.2622 · 10�2 0.2622 · 10�2 0.2622 · 10�2

t�3 0.1509 · 10�2 0.1405 · 10�3 0.3417 · 10�3 0.1717 · 10�3 0.1979 · 10�3

t�2 0.4606 · 10�3 0.8343 · 10�3 0.7381 · 10�3 0.7489 · 10�3 0.7478 · 10�3

t�1 0.7260 · 10�2 0.7201 · 10�2 0.7204 · 10�2 0.7203 · 10�2 0.7203 · 10�2

t0 0.9847 0.9847 0.9847 0.9847 0.9847
t1 0.4430 · 10�2 0.4428 · 10�2 0.4428 · 10�2 0.4428 · 10�2 0.4428 · 10�2

PC 1.0009 1.0010 1.0013 1.0019 1.0033

(*) Not shown since the differential method fails to give acceptable results.

Table 3
Reflection efficiencies for a sinusoidal grating with different values of h/d illuminated by a p-polarized plane wave, when h0 = 27�, 49�
and 73�; �^ = �2.1, �i = �1.9, l^ = 1.3, li = �1.6, ĉ ¼ ŷ and k0 = 1.1d. The differential method was used with |n| 6 11

h0 Efficiency h/d = 0.05 h/d = 0.1 h/d = 0.2 h/d = 0.3

27� r1 0.4128 · 10�1 0.1966 0.1571 0.7824
r0 0.9587 0.8034 0.8429 0.2176

49� r1 0.2854 · 10�1 0.6670 · 10�1 0.4695 · 10�1 0.2515
r0 0.9715 0.9333 0.9530 0.7485

73� r1 0.1803 · 10�1 0.6595 · 10�1 0.1563 0.3767 · 10�1

r0 0.9820 0.9341 0.8437 0.9623

Table 4
Reflection (r) and refraction (t) efficiencies for a sinusoidal grating with h/d = 0.05 for Cases I and II and for a p-polarized incident
plane wave. Other parameters are h0 = 27�, hc = 60� and k0 = 1.5d; N = 9 for Case I and N = 21 for Case II

Case r0 t�1 t0 t1 PC

I 0.2693 · 10�1 0.1221 · 10�2 0.9687 0.3119 · 10�2 1.0000
II 0.3284 · 10�1 0.1313 · 10�1 0.8926 0.5189 · 10�1 1.0001

Table 5
Same as Table 4, but for h0 = 49�

Case r0 t�1 t0 t1 PC

I 0.1438 · 10�2 0.3632 · 10�3 0.9954 0.2528 · 10�2 1.0000
II 0.5911 · 10�3 0.2974 · 10�1 0.8816 0.6919 · 10�1 1.0002
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Table 7
Same as Table 6, but for h0 = 49�. Results for Case II alone are presented

Efficiency N = 7 N = 9 N = 11 N = 13 N = 15

r0 0.2633 · 10�1 0.2633 · 10�1 0.2633 · 10�1 0.2633 · 10�1 0.2633 · 10�1

t�3 0.2413 · 10�3 0.2125 · 10�4 0.5522 · 10�4 0.3322 · 10�4 0.3649 · 10�4

t�2 0.1083 · 10�3 0.1695 · 10�3 0.1569 · 10�3 0.1581 · 10�3 0.1580 · 10�3

t�1 0.2317 · 10�2 0.2309 · 10�2 0.2309 · 10�2 0.2309 · 10�2 0.2309 · 10�2

t0 0.9682 0.9682 0.9682 0.9682 0.9682
t1 0.2876 · 10�2 0.2874 · 10�2 0.2874 · 10�2 0.2874 · 10�2 0.2874 · 10�2

PC 1.0001 1.0001 1.0002 1.0003 1.0004
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(Tables 6 and 7). These results show that the differ-
ential method becomes computationally unstable.

Finally, in Fig. 2, we show plots of the reflection
and refraction efficiencies as functions of the angle
of incidence for Cases I and II, when h/d = 0.05
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6. Concluding remarks

From our studies, we concluded that the appli-
cation of the differential method can also lead to
non-convergent results for gratings made of mate-
rials characterized by indefinite constitutive ten-
sors. The lack of convergence can be attributed
to the existence of an infinite number of propagat-
ing harmonics refracted into the grating medium – a
feature that, in principle, would limit the applica-
bility of all theoretical methods commonly used
nowadays for gratings. Expecting that the applica-
tion of a general computational technique, such as
the finite-difference-time-domain method [19], may
be more successful than of specialized grating
methods, we have commenced the next phase of
our research in this emerging area.
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