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Abstract. Generalized argumentation frameworks relate formulaelaasical

logic to arguments based on the Dung’s classic framewor&.riiain purpose of
the generalization is to provide a theory capable of reagp(following argu-

mentation technics) about inconsistent knowledge basB} éKpressed in FOL
fragments. Consequently, the notion of argument is rel@teadsingle formula in
the KB. This allows to share the same primitive elements foath, the frame-
work (arguments) and, the KB (formulae). A framework witlelsfeatures would
not only allow to manage a wide range of knowledge repretientianguages,
but also to cope with the dynamics of knowledge in a stragyiasthrd manner.

1 Introduction

The formalism studied in this work is based on the widely pte# Dung'’s argumenta-
tion framework AF) [1]. An AF is deemed as abstract since the language used to define
arguments remains unspecified, thus, arguments k¥ ane treated as “black boxes” of
knowledge. In this work we go one step further into a not-ssti@ct form of argumen-
tation by proposing an argument languagegs in order to provide some structure to
the notion of arguments while keeping them abstract. lnlit, anargumentmay be
seen agn indivisible piece of knowledge inferring a claim from aakpremisesSince
claims and premises are distinguishable entities of anyraemt, we will allow both to
be expressed through different sublanguages. The propogathent languagérgs

is thus characterized through the interrelation betwegimiter components. Assum-
ing arguments specified throudtrgs would bring about a highly versatile framework
given that different knowledge representation languageddcbe handled through it.
But consequently, some basic elements of the argumentathinery should be ac-
commodated, giving rise to a new kind of abstract argumemt&tameworks identified
as generalizedzenAF). The first approach to @enAF in [2] was inspired by [3,4].

The GenAF here proposed aims at reasoning about inconsistent knge/ledses
(KB) expressed through some fragment of first order logicl(F@onsequentlyArgs
will be reified to the restriction imposed to the FOL KB. Thils maximum expres-
sive power of &enAF is imposed by restricting the inner component\eks to be



bounded to some logi€”, with x € Ny. Formulae inC* are those of FOL that can be
built with the help of predicate symbols with arity «, including equality and constant
symbols, but without function symbols. An example of &frcompliant logic is the
ALC DL used to describe basic ontologies. The interested reésadeierred to [5,6].

A normal form for aL” KB is presented to reorganize the knowledge in the KB
through sentences conforming some minimal pattern, whitbh&interpreted as single
arguments in th€enAF. Therefore, &enAF may be straightforwardly adapted to deal
with dynamics of knowledge as done in [4]: deleting an argoinfirem the framework
would mean deleting a statement from the KB. Argumentatiamg&works were also
related to FOL in [7], however, since there was no intentmndpe with dynamics of
arguments, no particular structure was provided to martatgnsents in the KB through
single arguments. In this sense, our proposal is more sitoildat in [8], although we
relate the notions of deduction and conflict to FOL intergtiens.

SpecifyingArgs could bring about some problems: the language for claims may
consider conjunctive and/or disjunctive formulae. For fibrener case, the easiest op-
tion is to trigger a different claim for each conjunctiverteror the case of disjunctive
formulae for claims, the problem seems to be more complicafe that matter we
introduce the notion ofoalition, which is a structure capable of grouping several argu-
ments with the intention to support an argument’s premgentify conflictive sources
of knowledge, or even to infer new knowledge beyond the oeeifpd through the ar-
guments considered in it. In argumentation theory, an aeguispremises are satisfied
in order for that argument to reach its claim. This is usuafgrred asupport relation
[3], handled in this work through coalitions.

Usually, an abstract argument is treated as an indivisitigyethat suffices to sup-
port a claim; here arguments are also indivisible but thay jl smaller role: they are
aggregated in structures which can be thought as if they asgnements in the usual
sense [7]. However, we will see that they do not always guagathe achievement of
the claim. The idea behind the aggregation of argumentsmatistructure is similar to
that of sub-arguments [9]. Besides, classic argumenté&toneworks consider ground
arguments, that is, a claim is directly inferred if the sepgmises are conformed. In
our framework, we consider two different kinds of argumegtsundandschematic
In this sense, a set of premises might consider free vagabieaning that the claim,
and therefore the inference, will depend on them. Thus, vameargument3 counts
with free variables in its claim or premises, it will be callschematic; whereds is
referred as ground, when its variables are instantiatesiamtiation of variables within
a schematic argument may occur as a consequence of its peeeigig supported.

Finally, a basic acceptability semantics is proposed,iiadpn the grounded se-
mantics [10]. These semantics ensure the obtention of astensset of arguments,
from which the accepted knowledge (warranted formulaeYeaidentified.

2 Foundations for a Generalized AF

For £*, we usep,p1,p2,... and q,q1, qo,... to denote monadic predicate letters,
r,r1, 72, ... for dyadic predicate letters;, y for free variable objects, and b, ¢, d for

! Natural numbers are enclosed in the $&s= {0, 1, ...} andN; = {1,2,...}.



constants (individual names). Besides, the lagjcC £* identifies the fragment of”
describingassertional formulagéground atoms and their negations). Recall that ground
atoms are atomic formulae which do not consider variableaibj The logicC” is in-
terpreted as usual through interpretatidns (A, p*, pT, ..., ¢%,qf,..., 5, rf,...),
whereA” is the interpretation domain, apd, p1, ..., ¢*, ¢f, ..., r*,r{,... interpret
DyP1, 54, q1,---,T,7T1,. .., FESPECctively. For an interpretatidn somea € A%, and
a formulap(x), we writeZ = ¢(a) if Z,v = ¢(z), for the assignment mappingz to
a. For simplicity we omit universal quantifiers writing(z) to refer to(vx) (p(x)).

As mentioned before, we will rely on a (abstract) languaggs (for arguments)
composed by two (unspecified) inner sub-languaggs{for premises) and.; (claims).

Definition 1 (Argument Language).Given the logiaC", anargument language\rgs
is defined ag@% x L., wherel C LF andL,, C L" are recognized as the respec-
tive languages for claims and premisesiings.

Since a premise is supported through the claim of other aegtis) the expressivity
of both languageg . andL., should be controlled in order to allow every describable
premise to be supported by formulae from the language famslar herefore, to handle
the languagé\rgs at an abstract level, we will characterize it by relatifyg and .., .

Definition 2 (Legal Argument Language).An argument languagg®e x L., is legal
iff for everyp € L, there is a setb C L., such thatb = p (support)

In the sequel any argument language used will be assumedlémale Argumen-
tation frameworks are a tool to reason about potentiallpmsistent knowledge bases.
Due to complexity matters, it would be interesting to intetmany £~ KB directly as
an argumentation framework with no need to transform the &iBGenAF. Intuitively,
an argument poses a reason to believe in a claim if it is the tes its premises are
supported. This intuition is similar to the notion of matéiconditionals (implications
“—") in classical logic. Hence, statements from a KB could gige to a single argu-
ment. To this end, we propose a normal form f6r KBs.

Definition 3 (pANF). Given a knowledge base C L*, and an argument language
Args, X conforms to there-argumental normal form(pANF) iff every formulap €
X is an assertion irC,, or it corresponds to the formpy A. .. Ap,, — «, wherea € L
andp, € L, (1 <4 < n). Hence, each formula € Y is said to be irpANF.

Example 1.2 SupposeC.; andL,, are concretized as follows; allows disjunctions
but prohibits conjunctions; whereds, avoids both conjunctions and disjunctions. This
would require for a formula liképy () Apa(z)) V (p3(z) Aps(x)) — q1(z) A(g2(x) Vv
gs(z)) to be reformatted into theANF formulaep; (z) A pa(x) — qi(x), p1(x) A
p2(z) — q2(2) V g3(2), p3(z) A pa(z) — q1(z) andps(x) A pa(z) — g2(2) V gs3(z).

Next we formalize the generalized notion of argument indejeatly from a KB.
The relation between premises and claims wrt. a KB could feznesd to Remark 1.

Definition 4 (Argument). AnargumentB € Args is a pair(I", o), whereI' C L, is
a finite set of finite premises, € L., its finite claim, and” U {«a} [~ L (consistency)

2 For simplicity, examples are enclosed withiA to consider only predicates of arity 2.



Usually,evidencas considered a basic irrefutable piece of knowledge. Thkiams
that evidence does not need to be supported given that ifigisgfied by definition.
Thus, two options appear to specify evidence: as a separtite & the framework,
or as arguments with no premises to be satisfied. In thislemie assume the latter
posture, referring to them @&vidential arguments

Definition 5 (Evidence).Given an argumenB € Args, B is referred asevidential
argument(or just evidence) iff5 = ({}, «) with a € L, (assertional formulae).

Given B € Args, its claim and set of premises are identified by the functions
ol : Args— L, andpr : Args—2%-, respectively. For instance, giveh =
{{p1, 02}, @), its premises arer(B) = {p;,py}, and its claim,cl(B) = «. Argu-
ments will be obtained frompANF formulae through amargument translation function
arg : L"—Args such thatarg(p) = ({p;,...,pn}, @) iff ¢ € L" is apANF for-
mulap; A ... A p, — «a andarg(y) verifies the conditions in Def. 4. Otherwise,
arg(p) = (B, L). An evidential argumentrg(p) = (0, o) appears ifp is — a.

Example 2 (Continued from Ex. 1fjor the formulae given in Ex. 1, the arguments

{p1(2), p2(2)}, 1 (2)), ({P1(2), p2(2)}, @2(2) V g3(x)), ({P3(2), pa(@)}, ¢1()) and
({ps(x),ps(z)}, q2(z) V g3(x)), are triggered by effect of the functionty”.

As mentioned before, it is important to recall that the notidd argument adopted
in this work differs from its usual usage. This is made cleahi following remark.

Remark 1.Given apANF KB X' C £*, a formulap € X, and its associated argument
arg(p) = (I, a); it follows X' = (A I') — «, butI" = o does not necessarily hold.

A more restrictive definition of argument could consider d@itions like I £~ a,
and/orl’\ {p} F~ p, with p € I". However, its appropriate discussion exceeds the scope
of this article. For the usual notion of argument segumental structureim Def. 15.

The formalization of th&enAF will rely on normality conditionsuser defined con-
straints in behalf of the appropriate construction of thguarentation framework.

Definition 6 (GenAF). A generalized abstract argumentation framewo(&enAF) is
apair (A, N), whereA C Argsis afinite set of arguments, atNl C Norm, a finite set
of normality condition functionsc : 2485 —{true, false}. The domain of functions
nc is identified througiNorm, andG identifies the class of evegnAF. The seE C A
encloses every evidential argument frém

A normality condition required througN, could be to require evidence to be con-
sistent, that is no pair of contradictory evidential argatseshould be available in the
framework. Other conditions could be to restrict argumédrgms being non-minimal
justifications for the claim, or from including the claimetéas a premise.

(evidence coherency)here is no paif{}, «) € A and{{}, -a) € A.
(minimality) there is no paif’,a) € A and(I",a) € A suchthat™ c I'.
(relevance) there is no(I", o) € A such thaw € I

Other normality conditions may appear depending on therevization of the logic
for arguments and the environment the framework is set toatdthe complete study



of these features falls out of the scope of this article. Gig&enAF T = (A,N),
we will say thatT" is atheory iff for every normality conditiomc € N it follows
nc(A) = true. From now on we will work only with theories, thus unless toetary is
stated, every framework will be assumed to conform a thédoyeover, the framework
specification is done in such a way that its correctness doerely on the normality
conditions required. Thus,@nAF (A, N), with N = (), will be trivially a theory.

In order to univocally determine a singlenAF from a given KB and a set of nor-
mality conditions, it is necessary to assume a comparisterion among formulae in
the KB. Such criterion could be defined for instance, uporegrthment of knowledge,
i.e, levels of importance are related to formulae in the KB. Al e seen later, this
criterion will determine theargument comparison criteriofitom which the attack rela-
tion is usually specified in the classic argumentationditiere. Next, we definetheory
functionto identify theGenAF associated to a KB.

Definition 7 (Theory Function). Given apANF knowledge basé’ C £, and a set
N C Norm of normality condition functionsc, a theory function genaf : 2L" %
oNerm__, G identifies thesenAF genaf(X,N) = (A, N), whereA C {arg(¢)|p € ¥
andarg(y) is an argumentU{atg(e — ¢')|(—¢’ — —¢) € X andarg(p — ¢’)isan
argument and A is the maximal set (wrt. set inclusion and the comparisotedadn in
X) such that for everyic € N it holdsnc(A) = true.

The GenAF obtained by the functiongenaf” will consider a maximal subset of
the KB X' such that the resulting set of arguments (triggered dxg™) is compliant
with the normality conditions. Note that also the counteifiee formula of each one
considered is assumed to conform an argument in the regGkimAF. This is natural
since counterpositive formulae from the statements in a KBraplicitly considered to
reason in classical logic. In@enAF, this issue is done by considering both explicitly.

3 The GenAF Argumentation Machinery

The purpose of generalizing an abstract argumentationefnaork comes from the
need of managing different argument languages specifiedighr some FOL frag-
ment. Given the specification dfrgs, different possibilities may arise, for instance,
the language for claims may accept disjunction of formulgeus, it is possible to
infer a formula inL.; from several arguments in tl&@nAF through their claims. Con-
sider for example, two argumentsp; ()}, g1 (x)V g2(xz)) and({p2(z)}, ~g2(x)), the
claim g; () may be inferred. This kind of constructions are similar uanents them-
selves, but are implicitly obtained from tidenAF at issue. To such matter, the notion
of claiming-coalitionis introduced as coalition required to infer a new claim

In general, aoalitionmight be interpreted asminimal and consistent set of argu-
ments guaranteeing certain requiremeive say that a coalitiof C Args is consistent
iff prset(C)Uclset(C) = L, while minimality ensures that guarantees a requirement
0 iff there is no proper subset@fguaranteeig@. The functionslset : 2‘*1%5%3‘61
andprset : 24785 2% are defined aslset(C) = {cl(B)|B € C}, andprset(C) =
Ugeebr(B), to respectively identify the set of claims and premisesnfi@ In this
article, three types of coalitions will be considered. Rdgay claiming-coalitions, the
requiremend is a new inference iff.; from the arguments considered by the coalition.



Definition 8 (Claiming- Coalltlon) Given aGenAF (A,N) € G, and a formulax €
L, aset of argumen@ CAisa cla|m|ng -coalition, or just &laimer, of v iff Cis
the minimal coalition guaranteeingset(C) E « andC is consistent.

Note that a claiming-coalition containing a single arguiréis a primitive coali-
tion for the claim of3. As said before, an argument needs to find its premises siggpor
as a functional part of the reasoning process to reach it cla this framework, due
to the characterization dfrgs, sometimes a formula frorfi,, could be satisfied only
through several formulae frori.;. This means that a single argument is not always
enough to support a premise of another argument. Thus, wexténd the usual defi-
nition of supporter [3] by introducing the notion sfipporting-coalition

Definition 9 (Supporting-Coalition). Given aGenAF (A, N) € G, an argumenB3 €
A, andapremise € pt(B). Asetof argumen@c A is a supporting-coalition, or just
a supporter of B throughp iff C is the minimal coalition guaranteeingset(C ) Ep
andC U {B} is consistent.

Example 3.AssumeA = {B1, B2, Bs, B4}, whereB; = ({p1(x)}, ¢1(x)), Ba =
{p1(2)}, g2(2)), Bs = ({p2(2)}, p1(2) V @1 (2)), andBy = ({ps(x)}, ~q1(x)). The
setC = {Bs, B4} is a supporter oB85. Note thatC cannot be a supporting-coalition of
B since it violates (supporter) consistency.

When not every necessary argument to conform the suppestalition is present
in A, the (unsupported) premise is referred as free.

Definition 10 (Free Premise)Given aGenAF (A,N) € G and an argumenB € A,
a premisep € pr(B) is freewrt. A iff there is no supporte€ C A of B throughp.

From Ex. 3, premisegy(z) € pr(Bs), ps(x) € pr(B4), andp;(z) € pr(B;) are
free wrt. A; wherea (z) € pr(Bs) is not.

When a schematic argument is fully supported from evide@oe E), its claim is
ultimately instantiated ending up as a ground formula. &fwe, an argumertt may
be included in a supporting coalitighof 5 itself due to the substitution of variables.
This situation is made clearer later and may be referred tcbEXhe quest for a sup-
porterC of some argumert$ through a premisg in it, describes a recursive supporting
process given that each premis€ineeds to be also supported. When this process does
ultimately end in a supporter containing only evidentigiaments, we will distinguish
p € pt(B) not only as non-free but also a®sed

Definition 11 (Closed Premise)Given aGenAF (A, N) € G, and an argumenB €
A, a premisep € pr(B) is closedwrt. A iff there exists a supporte? C A of B
throughp such that eitheprset(C ) (), or every premise iptset(C ) is closed.

The idea behind closing premises is to identify those argusthat effectively state
a reason from th@enAF to believe in their claims. Such arguments will be those for
which the support of each of its premises does ultimately iaral set of evidential
arguments —and therefore no more premises are required sagported. Thus, ev-
ery premise in an argument is closéd the claim isinferrable This is natural since



inferrable claims can be effectively reached from evideRa®ally, when the claiming-
coalition of an inferrable claim passes the acceptabitigigsis, the claim ends wpar-
ranted Acceptability analysis and warranted claims will be dethiater, in Sect. 5.

Definition 12 (Inferrable Formula). Given aGenAF (A, N) € G, aformulac € L
is inferrable from A iff there exists a claiming- -coalitio C A for « such that either
prset(C) = 0, or every premise iptset(C) is closed.

The supporting process closing every premise in a cIaimtEujitionCAto verify
whether the claim is inferrable, clearly conforms a treetedan C. We will refer to
such tree asupporting-treeand to each branch in it @sipporting-chain

Definition 13 (Supporting-Chain). Given aGenAF (A, N) € G, a formulaa € L.,
and a sequencg € (22)" such that\ = C; ...C,,, wheren € Ny, C; is a claiming-
coalition for a, and for everyi € N it follows C; C A, andCAiH is a supporting-
coalition through some, € prset(C;). The notationgA| = n and A[i] are used to
respectively identify thiength of A and thenodeC; in it. The last supporting-coalition
in \ (referred adeaf) is identified through the functiolaf(A) = A[|A|]. The function
X (28)" x Ng—La U Ly U { L} identifies thelink X[0] = «; or X[i] = p,
(0 < i < |\]), wherep, € prset(\[i]) is supported by[i + 1]; or X[i] = L (i > |\|).
The set\* = |, A[i] (with 0 < i < |)|) identifies the set of arguments included\in
Finally, A is asupporting-chain fora wrt. A iff it guarantees:

(minimality) ¢ C A\* is a supporter (claimer if = 0) of i) iff C = Al + 1)
(0 < < |A)].

(exhaustivity) everyp € prset(leaf(\)) is free wrt. \*.

(acyclicity) X[¢] = X[j] iff ¢ = j, with{i, 5} C {0,..., |\ —1}.

(consistency) prset(A*) U clset(\*) = L.

From the definition above, a supporting-chain is a finite seqge of interrelated
supporting- -coalitionsg; through a linkp, € ptset( i) supported b)ElH It is finite
indeed, given that the set is also finite, and that no link could be repeated in the chain
(acyclicity). The minimality condition (wrt. set inclugicver\*) stands to consider as
less arguments from as it is possible in order to obtain the same chain, wheresas th
exhaustivity condition (wrt. the length|) ensures that the chain is as long as it is possi-
ble wrt. \* (without cycles), that is) has all the possible links that can appear from the
arguments considered to build it. Note that from minimatitypair of arguments for a
same claim could be simultaneously considered in any stipgechain. Finally, con-
sistency is required given that the intention of the suppgsthain is to provide a tool
to close a premise from the claiming-coalition. Next, supipg-trees are formalized
upon the definition of supporting-chains.

Definition 14 (Supporting-Tree). Given aGenAF (A, N) € G, a formulac € L.,
and a tree7 of coalitionsC C A such that each nodgis either:

— theroot iff Cisa claiming-coalition fora; or R R
— an inner node iff C is a supporting-coalition througp € prset(C’), whereC’ C
A is either an inner node or the root.



The membership relation will be overloaded by writhg 7 andC € 7 torespec-
tively identify the branch and the nod€ from 7. The se? * = | Js., C identifies the
set of arguments included ih. Hence,T is asupporting-treeiff it guarantees:

(completeness)every\ € 7 is a supporting-chain ofc wrt. A.

(minimality) for every\ € 7, CCTrisa supporting-coalition (claimer if = 0)
throughx [i] iff C = A[i +1] (0 < i < |A)).

(exhaustivity) for everyp € prset(7 ™), if there is noA € 7 such thatX[i] = p
(0 < i < |A]) thenpis free wrt.7*.

(consistency)prset(7 ™) U clset(7™) = L.

Finally, the notatioriTrees o (o) identifies the set of all supporting-trees ferfrom A.

The completeness condition is required in order to resthietsupporting-tree to
consider only supporting-chains as their branches. Sirtdlaupporting-chain, min-
imality is required to avoid considering extra argumentdudd the tree, while ex-
haustivity stands to ensure that every possible suppeci@djtionC C 7 through
a premise inprset(7 ) is an inner node in the tree. Finally, consistency ensuras th
the whole supporting process of the premises in the clairogadition will end being
non-contradictory, even among branches. It is importanote that a supporting-tree
for a € L.; determines the set of arguments used in the (possibly imesine)® sup-
porting process of some claiming-coalition@fSuch set will be referred asructure

Definition 15 (Structure). Given aGenAF (A,N) € G, and a formulan € L., a
setS C A identifies astructure for « iff there is a supporting-tred € Treesa («)
for o such thatS = 7™. The claim and premises 8fcan be respectively determined
through the functionsl : 24785 £, andpr : 2478 2% such that((S) = o
andpr(S) = {p € prset(S) | p is a free premise wrtS}. Finally, the structures is
argumental iff pr(S) = 0, otherwiseS is schematic

Note that functions $it” and “cI” are overloaded and can be applied both to ar-
guments and structures. This is not going to be problemataeseither usage will
be rather explicit. Besides, a structidormed by a single argument is referred as
primitive iff |[S| = 1. Thus, ifS = {B} thenpt(B) = pr(S) andcl(B) = c((S).
However, not every single argument has an associated prérsiructure. For instance,
unless relevance would be required as a framework’s notyrandition, no structure
could contain an argumefifp(x) }, p(x)) given that it would violate (supporting-chain)
acyclicity. Finally, when no distinction is needed, we retie primitive, schematic, or
argumental structures, simply as structures.

Example 4.Given two argument8; = ({p(x)}, q(z)) andBs = ({¢(z)}, p(x)). The
set{B;, B2} cannot be a structure fai(x) since{B; }{B2}{B1}... is a supporting-
chain violating acyclicity. Similarly{ 31, B2} could neither be a structure fpfz).

Given two structureS C Args fora € Lo, andS’ C Argsfora’ € £.1,S isa
sub-structure o (noted asS'CS) iff S’ C S. BesidesS'CS iff S’ C S.

% Inconclusive supporting processes lead to schematictstagcwith non-free premises wi..



Proposition 1. 4 Given aGenAF (A, N) € G, a formulaa € L., and two structures
S C A for o andS’ C A for «,

— if S'CS thenpe(S) # pr(S').
— if Sis argumental thetfeaf(\) C E, for every\ € 7 where7 € Treesg().

Lemma 1. Given aGenAF (A, N) € G, and a formulac € L, a structureS C A
for « is argumental iff« is inferrable.

If a formulap(z) € L. (wherezx is a free variable) is inferrable then there ex-
ists an argumental structuSefor ¢ (). Note now that since every argumental structure
contains an empty set of premises, its supportingZréms only evidential arguments
in their leaves. Thus, since the claim of evidential argut®i@ne expressed in the lan-
guageL,—it considers no free variables— the inner supporting mE®céS performed
through7 ends up applying &ariable substitutionfor instance mapping to a, such
thatcl(S) = ¢(a). Finally, if a structure states a property about some el¢mkthe
world through a claim considering only free variables thds schematic.

Lemma 2. Given aGenAF (A, N) € G, and a formulap(z) € L., a structureS C A
for ¢(z) is argumental iffcl(S) = p(a) andp(a),v = p(x), wherev mapsz to a.

Example 5.Assume theGenAF (A, N) such that{B;, B2, Bs} C A whereB; =
{p(@)}, (Fy)(~r(@,y) V (), Ba = ({},7(a, b)), andBs = ({}, p(a)).

The argumental structu® = {B;, B3} for (Jy)(—-r(a,y) V
p(y)) appears. Moreove€;, = {B;, B} is a supporter o3,
throughp(z), where the free variables andy are mapped to /A
a andb, respectively. Note that as a result of such variables
substitutions, we haver(C1) = {p(a)}, which in turn will ~ /~
be supported through the primitive coalitigi8; }. Hence, the /-
schematic structur®, = {B1, By, B3} for p(b) appears, wheré
S1CSs. Note thatZ € Treess, (p(b)) has a unique supporting-chdii, } {81, B2} {Bs}.

4 Conflict Identification

As will be formalized in Def. 16, two argumental structures @ conflict whenever
their claims cannot be assumed together. Schematic stesatay also be conflictive
if it is the case that a claim of one of them could support a serof the other, but
a supporting-coalition does not exist given consistenculdidoe violated. A second
option of conflict between schematic structures appearswhe premises of one of
them infer the premises of the other, and either claim is imflad with some premise
from the other, or both claims cannot be assumed togetherirthition for this may

be seen as a framework lacking of evidence to close everyigpedmeach structure,
but a hypothetical addition of the lacking evidence of one¢hafm would be enough
to include in the new framework two different argumentalistures containing each
original schematic structure. In such a case, the conflitfarens to the first case given.

4 In this work, proofs were omitted due to space reasons.



This discussion may be made extensive to coalitional setroétures. Analogous
to coalitions of arguments, @oalition of structuresnight be interpreted a& minimal
and consistent set of structures guaranteeing certainireqent To go one step further
into the formalization of a coalitioft C Q‘MgS of structuresS C A, we will rely on
the setC* = (Js.zS of arguments fronC. Therefore, we say that a coalitidh of
structuresS, is consistentiff prset(C*) U clset(C*) F L, while minimality ensure€
guarantees a requiremehtff there is no proper subset@fguaranteeinﬁ, and there
is noC’ C 247es guaranteeing such thatC’* c C*. Note that minimality not only
looks for the smallest set of structures, but also for thellestsstructures.

Coalition of structures are sets grouping structures toaguae certain requirement
0: conflict For the formalization of the notion of conflict, we will ren the func-
tions clset : 922" oLa 1 andprset : 22 —2% which are respectively defined as
clset(C) = {c(S)|S € (C} andptset( ) = Useg pr(S). Note that functions ¢fset”
and ‘prset” are overloaded and can be applied both to sets of argumfentsgtance
coalltlonsC) and to coalition<C of structures. For this latter case, the functions’ out-
comes are the claims and premises of the structures inclugéte coalitionC. Next,
we specify the notion of conflict between pairs of coalitidrsmuctures.

Definition 16 (Conflicting Coalitions). Given aGenAF (A,N) € G, two coalitions
C C 24 andC’ C 24 of structures are irconflict iff it follows:

— Both coalitions are related either through dependency qpsurt:
(dependency)ptset( ) E ptset((C’)
(support) cset( ) = ptset((C’)

— The conflict appears either from claim-clash or premiseshla
(claim-clash) clset(C) U c[set(@) E L.
(premise-clash) clset(C) U ptset((C’) E1,or c[set((C’) U prset(C) = L.

It is important to note that for any conflicting pair, eachdiwed coalition of struc-
tures guarantees minimality and consistency. Later on Weseg how acceptability of
arguments benefits from these requirements. Next we exritpdi four different types
of conflict that may be recognized fronGanAF following Def. 16.

Example 6.Let {B:, Ba, Bs, B4, Bs, Bs, Bz} C A whereBB; = ({p1(x)},p2(x)),
By = ({p2(2)},ps()), Bs = ({p1(x)}, ~ps(x)), Ba = {({—ps(x)},p1(x)), Bs =
{p1(2), =pa(2)}, p3(2)), Be = ({pa(2)}, ~p3(x) V =p1(x)), Br = ({ps(x)}, p1(2)).

(dependency & claim-clast), = {{B, B2}} andC, = {{Bs}}.
(dependency & premise-clasb) = {{5;}} andCy = {{B5}}.
(support & claim-clash)C; = {{B1,B2}} andCs = {{Bs},{B7}}.
(support & premise-clastl; = {{B1,B>}} andCs = {{B4}}.

In order to decide which coalition of structures succeedsfa conflicting pair, an
argument comparison criterioh=" is assumed to be determined from the comparison
criterion among formulae in the KB (see Sect. 2). Afterwatas conflicting coalitions
of structuresC,; andC, are assumed to be ordered by a functipmef” relying on



“»=" wherepref(Cy, Cy) = (Cy,C,) implies the attack relatioff; R Cy, i.e., C; is
a defeater of(or it defeats)fig In such a cas@z is said to badefeatedMoreover, if
there is no defeater f; then it is said to baindefeatedNote that when no pair of
arguments is related by=", both CiRAC, and(CgRA(Cl appear from any conflicting
pair C; and C,. Finally, the setR, = {(Ci,Cs) | C; andC, are in conflict and
pref(Cy,Cy) = (Cq,Cy)} identifies theattack relationsrom aGenAF (A, N) € G.

Theorem 1. Given aGenAF (A, N) € G, Lo = L = Ly iff (A,—) is aDung’s
AF, whereA = {S C A| Sis an argumental structurgé and —= {(S1,S2) C A x
Al({S1},{S2}) € Ra}

5 Acceptability Analysis

Assuming a set of normality conditio®$, an inconsistent KBY leads to conflicting
arguments within the associatgehaf(X', N) = (A, N). Thus, each minimal source
of inconsistency withinY' is reflected as an attack in the resultidgnAF. Since the
objective of aGenAF is to reason about a KB under uncertainty, there is a need for
a mechanism that allows us to obtain those arguments thaipoxer the rest. That
is, those arguments that can be consistently assumed &vgkthowing some policy.
For instance, structures with no defeaters should alwaggafy since there is nothing
strong enough to be posed against them. The tool we needdlvedsconsistency
is the notion ofacceptability of argumentsvhich is defined on top of aargumenta-
tion semantic§l0]. There are several well-known argumentation semsysiech as the
grounded, the stable, and the preferred semantics [1].eT$mmantics ensure the ob-
tention of consistent sets of arguments, nanesignsionsThat is, the set of accepted
arguments calculated following any of these semanticsdk that no pair of conflicting
arguments appears in that same extension. Finally, angatedetermines a maximal
consistent subset of the KB.

Itis important to notice that some problems like multipléegrsions may arise from
semantics like both thstableand thepreferred This would require to make a choice
among them. On the other hand, the outcome ofgiieeinded semanticis always a
single extension, which could be empty. Finally, since idegalvith multiple extensions
is a problem that falls outside the scope of this article, vilk asoose the grounded
semantics, which can be implemented with a simple algori@omsequently, we define
a mappingsem : G—247&_ that intuitively behaves as follows. The S€tC A is the
minimal set verifyingX C U(@@eRA C* for every undefeate@’ defeating@, and

for gach@ it follows C* N X # (. As a result, other coalition of structures defeated
by C could appear undefeated. Thus, this process is iteratagbjied over the set of
argumentsA \ X until no conflicting pair is identified. Finally, the exteasiof the
GenAF is determined.

As stated before, the outcome of a grounded semantics cewdd bmpty extension.
Such an issue arises when there is a loop in the structueek gtaph, that is@, @) €
R, and(@, @) € R,. To overcome this, some argument from eitfieor C’ could be
included inX, and therefore the loop would be broken, and the processieted by
applying “sem” can be reconsidered.



Given a (potentially inconsistenpANF knowledge bases C LF, and a set of
normality conditiondN C Norn, it is possible to redefine the notion of entailmejat™
from X' by reasoning about it over its associateaAF genaf( X, N), such that” ¢
a iff there exists an argumental struct@réor o such thatS C sem(genaf(X, N)).
In such a case, the inferrable claims said to bevarrantedand thereforeX ¢ .
Note that if X is consistent and € L.;, “I=¢” equals the classical entailment”.

Theorem 2. Given a consistenpANF knowledge base&’ C L, a set of normality
conditionsN C Norm, and a formulax € L., X | « iff X ¢ .

6 Concluding Remarks

A novel argumentation framework was presented as a gernatial of the classical
Dung’sAF namedGenAF. A GenAF aims at providing a straightforward reification tool
to reason about inconsistent knowledge bases specifiedghfeOL fragments.

In the last few years, a great effort has been put to the areatofogy change. For
instance, ontology evolution intends to restore consistéo inconsistent ontologies.
Description logics are probably the most important ontmalyepresentation language.
Part of our current investigations is done on the researgosgible reifications of the
here presentedenAF into highly expressible DLs. Consequently, not only onggio
evolution could be resolved but also, reasoning about isistent ontologies. Some
previous work may be referred to [2], where a preliminaryestigation on these matters
have been done. There, a dynamic version ofseAF is presented to apply change in
a consistent manner to (potentially inconsistent) ontels.g

Finally, since the grounded semantics [1] could return gregtensions, the usage
of different semantics [10] is part of the ongoing work to mame this issue.
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