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Abstract. Generalized argumentation frameworks relate formulae in classical
logic to arguments based on the Dung’s classic framework. The main purpose of
the generalization is to provide a theory capable of reasoning (following argu-
mentation technics) about inconsistent knowledge bases (KB) expressed in FOL
fragments. Consequently, the notion of argument is relatedto a single formula in
the KB. This allows to share the same primitive elements fromboth, the frame-
work (arguments) and, the KB (formulae). A framework with such features would
not only allow to manage a wide range of knowledge representation languages,
but also to cope with the dynamics of knowledge in a straightforward manner.

1 Introduction

The formalism studied in this work is based on the widely accepted Dung’s argumenta-
tion framework (AF) [1]. An AF is deemed as abstract since the language used to define
arguments remains unspecified, thus, arguments in anAF are treated as “black boxes” of
knowledge. In this work we go one step further into a not-so-abstract form of argumen-
tation by proposing an argument languageArgs in order to provide some structure to
the notion of arguments while keeping them abstract. Intuitively, anargumentmay be
seen asan indivisible piece of knowledge inferring a claim from a set of premises. Since
claims and premises are distinguishable entities of any argument, we will allow both to
be expressed through different sublanguages. The proposedargument languageArgs
is thus characterized through the interrelation between its inner components. Assum-
ing arguments specified throughArgs would bring about a highly versatile framework
given that different knowledge representation languages could be handled through it.
But consequently, some basic elements of the argumentationmachinery should be ac-
commodated, giving rise to a new kind of abstract argumentation frameworks identified
as generalized (GenAF). The first approach to aGenAF in [2] was inspired by [3,4].

The GenAF here proposed aims at reasoning about inconsistent knowledge bases
(KB) expressed through some fragment of first order logic (FOL). Consequently,Args
will be reified to the restriction imposed to the FOL KB. Thus,the maximum expres-
sive power of aGenAF is imposed by restricting the inner components ofArgs to be



bounded to some logicLκ, with κ ∈ N0
1. Formulae inLκ are those of FOL that can be

built with the help of predicate symbols with arity≤ κ, including equality and constant
symbols, but without function symbols. An example of anL2-compliant logic is the
ALC DL used to describe basic ontologies. The interested readeris referred to [5,6].

A normal form for aLκ KB is presented to reorganize the knowledge in the KB
through sentences conforming some minimal pattern, which will be interpreted as single
arguments in theGenAF. Therefore, aGenAF may be straightforwardly adapted to deal
with dynamics of knowledge as done in [4]: deleting an argument from the framework
would mean deleting a statement from the KB. Argumentation frameworks were also
related to FOL in [7], however, since there was no intention to cope with dynamics of
arguments, no particular structure was provided to manage statements in the KB through
single arguments. In this sense, our proposal is more similar to that in [8], although we
relate the notions of deduction and conflict to FOL interpretations.

SpecifyingArgs could bring about some problems: the language for claims may
consider conjunctive and/or disjunctive formulae. For theformer case, the easiest op-
tion is to trigger a different claim for each conjunctive term. For the case of disjunctive
formulae for claims, the problem seems to be more complicated. To that matter we
introduce the notion ofcoalition, which is a structure capable of grouping several argu-
ments with the intention to support an argument’s premise, identify conflictive sources
of knowledge, or even to infer new knowledge beyond the one specified through the ar-
guments considered in it. In argumentation theory, an argument’s premises are satisfied
in order for that argument to reach its claim. This is usuallyreferred assupport relation
[3], handled in this work through coalitions.

Usually, an abstract argument is treated as an indivisible entity that suffices to sup-
port a claim; here arguments are also indivisible but they play a smaller role: they are
aggregated in structures which can be thought as if they werearguments in the usual
sense [7]. However, we will see that they do not always guarantee the achievement of
the claim. The idea behind the aggregation of arguments within a structure is similar to
that of sub-arguments [9]. Besides, classic argumentationframeworks consider ground
arguments, that is, a claim is directly inferred if the set ofpremises are conformed. In
our framework, we consider two different kinds of arguments: groundandschematic.
In this sense, a set of premises might consider free variables, meaning that the claim,
and therefore the inference, will depend on them. Thus, whenan argumentB counts
with free variables in its claim or premises, it will be called schematic; whereasB is
referred as ground, when its variables are instantiated. Instantiation of variables within
a schematic argument may occur as a consequence of its premises being supported.

Finally, a basic acceptability semantics is proposed, inspired in the grounded se-
mantics [10]. These semantics ensure the obtention of a consistent set of arguments,
from which the accepted knowledge (warranted formulae) canbe identified.

2 Foundations for a Generalized AF

For Lκ, we usep, p1, p2, . . . and q, q1, q2, . . . to denote monadic predicate letters,
r, r1, r2, . . . for dyadic predicate letters,x, y for free variable objects, anda, b, c, d for

1 Natural numbers are enclosed in the setsN0 = {0, 1, . . . } andN1 = {1, 2, . . . }.



constants (individual names). Besides, the logicLA ⊂ Lκ identifies the fragment ofLκ

describingassertional formulae(ground atoms and their negations). Recall that ground
atoms are atomic formulae which do not consider variable objects. The logicLκ is in-
terpreted as usual through interpretationsI = 〈∆I , pI, pI

1 , . . . , qI, qI

1 , . . . , rI , rI

1 , . . .〉,
where∆I is the interpretation domain, andpI, pI

1 , . . . , qI, qI

1 , . . . , rI , rI

1 , . . . interpret
p, p1, . . . , q, q1, . . . , r, r1, . . ., respectively. For an interpretationI, somea ∈ ∆I, and
a formulaϕ(x), we writeI |= ϕ(a) if I, v |= ϕ(x), for the assignmentv mappingx to
a. For simplicity we omit universal quantifiers writingϕ(x) to refer to(∀x)(ϕ(x)).

As mentioned before, we will rely on a (abstract) languageArgs (for arguments)
composed by two (unspecified) inner sub-languages:Lpr (for premises) andLcl (claims).

Definition 1 (Argument Language).Given the logicLκ, anargument languageArgs
is defined as2Lpr × Lcl, whereLcl ⊆ Lκ andLpr ⊆ Lκ are recognized as the respec-
tive languages for claims and premises inArgs.

Since a premise is supported through the claim of other argument/s, the expressivity
of both languagesLpr andLcl should be controlled in order to allow every describable
premise to be supported by formulae from the language for claims. Therefore, to handle
the languageArgs at an abstract level, we will characterize it by relatingLpr andLcl.

Definition 2 (Legal Argument Language).An argument language2Lpr ×Lcl is legal
iff for everyρ ∈ Lpr there is a setΦ ⊆ Lcl such thatΦ |= ρ (support).

In the sequel any argument language used will be assumed to belegal. Argumen-
tation frameworks are a tool to reason about potentially inconsistent knowledge bases.
Due to complexity matters, it would be interesting to interpret anyLκ KB directly as
an argumentation framework with no need to transform the KB to aGenAF. Intuitively,
an argument poses a reason to believe in a claim if it is the case that its premises are
supported. This intuition is similar to the notion of material conditionals (implications
“→”) in classical logic. Hence, statements from a KB could giverise to a single argu-
ment. To this end, we propose a normal form forLκ KBs.

Definition 3 (pANF). Given a knowledge baseΣ ⊆ Lκ, and an argument language
Args, Σ conforms to thepre-argumental normal form(pANF) iff every formulaϕ ∈
Σ is an assertion inLA, or it corresponds to the formρ1∧ . . .∧ρn → α, whereα ∈ Lcl

andρi ∈ Lpr (1 ≤ i ≤ n). Hence, each formulaϕ ∈ Σ is said to be inpANF.

Example 1.2 SupposeLcl andLpr are concretized as follows:Lcl allows disjunctions
but prohibits conjunctions; whereasLpr avoids both conjunctions and disjunctions. This
would require for a formula like(p1(x)∧p2(x))∨ (p3(x)∧p4(x)) → q1(x)∧ (q2(x)∨
q3(x)) to be reformatted into thepANF formulaep1(x) ∧ p2(x) → q1(x), p1(x) ∧
p2(x) → q2(x) ∨ q3(x), p3(x) ∧ p4(x) → q1(x) andp3(x) ∧ p4(x) → q2(x) ∨ q3(x).

Next we formalize the generalized notion of argument independently from a KB.
The relation between premises and claims wrt. a KB could be referred to Remark 1.

Definition 4 (Argument). AnargumentB ∈ Args is a pair〈Γ , α〉, whereΓ ⊆ Lpr is
a finite set of finite premises,α ∈ Lcl, its finite claim, andΓ ∪{α} 6|= ⊥ (consistency).

2 For simplicity, examples are enclosed withinL2 to consider only predicates of arity≤ 2.



Usually,evidenceis considered a basic irrefutable piece of knowledge. This means
that evidence does not need to be supported given that it is self-justified by definition.
Thus, two options appear to specify evidence: as a separate entity in the framework,
or as arguments with no premises to be satisfied. In this article we assume the latter
posture, referring to them asevidential arguments.

Definition 5 (Evidence).Given an argumentB ∈ Args, B is referred asevidential
argument(or just evidence) iffB = 〈{}, α〉 with α ∈ LA (assertional formulae).

Given B ∈ Args, its claim and set of premises are identified by the functions
cl : Args−→Lcl, and pr : Args−→2Lpr , respectively. For instance, givenB =
〈{ρ1, ρ2}, α〉, its premises arepr(B) = {ρ1, ρ2}, and its claim,cl(B) = α. Argu-
ments will be obtained frompANF formulae through anargument translation function
arg : Lκ−→Args such thatarg(ϕ) = 〈{ρ1, . . . , ρn}, α〉 iff ϕ ∈ Lκ is a pANF for-
mula ρ1 ∧ . . . ∧ ρn → α and arg(ϕ) verifies the conditions in Def. 4. Otherwise,
arg(ϕ) = 〈∅,⊥〉. An evidential argumentarg(ϕ) = 〈∅, α〉 appears ifϕ is→ α.

Example 2 (Continued from Ex. 1).For the formulae given in Ex. 1, the arguments
〈{p1(x), p2(x)}, q1(x)〉, 〈{p1(x), p2(x)}, q2(x) ∨ q3(x)〉, 〈{p3(x), p4(x)}, q1(x)〉 and
〈{p3(x), p4(x)}, q2(x) ∨ q3(x)〉, are triggered by effect of the function “arg”.

As mentioned before, it is important to recall that the notion of argument adopted
in this work differs from its usual usage. This is made clear in the following remark.

Remark 1.Given apANF KB Σ ⊆ Lκ, a formulaϕ ∈ Σ, and its associated argument
arg(ϕ) = 〈Γ , α〉; it follows Σ |= (

∧
Γ ) → α, butΓ |= α does not necessarily hold.

A more restrictive definition of argument could consider conditions like Γ 6|= α,
and/orΓ \{ρ} 6|= ρ, with ρ ∈ Γ . However, its appropriate discussion exceeds the scope
of this article. For the usual notion of argument seeargumental structuresin Def. 15.

The formalization of theGenAF will rely on normality conditions: user defined con-
straints in behalf of the appropriate construction of the argumentation framework.

Definition 6 (GenAF). A generalized abstract argumentation framework(GenAF) is
a pair 〈A,N〉, whereA ⊆ Args is a finite set of arguments, andN ⊆ Norm, a finite set
of normality condition functionsnc : 2Args−→{true, false}. The domain of functions
nc is identified throughNorm, andG identifies the class of everyGenAF. The setE ⊆ A

encloses every evidential argument fromA.

A normality condition required throughN, could be to require evidence to be con-
sistent, that is no pair of contradictory evidential arguments should be available in the
framework. Other conditions could be to restrict argumentsfrom being non-minimal
justifications for the claim, or from including the claim itself as a premise.

(evidence coherency)there is no pair〈{}, α〉 ∈ A and〈{},¬α〉 ∈ A.
(minimality) there is no pair〈Γ , α〉 ∈ A and〈Γ ′, α〉 ∈ A such thatΓ ′ ⊂ Γ .
(relevance) there is no〈Γ , α〉 ∈ A such thatα ∈ Γ .

Other normality conditions may appear depending on the concretization of the logic
for arguments and the environment the framework is set to model. The complete study



of these features falls out of the scope of this article. Given a GenAF T = 〈A,N〉,
we will say thatT is a theory iff for every normality conditionnc ∈ N it follows
nc(A) = true. From now on we will work only with theories, thus unless the contrary is
stated, every framework will be assumed to conform a theory.Moreover, the framework
specification is done in such a way that its correctness does not rely on the normality
conditions required. Thus, aGenAF 〈A,N〉, with N = ∅, will be trivially a theory.

In order to univocally determine a singleGenAF from a given KB and a set of nor-
mality conditions, it is necessary to assume a comparison criterion among formulae in
the KB. Such criterion could be defined for instance, upon entrenchment of knowledge,
i.e., levels of importance are related to formulae in the KB. As will be seen later, this
criterion will determine theargument comparison criterionfrom which the attack rela-
tion is usually specified in the classic argumentation literature. Next, we define atheory
functionto identify theGenAF associated to a KB.

Definition 7 (Theory Function). Given apANF knowledge baseΣ ⊆ Lκ, and a set
N ⊆ Norm of normality condition functionsnc, a theory function genaf : 2L

κ
×

2Norm−→G identifies theGenAF genaf(Σ,N) = 〈A,N〉, whereA ⊆ {arg(ϕ)|ϕ ∈ Σ

andarg(ϕ) is an argument}∪{arg(ϕ → ϕ′)|(¬ϕ′ → ¬ϕ) ∈ Σ andarg(ϕ → ϕ′) is an
argument} andA is the maximal set (wrt. set inclusion and the comparison criterion in
Σ) such that for everync ∈ N it holdsnc(A) = true.

The GenAF obtained by the function “genaf” will consider a maximal subset of
the KB Σ such that the resulting set of arguments (triggered by “arg”) is compliant
with the normality conditions. Note that also the counterpositive formula of each one
considered is assumed to conform an argument in the resulting GenAF. This is natural
since counterpositive formulae from the statements in a KB are implicitly considered to
reason in classical logic. In aGenAF, this issue is done by considering both explicitly.

3 The GenAF Argumentation Machinery

The purpose of generalizing an abstract argumentation framework comes from the
need of managing different argument languages specified through some FOL frag-
ment. Given the specification ofArgs, different possibilities may arise, for instance,
the language for claims may accept disjunction of formulae.Thus, it is possible to
infer a formula inLcl from several arguments in theGenAF through their claims. Con-
sider for example, two arguments〈{p1(x)}, q1(x)∨ q2(x)〉 and〈{p2(x)},¬q2(x)〉, the
claim q1(x) may be inferred. This kind of constructions are similar to arguments them-
selves, but are implicitly obtained from theGenAF at issue. To such matter, the notion
of claiming-coalitionis introduced asa coalition required to infer a new claim.

In general, acoalitionmight be interpreted asa minimal and consistent set of argu-
ments guaranteeing certain requirement. We say that a coalition̂C ⊆ Args is consistent
iff prset(Ĉ)∪ clset(Ĉ) 6|= ⊥, while minimality ensures that̂C guarantees a requirement
θ iff there is no proper subset of̂C guaranteeingθ. The functionsclset : 2Args−→2Lcl

andprset : 2Args−→2Lpr are defined asclset(Ĉ) = {cl(B)|B ∈ Ĉ}, andprset(Ĉ) =⋃
B∈bC

pr(B), to respectively identify the set of claims and premises from Ĉ. In this
article, three types of coalitions will be considered. Regarding claiming-coalitions, the
requirementθ is a new inference inLcl from the arguments considered by the coalition.



Definition 8 (Claiming-Coalition). Given aGenAF 〈A,N〉 ∈ G, and a formulaα ∈

Lcl, a set of argumentŝC ⊆ A is a claiming-coalition, or just aclaimer, of α iff Ĉ is
the minimal coalition guaranteeingclset(Ĉ) |= α andĈ is consistent.

Note that a claiming-coalition containing a single argument B is a primitive coali-
tion for the claim ofB. As said before, an argument needs to find its premises supported
as a functional part of the reasoning process to reach its claim. In this framework, due
to the characterization ofArgs, sometimes a formula fromLpr could be satisfied only
through several formulae fromLcl. This means that a single argument is not always
enough to support a premise of another argument. Thus, we will extend the usual defi-
nition of supporter [3] by introducing the notion ofsupporting-coalition.

Definition 9 (Supporting-Coalition). Given aGenAF 〈A,N〉 ∈ G, an argumentB ∈

A, and a premiseρ ∈ pr(B). A set of argumentŝC ⊆ A is a supporting-coalition,or just
a supporter, ofB throughρ iff Ĉ is the minimal coalition guaranteeingclset(Ĉ) |= ρ

andĈ ∪ {B} is consistent.

Example 3.AssumeA = {B1,B2,B3,B4}, whereB1 = 〈{p1(x)}, q1(x)〉, B2 =
〈{p1(x)}, q2(x)〉, B3 = 〈{p2(x)}, p1(x) ∨ q1(x)〉, andB4 = 〈{p3(x)},¬q1(x)〉. The
setĈ = {B3,B4} is a supporter ofB2. Note thatĈ cannot be a supporting-coalition of
B1 since it violates (supporter) consistency.

When not every necessary argument to conform the supporting-coalition is present
in A, the (unsupported) premise is referred as free.

Definition 10 (Free Premise).Given aGenAF 〈A,N〉 ∈ G and an argumentB ∈ A,
a premiseρ ∈ pr(B) is freewrt. A iff there is no supporter̂C ⊆ A of B throughρ.

From Ex. 3, premisesp2(x) ∈ pr(B3), p3(x) ∈ pr(B4), andp1(x) ∈ pr(B1) are
free wrt.A; whereasp1(x) ∈ pr(B2) is not.

When a schematic argument is fully supported from evidence (Ĉ ⊆ E), its claim is
ultimately instantiated ending up as a ground formula. Therefore, an argumentB may
be included in a supporting coalition̂C of B itself due to the substitution of variables.
This situation is made clearer later and may be referred to Ex. 5. The quest for a sup-
porterĈ of some argumentB through a premiseρ in it, describes a recursive supporting
process given that each premise inĈ needs to be also supported. When this process does
ultimately end in a supporter containing only evidential arguments, we will distinguish
ρ ∈ pr(B) not only as non-free but also asclosed.

Definition 11 (Closed Premise).Given aGenAF 〈A,N〉 ∈ G, and an argumentB ∈

A, a premiseρ ∈ pr(B) is closedwrt. A iff there exists a supporter̂C ⊆ A of B
throughρ such that eitherprset(Ĉ) = ∅, or every premise inprset(Ĉ) is closed.

The idea behind closing premises is to identify those arguments that effectively state
a reason from theGenAF to believe in their claims. Such arguments will be those for
which the support of each of its premises does ultimately endin a set of evidential
arguments –and therefore no more premises are required to besupported. Thus, ev-
ery premise in an argument is closediff the claim isinferrable. This is natural since



inferrable claims can be effectively reached from evidence. Finally, when the claiming-
coalition of an inferrable claim passes the acceptability analysis, the claim ends upwar-
ranted. Acceptability analysis and warranted claims will be detailed later, in Sect. 5.

Definition 12 (Inferrable Formula). Given aGenAF 〈A,N〉 ∈ G, a formulaα ∈ Lcl

is inferrable fromA iff there exists a claiming-coalition̂C ⊆ A for α such that either
prset(Ĉ) = ∅, or every premise inprset(Ĉ) is closed.

The supporting process closing every premise in a claiming-coalition Ĉ to verify
whether the claim is inferrable, clearly conforms a tree rooted in Ĉ. We will refer to
such tree assupporting-tree, and to each branch in it assupporting-chain.

Definition 13 (Supporting-Chain). Given aGenAF 〈A,N〉 ∈ G, a formulaα ∈ Lcl,
and a sequenceλ ∈ (2A)n such thatλ = bC1 . . . bCn, wheren ∈ N1, Ĉ1 is a claiming-
coalition for α, and for everyi ∈ N1 it follows Ĉi ⊆ A, and Ĉi+1 is a supporting-
coalition through someρi ∈ prset(Ĉi). The notations|λ| = n and λ[i] are used to
respectively identify thelengthof λ and thenodeĈi in it. The last supporting-coalition
in λ (referred asleaf) is identified through the functionleaf(λ) = λ[|λ|]. The function
←−
λ : (2A)n × N0−→Lcl ∪ Lpr ∪ {⊥} identifies thelink ←−λ [0] = α; or ←−λ [i] = ρi

(0 < i < |λ|), whereρi ∈ prset(λ[i]) is supported byλ[i + 1]; or ←−λ [i] = ⊥ (i ≥ |λ|).
The setλ∗ =

⋃
i λ[i] (with 0 < i ≤ |λ|) identifies the set of arguments included inλ.

Finally, λ is a supporting-chain forα wrt. A iff it guarantees:

(minimality) Ĉ ⊆ λ∗ is a supporter (claimer ifi = 0) of ←−λ [i] iff Ĉ = λ[i + 1]
(0 ≤ i < |λ|).

(exhaustivity) everyρ ∈ prset(leaf(λ)) is free wrt.λ∗.
(acyclicity) ←−λ [i] = ←−λ [j] iff i = j, with {i, j} ⊆ {0, . . . , |λ| − 1}.
(consistency)prset(λ∗) ∪ clset(λ∗) 6|= ⊥.

From the definition above, a supporting-chain is a finite sequence of interrelated
supporting-coalitionŝCi through a linkρi ∈ prset(Ĉi) supported bŷCi+1. It is finite
indeed, given that the setA is also finite, and that no link could be repeated in the chain
(acyclicity). The minimality condition (wrt. set inclusion overλ∗) stands to consider as
less arguments fromA as it is possible in order to obtain the same chain, whereas the
exhaustivity condition (wrt. the length|λ|) ensures that the chain is as long as it is possi-
ble wrt.λ∗ (without cycles), that is,λ has all the possible links that can appear from the
arguments considered to build it. Note that from minimalityno pair of arguments for a
same claim could be simultaneously considered in any supporting-chain. Finally, con-
sistency is required given that the intention of the supporting-chain is to provide a tool
to close a premise from the claiming-coalition. Next, supporting-trees are formalized
upon the definition of supporting-chains.

Definition 14 (Supporting-Tree). Given aGenAF 〈A,N〉 ∈ G, a formulaα ∈ Lcl,
and a treeT of coalitionsĈ ⊆ A such that each nodêC is either:

– the root iff Ĉ is a claiming-coalition forα; or
– an inner node iff Ĉ is a supporting-coalition throughρ ∈ prset(Ĉ′), whereĈ′ ⊆

A is either an inner node or the root.



The membership relation will be overloaded by writingλ ∈ T andĈ ∈ T to respec-
tively identify the branchλ and the nodêC fromT . The setT ∗ =

⋃
bC∈T

Ĉ identifies the
set of arguments included inT . Hence,T is a supporting-tree iff it guarantees:

(completeness)everyλ ∈ T is a supporting-chain ofα wrt. A.
(minimality) for everyλ ∈ T , Ĉ ⊆ T ∗ is a supporting-coalition (claimer ifi = 0)

through←−λ [i] iff Ĉ = λ[i + 1] (0 ≤ i < |λ|).
(exhaustivity) for everyρ ∈ prset(T ∗), if there is noλ ∈ T such that←−λ [i] = ρ

(0 < i < |λ|) thenρ is free wrt.T ∗.
(consistency)prset(T ∗) ∪ clset(T ∗) 6|= ⊥.

Finally, the notationTreesA(α) identifies the set of all supporting-trees forα fromA.

The completeness condition is required in order to restrictthe supporting-tree to
consider only supporting-chains as their branches. Similar to supporting-chain, min-
imality is required to avoid considering extra arguments tobuild the tree, while ex-
haustivity stands to ensure that every possible supporting-coalition Ĉ ⊆ T ∗ through
a premise inprset(T ∗) is an inner node in the tree. Finally, consistency ensures that
the whole supporting process of the premises in the claiming-coalition will end being
non-contradictory, even among branches. It is important tonote that a supporting-tree
for α ∈ Lcl determines the set of arguments used in the (possibly inconclusive)3 sup-
porting process of some claiming-coalition ofα. Such set will be referred asstructure.

Definition 15 (Structure). Given aGenAF 〈A,N〉 ∈ G, and a formulaα ∈ Lcl, a
setS ⊆ A identifies astructure for α iff there is a supporting-treeT ∈ TreesA(α)
for α such thatS = T ∗. The claim and premises ofS can be respectively determined
through the functionscl : 2Args−→Lcl and pr : 2Args−→2Lpr , such thatcl(S) = α

and pr(S) = {ρ ∈ prset(S) | ρ is a free premise wrt.S}. Finally, the structureS is
argumental iff pr(S) = ∅, otherwiseS is schematic.

Note that functions “pr” and “cl” are overloaded and can be applied both to ar-
guments and structures. This is not going to be problematic since either usage will
be rather explicit. Besides, a structureS formed by a single argument is referred as
primitive iff |S| = 1. Thus, if S = {B} then pr(B) = pr(S) and cl(B) = cl(S).
However, not every single argument has an associated primitive structure. For instance,
unless relevance would be required as a framework’s normality condition, no structure
could contain an argument〈{p(x)}, p(x)〉 given that it would violate (supporting-chain)
acyclicity. Finally, when no distinction is needed, we refer to primitive, schematic, or
argumental structures, simply as structures.

Example 4.Given two argumentsB1 = 〈{p(x)}, q(x)〉 andB2 = 〈{q(x)}, p(x)〉. The
set{B1,B2} cannot be a structure forq(x) since{B1}{B2}{B1} . . . is a supporting-
chain violating acyclicity. Similarly,{B1,B2} could neither be a structure forp(x).

Given two structuresS ⊆ Args for α ∈ Lcl, andS′ ⊆ Args for α′ ∈ Lcl, S′ is a
sub-structure ofS (noted asS′⊑S) iff S′ ⊆ S. Besides,S′<S iff S′ ⊂ S.

3 Inconclusive supporting processes lead to schematic structures with non-free premises wrt.A.



Proposition 1. 4 Given aGenAF 〈A,N〉 ∈ G, a formulaα ∈ Lcl, and two structures
S ⊆ A for α andS′ ⊆ A for α,

– if S′<S thenpr(S) 6= pr(S′).
– if S is argumental thenleaf(λ) ⊆ E, for everyλ ∈ T whereT ∈ TreesS(α).

Lemma 1. Given aGenAF 〈A,N〉 ∈ G, and a formulaα ∈ Lcl, a structureS ⊆ A

for α is argumental iffα is inferrable.

If a formulaϕ(x) ∈ Lcl (wherex is a free variable) is inferrable then there ex-
ists an argumental structureS for ϕ(x). Note now that since every argumental structure
contains an empty set of premises, its supporting-treeT has only evidential arguments
in their leaves. Thus, since the claim of evidential arguments are expressed in the lan-
guageLA–it considers no free variables– the inner supporting process ofS performed
throughT ends up applying avariable substitution, for instance mappingx to a, such
that cl(S) = ϕ(a). Finally, if a structure states a property about some element of the
world through a claim considering only free variables then it is schematic.

Lemma 2. Given aGenAF 〈A,N〉 ∈ G, and a formulaϕ(x) ∈ Lcl, a structureS ⊆ A

for ϕ(x) is argumental iffcl(S) = ϕ(a) andϕ(a), v |= ϕ(x), wherev mapsx to a.

Example 5.Assume theGenAF 〈A,N〉 such that{B1, B2, B3} ⊆ A whereB1 =
〈{p(x)}, (∃y)(¬r(x, y) ∨ p(y))〉, B2 = 〈{}, r(a, b)〉, andB3 = 〈{}, p(a)〉.
The argumental structureS1 = {B1,B3} for (∃y)(¬r(a, y) ∨
p(y)) appears. Moreover,̂C1 = {B1,B2} is a supporter ofB1

throughp(x), where the free variablesx andy are mapped to
a and b, respectively. Note that as a result of such variables
substitutions, we havepr(Ĉ1) = {p(a)}, which in turn will
be supported through the primitive coalition{B3}. Hence, the
schematic structureS2 = {B1,B2,B3} for p(b) appears, where

B
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1 S
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B
1

B
1
B
2

S1<S2. Note that,T ∈ TreesS2
(p(b)) has a unique supporting-chain{B1}{B1,B2}{B3}.

4 Conflict Identification

As will be formalized in Def. 16, two argumental structures are in conflict whenever
their claims cannot be assumed together. Schematic structures may also be conflictive
if it is the case that a claim of one of them could support a premise of the other, but
a supporting-coalition does not exist given consistency would be violated. A second
option of conflict between schematic structures appears when the premises of one of
them infer the premises of the other, and either claim is in conflict with some premise
from the other, or both claims cannot be assumed together. The intuition for this may
be seen as a framework lacking of evidence to close every premise in each structure,
but a hypothetical addition of the lacking evidence of one ofthem would be enough
to include in the new framework two different argumental structures containing each
original schematic structure. In such a case, the conflict conforms to the first case given.

4 In this work, proofs were omitted due to space reasons.



This discussion may be made extensive to coalitional sets ofstructures. Analogous
to coalitions of arguments, acoalition of structuresmight be interpreted asa minimal
and consistent set of structures guaranteeing certain requirement. To go one step further
into the formalization of a coalition̂C ⊆ 2Args of structuresS ⊆ A, we will rely on
the setC∗ =

⋃
S∈bC

S of arguments from̂C. Therefore, we say that a coalition̂C of

structuresS, is consistentiff prset(C∗) ∪ clset(C∗) 6|= ⊥, while minimality ensureŝC
guarantees a requirementθ iff there is no proper subset ofĈ guaranteeingθ, and there
is no Ĉ′ ⊆ 2Args guaranteeingθ such thatC′∗ ⊂ C∗. Note that minimality not only
looks for the smallest set of structures, but also for the smallest structures.

Coalition of structures are sets grouping structures to guarantee certain requirement
θ: conflict. For the formalization of the notion of conflict, we will relyon the func-

tions clset : 22A−→2Lcl andprset : 22A−→2Lpr , which are respectively defined as
clset(Ĉ) = {cl(S)|S ∈ Ĉ}, andprset(Ĉ) =

⋃
S∈bC

pr(S). Note that functions “clset”
and “prset” are overloaded and can be applied both to sets of arguments (for instance
coalitionsĈ) and to coalitionŝC of structures. For this latter case, the functions’ out-
comes are the claims and premises of the structures includedby the coalitionĈ. Next,
we specify the notion of conflict between pairs of coalition of structures.

Definition 16 (Conflicting Coalitions). Given aGenAF 〈A,N〉 ∈ G, two coalitions
Ĉ ⊆ 2A andĈ′ ⊆ 2A of structures are inconflict iff it follows:

– Both coalitions are related either through dependency or support:
(dependency)prset(Ĉ) |= prset(Ĉ′).
(support) clset(Ĉ) |= prset(Ĉ′).

– The conflict appears either from claim-clash or premise-clash:
(claim-clash) clset(Ĉ) ∪ clset(Ĉ′) |= ⊥.
(premise-clash) clset(Ĉ) ∪ prset(Ĉ′) |= ⊥, or clset(Ĉ′) ∪ prset(Ĉ) |= ⊥.

It is important to note that for any conflicting pair, each involved coalition of struc-
tures guarantees minimality and consistency. Later on we will see how acceptability of
arguments benefits from these requirements. Next we exemplify the four different types
of conflict that may be recognized from aGenAF following Def. 16.

Example 6.Let {B1, B2, B3, B4, B5, B6, B7} ⊆ A whereB1 = 〈{p1(x)}, p2(x)〉,
B2 = 〈{p2(x)}, p3(x)〉, B3 = 〈{p1(x)},¬p3(x)〉, B4 = 〈{¬p3(x)}, p1(x)〉, B5 =
〈{p1(x),¬p2(x)}, p3(x)〉,B6 = 〈{p4(x)},¬p3(x) ∨ ¬p1(x)〉,B7 = 〈{p5(x)}, p1(x)〉.

(dependency & claim-clash)̂C1 = {{B1,B2}} andĈ2 = {{B3}}.
(dependency & premise-clash)Ĉ3 = {{B1}} andĈ4 = {{B5}}.
(support & claim-clash)̂C1 = {{B1,B2}} andĈ5 = {{B6}, {B7}}.
(support & premise-clash)̂C1 = {{B1,B2}} andĈ6 = {{B4}}.

In order to decide which coalition of structures succeeds from a conflicting pair, an
argument comparison criterion“<” is assumed to be determined from the comparison
criterion among formulae in the KB (see Sect. 2). Afterwards, two conflicting coalitions
of structuresĈ1 and Ĉ2 are assumed to be ordered by a function “pref” relying on



“<”, wherepref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2) implies the attack relation̂C1RAĈ2, i.e., Ĉ1 is
a defeater of(or it defeats)̂C2. In such a case,̂C2 is said to bedefeated. Moreover, if
there is no defeater of̂C1 then it is said to beundefeated. Note that when no pair of
arguments is related by “<”, both Ĉ1RAĈ2 andĈ2RAĈ1 appear from any conflicting
pair Ĉ1 and Ĉ2. Finally, the setRA = {(Ĉ1, Ĉ2) | Ĉ1 and Ĉ2 are in conflict and
pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2)} identifies theattack relationsfrom aGenAF 〈A,N〉 ∈ G.

Theorem 1. Given aGenAF 〈A,N〉 ∈ G, Lcl = Lpr = LA iff 〈A, →֒〉 is a Dung’s
AF, whereA = {S ⊆ A| S is an argumental structure} and →֒= {(S1, S2) ⊆ A ×
A|({S1}, {S2}) ∈ RA}.

5 Acceptability Analysis

Assuming a set of normality conditionsN, an inconsistent KBΣ leads to conflicting
arguments within the associatedgenaf(Σ,N) = 〈A,N〉. Thus, each minimal source
of inconsistency withinΣ is reflected as an attack in the resultingGenAF. Since the
objective of aGenAF is to reason about a KB under uncertainty, there is a need for
a mechanism that allows us to obtain those arguments that prevail over the rest. That
is, those arguments that can be consistently assumed together, following some policy.
For instance, structures with no defeaters should always prevail, since there is nothing
strong enough to be posed against them. The tool we need to resolve inconsistency
is the notion ofacceptability of arguments, which is defined on top of anargumenta-
tion semantics[10]. There are several well-known argumentation semantics, such as the
grounded, the stable, and the preferred semantics [1]. These semantics ensure the ob-
tention of consistent sets of arguments, namelyextensions. That is, the set of accepted
arguments calculated following any of these semantics is such that no pair of conflicting
arguments appears in that same extension. Finally, an extension determines a maximal
consistent subset of the KBΣ.

It is important to notice that some problems like multiple extensions may arise from
semantics like both thestableand thepreferred. This would require to make a choice
among them. On the other hand, the outcome of thegrounded semanticsis always a
single extension, which could be empty. Finally, since dealing with multiple extensions
is a problem that falls outside the scope of this article, we will choose the grounded
semantics, which can be implemented with a simple algorithm. Consequently, we define
a mappingsem : G−→2Args, that intuitively behaves as follows. The setX ⊆ A is the
minimal set verifyingX ⊆

⋃
( bC′,bC)∈RA

C∗ for every undefeated̂C′ defeatingĈ, and

for eachĈ it follows C∗ ∩ X 6= ∅. As a result, other coalition of structures defeated
by Ĉ could appear undefeated. Thus, this process is iterativelyapplied over the set of
argumentsA \ X until no conflicting pair is identified. Finally, the extension of the
GenAF is determined.

As stated before, the outcome of a grounded semantics could be an empty extension.
Such an issue arises when there is a loop in the structures attack graph, that is(Ĉ′, Ĉ) ∈

RA and(Ĉ, Ĉ′) ∈ RA. To overcome this, some argument from eitherĈ or Ĉ′ could be
included inX , and therefore the loop would be broken, and the process determined by
applying “sem” can be reconsidered.



Given a (potentially inconsistent)pANF knowledge baseΣ ⊆ Lκ, and a set of
normality conditionsN ⊆ Norm, it is possible to redefine the notion of entailment “|=”
from Σ by reasoning about it over its associatedGenAF genaf(Σ,N), such thatΣ |=G

α iff there exists an argumental structureS for α such thatS ⊆ sem(genaf(Σ,N)).
In such a case, the inferrable claimα is said to bewarrantedand therefore,Σ |=G α.
Note that ifΣ is consistent andα ∈ Lcl, “ |=G” equals the classical entailment “|=”.

Theorem 2. Given a consistentpANF knowledge baseΣ ⊆ Lκ, a set of normality
conditionsN ⊆ Norm, and a formulaα ∈ Lcl, Σ |= α iff Σ |=G α.

6 Concluding Remarks

A novel argumentation framework was presented as a generalization of the classical
Dung’sAF namedGenAF. A GenAF aims at providing a straightforward reification tool
to reason about inconsistent knowledge bases specified through FOL fragments.

In the last few years, a great effort has been put to the area ofontology change. For
instance, ontology evolution intends to restore consistency to inconsistent ontologies.
Description logics are probably the most important ontological representation language.
Part of our current investigations is done on the research ofpossible reifications of the
here presentedGenAF into highly expressible DLs. Consequently, not only ontology
evolution could be resolved but also, reasoning about inconsistent ontologies. Some
previous work may be referred to [2], where a preliminary investigation on these matters
have been done. There, a dynamic version of theGenAF is presented to apply change in
a consistent manner to (potentially inconsistent) ontologies.

Finally, since the grounded semantics [1] could return empty extensions, the usage
of different semantics [10] is part of the ongoing work to overcome this issue.
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