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We show that due to the large coupling constant of the monopole–photon interaction

the annihilation of monopole–antimonopole and monopolium into many photons must be

considered experimentally. For monopole–antimonopole annihilation and lightly bound
monopolium, even in the less favorable scenario, multiphoton events (four and more

photons in the final state) are dominant, while for strongly bound monopolium, although

two photon events are important, four- and six-photon events are also sizable.
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Inspired by an old idea of Dirac and Zeldovich1–3 we proposed that monopolium,

a bound state of monopole–antimonopole3,4 could be easier to detect experimen-

tally than free monopoles.5,6 We have already studied the annihilation of mono-

polium into two photons.7,8 In here we are going to show that monopolium might

annihilate most preferably into many low energy photons.8,9 This result motivates

experimental searches of monopolium and monopole–antimonopole by looking into

multiphoton decays.

In our description of monopolium decays, we follow closely that of positronium

decays with two differences, namely the huge coupling constant in the magnetic

case and the dependence on the binding energy. The subtleties associated with the

binding potential6,9 are of no relevance for the present estimation.
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The two- and four-photon decay channels of the ground state parapositronium

have been studied in QED. In particular, the two-photon channel is known up to

O(α3 log2 α) (Refs. 10, 12–14) and the four-photon decay has been studied up to

order O(α),11 where α is the fine structure constant. We show for the ratio of these

channels the result to leading order,15,16

Γ4

Γ2
= 0.277

(
α

π

)2

. (1)

The factor in front of the coupling constant, 0.277, contains the contribution

of the 4! diagrams of the four-photon amplitude and the 2! diagrams of the two-

photon one, to lowest order. The binding energy is very small, a few eV, and has

been neglected in the calculation, therefore the energy factors cancel in the ratio.

Let us for the sake of argument increase the photon coupling in Eq. (1) which

leads to an increase in the four-particle ratio. This increase in the ratio motivates

the present investigation.

Let us assume that the monopole–photon coupling is analogous to the electron–

photon coupling except for an effective vertex characterized by the dressed

monopole magnetic charge g.17 Thus we extend the positronium calculation to

monopolium just by changing e→ g. Recalling the parapositronium calculation in

terms of the coupling we get

Γ4

Γ2
∼ F42

(
αg
π

)2

· · · Γ2n

Γ2
∼ F2n2

(
αg
π

)2n−2

, (2)

where αg = 1
4α ∼

137
4 ∼ 34.25 obtained from Dirac’s Quantization Condition

(DQC).1,2 The F ’s represent the contribution of all the Feynman amplitudes to

the process shown as subindex after extracting the contribution of the magnetic

charge, which is explicitly shown. For example, to leading order, F42 ≈ 0.277 as

seen in Eq. (1). We perform the calculations, as is customarily done in monopole

physics, to leading order. Due to the large magnetic coupling, the calculations can

give at most a qualitative indication of magnitudes, which is what we can pursue

at present. At the end of our analysis, we comment on how nonperturbative effects

might affect our calculation.

In Fig. 1, we show one of the 2n! contributions to the amplitude for a 2n photon

decay to leading order, and we note that this type of contributions in the above

ratios are determined only by vertices and propagators. The calculation for high n

with 2n! diagrams is out of the scope of any study. Let us discuss first an educated

estimation for large n. In the rest frame of the bound system the annihilation

into many photons leads to an average momentum for each photon much smaller

than the mass of monopolium and therefore much smaller than the mass of the

monopole. In order to make an estimation of the above ratios, we consider that in

the propagators the monopole mass dominates over the momentum and therefore

the calculation of the width, in units of monopole mass, depends exclusively on

three factors: the number of diagrams (2n)!, the photons’ symmetry factor 1/(2n)!
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Fig. 1. One of the 2n! multiphoton emission diagrams.

and the phase space of the outgoing massless particles, namely

(phsp)2n =
1

2

1

(4π)4n−3

M4n−4

Γ(2n)Γ(2n− 1)
, (3)

where M is the monopolium mass and n = 1, 2, 3, . . . 2n being the number of

photons emitted.

With all these approximations, we obtain the expression

Γ2n

Γ2
=

(
αg
π

)2n−2(
M

2m

)4n−4
2n!

2!(2n− 1)!(2n− 2)!
. (4)

Note that this equation leads to Γ2/Γ2 = 1 and for n = 2 and M = 2m, one

recovers the parapositronium case, Γ4/Γ2 =
(αg

π

)2
, with the interference factor

missing (recall Eq. (1)). In order to incorporate this effect we make a second esti-

mate. In the first estimate, we have assumed p2 to be very small compared with

m2 in the propagator an approximation valid for large n. Let us assume for the

second estimate that on the contrary p2 ∼ m2, an approximation which might be

adequate for small n. This approximation introduces in Eq. (4) a factor ( 1
2 )2n−2

leading to

Γ2n

Γ2
=

(
1

2

)2n−2(
αg
π

)2n−2(
M

2m

)4n−4
2n!

2!(2n− 1)!(2n− 2)!
. (5)

For n = 2, this factor is 0.25 which is very close to true calculation to leading order

0.277. This factor is extremely suppressing for large n, where the approximations

discussed initially might be better. We show results with and without this factor to

determine a region of confidence. If the leading order calculation were all there, the

true result would be between these two limiting expressions. We discuss possible

nonperturbative effects at the end of the analysis. In our expressions, we consider the

effect of the binding energy not taken into account in the conventional positronium

analysis.
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Fig. 2. The Γ2n/Γ2 ratio as a function of n calculated according to Eqs. (4) and (5). The left

figure is for zero binding energy and the right figure for Eb ∼ m. The solid curves represent the
calculation with the interference factor and the dashed curves the one without the factor. In order

to have the two curves at the same scale, the no interference ratios had to be divided by 250 left

and by 4 right.

In Fig. 2, we plot Eqs. (4) and (5) for two different binding energies and we

get bell-shaped distributions. For small binding energies (M ≈ 2m), the value

of n on the average is n̄ ∼ 7 with a deviation of ∆n ∼ ±2. For large binding

energies (M ∼ m), the average value of n is n̄ ∼ 3 with a deviation of ∆n ∼ ±1.

If the interference factor is included, the multiplicity (2n̄) is reduced to n̄ ∼ 4

with ∆n ∼ ±1 for small binding and n̄ ∼ 2 with ∆n ∼ ±1 for large binding.

Thus, the multiplicity decreases as the binding energy increases. However, even

with the strongly suppressing interference factor included, four-photon emission is

favored.

Since the above curves do not provide a quantitative estimate of the increase in

the ratio, we show in Fig. 3 some ratios as a function of a for a final state of 4, 8

and 12 photons with interference factor (solid) and without factor (dashed) for very

small binding energy. This case of small binding energy corresponds very closely to

monopole–antimonopole annihilation. The effect is large, even with the interference

factor included. Note that the monopole coupling corresponds to a ∼ 11.
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Fig. 3. The Γ2n/Γ2 ratio as a function of a calculated according to Eqs. (4) and (5) for n = 2, 4, 6

and zero binding energy. The solid curves represent the calculation with the interference factor
and the dashed curves the one without the factor.
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Fig. 4. Binding energy in units of monopole mass as a function of average photon multiplicity

in the annihilation. The solid curve represents the calculation with interference factor while the
dashed curve is that without that factor.

We now study the dependence of multiplicity with the binding energy. To do

so we find the maximum of the ratio in Eqs. (4) and (5) as a function of binding

energy. The result is plotted in Fig. 4 where we show the binding energy in units of

monopole mass as a function of the average photon multiplicity in the annihilation.

The outcome is clear, large average multiplicities, 8–12 photons, arise if the binding

energy is small, M ∼ 2m, while smaller average multiplicities, 4–6 photons, occur

for large bindings, M ∼ m. In the latter case, considerable rates extend up to

multiplicities of 8 photons as is shown in Fig. 2 (right).

In order to see quantitatively the increase in the ratios for large binding energy

(M ∼ m), we plot in Fig. 5 as a function of a, the ratios for 4 and 6 photons

calculated according to Eqs. (4) and (5). In this case, the rates are smaller and

also the multiplicities as seen in Fig. 4. It is important to realize that the binding

energy effect is very suppressing in the phase space formula. However, if the mass

of the monopole is large (> 1 TeV), binding energies as large as its mass are not to

be expected.
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Fig. 5. The Γ2n/Γ2 ratio as a function of a calculation according to Eqs. (4) and (5) for n = 2, 3

and large binding energy (M ∼ m). The solid curves represent the calculation with the interference
factor and the dashed curves the ones without that factor.
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We can get an analytic formula for the most probable photon decay channel

by calculating the maximum of the logarithm of Eqs. (4) and (5) using Sterling’s

formula (k! ∼ kke−k
√

2πk). Sterling’s formula is quite good even for low k, i.e. for

k = 2 it gives 1.919, for k = 3, 5.836, and k = 4, 23.506. Thus, we can consider

the equations we are going to derive good approximations for any n. Let us write a

generic interference factor (δ)n−1 in front of Eq. (4) for which δ = 1 gives Eq. (4)

itself and for δ = 0.25 Eq. (5). The values of n for the maximum decay rates are

given by the solutions of the equation

n =
αg
√
δ

2π

(
1− Eb

2m

)2

exp

(
1

4n

)
+ 1 , (6)

for specific values of δ and the binding energy Eb. For large n, which occurs for

small binding energy we get the approximate solution

n ≈ αg
√
δ

2π
+ 1 , (7)

which is very illuminating because it shows explicitly the effect of the coupling

constant in increasing the photon multiplicities as seen numerically in Fig. 2.

All the approximations used thus far are valid for Dirac’s original formulation.

Some coupling schemes lead to small effective couplings close to threshold.7,8,18

These velocity-dependent schemes proceed by changing g → βg, where

β =

√
1− M2

s
, (8)

where M is the mass of monopolium and s the center of mass energy of the process.

In the case of monopole–antimonopole production M → 2m, where m is the mass

of the monopole (antimonopole). Thus, in these schemes, all photon widths vanish

at threshold. Close to threshold, two photon decays are dominant, since the ratio

(Eqs. (4) and (5)) acquire a factor β4n−4. However, by looking at the approximate

solution which is now modified to

n ≈ αgβ
2
√
δ

2π
+ 1 , (9)

one can understand what happens. Close to threshold the two-photon decay is the

dominant process but given the size of the coupling for β > 0.5, multiphoton decays

start to be important. Given that in most processes studied β rises rapidly7,8 our

present analysis holds slightly away from threshold.

Finally, we would like to make some comments about nonperturbative effects.

Given the large value of the coupling constant, it is evident that our calculation

is merely qualitative and aimed at proposing new signals to discover monopoles at

lower photon energies. Let us assume for the following discussion, the worst possi-

ble scenario, namely, that nonperturbative effects make the multiphoton channels

weaker. We parametrize the nonperturbative effects by an effective δ. How small

can δ get to make four- and six-photon decay ratios irrelevant? We use Eq. (6) for

n = 2, 3 and plot δ as a function of binding energy in Fig. 6.
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Fig. 6. The interference factor δ as a function of binding energy for four- and six-photon decays

according to Eq. (6).

From the figure it is apparent that a small bound monopolium produces pre-

ferably multiphoton decays up to very small interference factors. As the binding

energy increases the possibility of multiphoton decays decreases. Note however

that the four-photon decay is greater or comparable to two-photon decays up

to interference factors many times smaller than the one used in this calculation

and note that monopole–antimonopole annihilation behaves much like zero binding

monopolium.

Our analysis shows that monopole–antimonopole annihilation or lightly bound

monopolium decays lead preferably to multiphoton events. In particular, one should

look for four or more photons in the final state. If monopolium is strongly bound,

the situation changes and although two-photon rates are important, it is also cer-

tain that four- and six-photon rates may be sizable. Thus, in any circumstance one

should aim at looking at four- and six-photon events with the multiplicity charac-

terizing the dynamics of the binding.

Present searches of low mass monopoles have been carried out by making use of

their magnetic properties trapped in matter, by looking for tracks associated with

their ionization properties and by studying two-photon decays at colliders.19,21,22

At colliders like the LHC, the conservation of magnetic charge implies that either

monopolium or a pair monopole–antimonopole could be produced. Monopolium,

being chargeless, is difficult to detect except for its decay properties. If monopole–

antimonopole are produced close to threshold, they might annihilate given their

large interaction before reaching the detector. In this experimental scenario, we

might not have been able to detect monopolium and/or monopoles because we have

been looking into trapped monopoles, ionization remnants or the two-photon chan-

nel, all of which according to our present investigation are less probable than four

or more photon events. Our study shows that a characteristic feature of monopole–

antimonopole annihilation and monopolium decay is to find more than two photons

coming from the annihilation vertex. At threshold, these photons have on average

smaller energy than the energy of a typical collider process and the multiplicity is

directly related to the strength of their interaction.
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To conclude, we state that in view of the fact that the exact dynamics of

monopoles and their properties are not available, large multiplicity of photon events

might be the signal for the discovery of these elusive particles. Experiments should

be ready to incorporate this feature into their analysis.
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