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Abstract

Magneto-optical (MO) imaging has become a powerful tool for determining magnetic properties of materials by detecting the stray

magnetic fields. The technique consists in measuring the Faraday rotation, yF , in the light polarization plane when light travels through a

transparent sensitive garnet (ferrite garnet film, FGF) placed in close contact to the sample. For in-plane magnetized samples, the MO

image is not trivially related to the sample magnetization, and to contribute to this understanding we have imaged commercial audio

tapes in which computer-generated functions were recorded. We present MO images of periodically in-plane magnetized tapes with

square, sawtooth, triangular and sinusoidal waveforms, for which we analytically calculate the perpendicular and parallel stray magnetic

field components generated by the tape. As a first approach we correlate the measured light intensity with the perpendicular magnetic

field component at the FGF, and we show that it can be approximated to the gradient of the sample magnetization. A more detailed

calculation, taking into account the effect of both field components in the Faraday rotation, is presented and satisfactorily compared

with the obtained MO images. The presence of magnetic domains in the garnet is shown to be related to the change in sign of the parallel

component of the stray magnetic field, which can be approximated to the second derivative of the sample magnetization.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Magneto-optical (MO) imaging provides a powerful tool
for the direct observation of magnetic flux distributions in
a wide variety of samples, ranging from magnetic to
superconducting materials [1]. The visualization technique
is based on the Faraday rotation of a polarized light beam
illuminating an in-plane magnetized ferrite garnet film
(FGF) placed directly on top of the sample surface. The
light passes through the FGF and is reflected on a thin
mirror layer deposited on its back face, and passes a second
time through the garnet film, thus doubling the Faraday
rotation angle, yF . In general, the rotation angle grows
with the magnitude of the local magnetic field perpendi-
cular to the FGF. By using a pair of polarizers in an optical

microscope one can directly visualize and quantify the field
distribution across the sample area. The samples magnetic
properties are then modelled to reproduce the measured
magnetic stray field.
The fast response of the FGF allows for a very high time

resolution. Observations in the nanosecond time scale have
been performed using a synchronized pulsed laser in a
pump and probe technique [2]. The laser pulse is here split
in two, with one part triggering a magnetic event, e.g., a
flux avalanche in a superconductor, while the second part is
optically delayed and used to take an MO snapshot of the
moving flux [3].
Recently, also very high spatial resolution was achieved

by detecting single superconducting vortices [4]. In these
experiments, a very thin FGF is mounted within a
minimum distance above the superconductor surface so
that the exponential decay of the magnetic field modulation
away from the surface remains small, thus allowing for
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detection of one flux quantum provided the inter-vortex
distance is not too small.

These achievements have been made in cases where the
sample magnetization, M

!
, had a strong component

perpendicular to the sensitive garnet. Even in these cases
the correlation between the light intensity and the sample
magnetization is complex because only the stray field is
observed and the field at the place of the FGF may have a
direction and magnitude very different from that of the
sample’s M

!
. An example is a thin film superconductor

placed in a perpendicular applied magnetic field, where the
magnetization is perpendicular to the superconductor film,
whereas the outside field is largely parallel to the surface.
An additional complication is that the garnet itself
responds not only to a perpendicular field, but also to the
stray field component parallel to the FGF [5,6].

Regarding in-plane magnetized samples, these have been
also investigated with this technique. Bennet and colla-
borators [7], in their seminal work, studied the ferrimag-
netic indicator film technique to observe magnetic domains
in multilayer films with in-plane magnetization. A quali-
tative description was presented, particularly for holes in
the multilayer film [7], which generate stray field with a
component perpendicular to the indicator.

Periodically in-plane magnetized samples can be pro-
vided by the well-known tape recording technique [8].
These are excellent samples for addressing quantitative MO
imaging experiments. In the past we have modelled square
and sawtooth magnetized tapes by an array of coaxial
circular coils where the current in each coil reproduced the
recorded functions [9] to describe the observed light
intensities in images. However, a formal correlation
between image contrast and regions where the sample
magnetization had strong variations was missing, and
parallel field components had to be taken into account [5,6]
to better understand light distribution. Therefore, in the
present work, we examine square, sawtooth, triangular and
sinusoidal waveforms by MO imaging and we provide an
analytic calculation of the magnetic field generated by the
tapes at a plane in close proximity to the sample. These
calculations straightforwardly show that the perpendicular
magnetic field component, at a plane in close proximity to
the sample, is approximately equal to the magnetization
gradient of the sample. Furthermore, we discuss in which
cases the approximation is valid. Additionally, we prove
mathematically that the parallel field component cannot be
approximated to the second derivative of M

!
, but that both

have their maxima, minima and zeros at the same
positions. In consequence, inspection of the MO image of
in-plane magnetized samples, readily allows the determina-
tion of the space variation of the sample magnetization, as
well as the locations where the parallel field component
changes sign.

The paper is organized as follows. Section 2 describes the
experimental details and the obtained MOI results. In
Section 3 analytical calculations of the stray magnetic field
components are presented, followed by Section 4 with a

discussion of experimental and theoretical results. Finally,
the conclusions are drawn in Section 5.

2. Experimental results

The physics of tape recording is well understood [10].
The signal to be recorded is conditioned to activate a
writing head through its coil-wound core, generating a
signal on the tape that is a direct spatial reproduction of
the original temporal signal. Bi-polar square, sawtooth,
triangular and sinusoidal wave functions were computer
generated and recorded on commercial audio tapes.
We used here 100Hz audiosignals for which tapes with

linear velocity v ¼ 15
8

in per second during recording,
produced samples magnetized with a spatial periodicity
l ¼ 0:475mm. Fig. 1(a) shows schematically the recorded
magnetization profiles. To determine the maximum mag-
netization m0 per unit area, a DC signal (i.e. l ¼ 1Þ, with
an amplitude equal to the peak amplitude, was recorded
for some seconds and the recorded tape magnetic moment
was measured with a Vibrating Sample Magnetometer at
room temperature, resulting m0 ¼ 0:164A.
The FGF we have used in the present work is a bi-doped

garnet film, Lu3�xBixFe5�yGayO12 with x�0:5 and y�0:7
with in-plane magnetization [5]. The indicator film was
deposited to a thickness of 4:5mm by liquid-phase epitaxial
growth on the (1 0 0)-oriented gadolinium gallium garnet
substrate.
A thin (�120 nm) Au layer was evaporated onto the film

in order to reflect the incident light and thus to provide a
double Faraday rotation of the light beam. To image each
sample, the pair polarizer–analyzer was set slightly out of
crossing so that perpendicular fields of opposite polarity
were distinguished in the MO image, i.e. a medium gray
color is representing zero field. This angle was fixed to y0 ¼
4� � 10% for all samples. The flexible samples were
carefully placed under the indicator film, pressing both
together so that the air gap between the sample and the
FGF indicator was minimized. In calculations, the finite
distance between the sample surface and the FGF was
taken into account, i.e. the magnetic field is calculated at a
distance 1

100
l, where l is modulation period.

A standard Olympus B� 60M microscope was used
with 10� magnification, and a Roper Scientific CoolSnap
cf camera recorded the images, which were transferred to a
computer for processing.
Fig. 1(b) shows MO images obtained for magnetized

tapes having the four different in-plane magnetization
waveforms shown in the corresponding adjacent schematic.
Each image includes 1.5 spatial periods.
In what follows we will refer to the coordinate system

shown in the inset of Fig. 2.
The observation of images leads us to the following

approximate description. The bright and dark lines in the
top image of Fig. 1(b) correspond to positive and negative
magnetic field components Hz that arise from the abrupt
decrease (from m0 to �m0) and increase (from �m0 to m0)
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in the in-plane component of magnetization, My ¼MðyÞ;
for the square waveform plotted in Fig. 1(a). In the second
row, the bright lines indicating Hz40, correspond to the
abrupt decrease in MðyÞ (from m0 to �m0) for the
sawtooth waveform, and the constant intensity observed
between bright lines is related to the constant slope of

the sawtooth signal. In the third row, the intensity
varies following the corresponding triangular waveform.
A similar result is observed for the sinusoidal waveform,
shown in the bottom row. The first observation is that light
intensity seems to scale with the derivative of the in-plane
magnetization, dMðyÞ=dy. In the next section we will show
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Fig. 1. (a) Sample magnetization in units of m0 for the square, sawtooth, triangular and sinusoidal magnetization wave forms. (b) MO images of four

different tapes magnetized with a square, sawtooth, triangular and sinusoidal audio waveform of 100Hz, in panels from top to bottom. The bright areas

represent strong positive magnetic field, and the darker areas strong negative magnetic field perpendicular to the tape. The distance between two

consecutive bright lines is �0:5mm. See text. To the right enlarged areas show zigzag domains in the garnet, appearing where the parallel field component

changes sign.
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that this result is a good approximation, if yF is correlated
to the perpendicular field component and the FGF is near
the sample surface.

A close inspection of the MO images in Fig. 1(b) shows
that in the dark and bright regions zigzag domain walls are
present [11]. These domains are formed in the garnet itself,
each having the garnet in plane magnetization component
pointing oppositely. We will show that the domain walls
appear at regions where the parallel field component at the
garnet changes sign, in the same way as was already shown
for out-of-plane magnetized samples [11].

In the following section we calculate the magnetic field
components for the different magnetized tapes and we
show their relation to the first and second derivatives,
dMðyÞ=dy and d2MðyÞ=dy2 of the sample magnetization.

3. Modelling

We present our calculations for the magnetic field H
!

generated by a magnetized tape with periodic in-plane
magnetization.The aim is to calculate the normal and
parallel field components created by periodically magne-
tized strips, as well as to find the relation between these
field components and the magnetization first and second
derivatives. In the next section, we will use these results to
calculate the light intensity of MO images and we will also
relate image contrast with sample magnetization.
The tape is modelled by an infinite strip of width
�w=2pxpw=2 and thickness �s=2pzps=2; see the inset
of Fig. 2, where the x independent in-plane magnetization
is M
!
¼MyðyÞby [12]. For the purpose of this work we will
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Fig. 2. Inset: strip of width w with in-plane magnetization dependent on coordinate y. (a) Sample magnetization in units of m0 (same as in Fig. 1(a)) for the

square, sawtooth and triangular magnetization wave forms of wavelength l. (b) Calculated perpendicular magnetic field component, Hz, in units of

4pm0l�1 for the square, sawtooth and triangular magnetization waveforms of wavelength l, from top to bottom panels. (c) Calculated parallel magnetic

field component, Hy, in units of 4pm0l�1 for the square, sawtooth and triangular magnetization waveforms of wavelength l, from top to bottom panels.
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take the limit s ¼ 0. We recall that the Maxwell equation
for a source with magnetization and without free current is:

r
!
� H
!
¼ 0, ð1Þ

r
!
� H
!
¼ �4pr

!
�M
!

. ð2Þ

It is convenient to think the divergence on the right-hand
side of Eq. (2) as a volumetric (magnetic) charge density

rM � �r
!
�M
!

. We will consider that the magnetization is
confined to the xy plane, with width w in the x direction
and of infinite length in the y direction, so that

M
!
¼MðyÞ½Yðxþ w=2Þ �Yðx� w=2Þ	dðzÞŷ, (3)

where dðzÞ is Dirac delta and YðxÞ is the boxcar function.
Note that M has units of magnetic moment per unit area.

We also assume that the magnetization is periodic with
period l and consequently can be written as a Fourier
expansion

MðyÞ ¼
X1
n¼0

bn cos
2pn

l
y

� �
þ an sin

2pn

l
y

� �� �
. (4)

The volumetric charge density reduces to rM ¼ sðyÞdðzÞ.
Introducing the magnetic potential fM such that ~H ¼
�~rfM leads to the following differential equation:

r2fM ¼ �4psdðzÞ, (5)

where

s ¼ �
qMðyÞ
qy
½Yðxþ w=2Þ �Yðx� w=2Þ	. (6)

The solution is straightforwardly obtained [13] to be:

fðx; y; zÞ ¼ �
4

l

X1
n¼0

Z
dkx

e�k jzj

kkx

sin
kxw

2

� �
cosðkxxÞ

� ICðnÞ cos
2pn

l
y

� �
þ ISðnÞ sin

2pn

l
y

� �� �
, ð7Þ

ICðnÞ ¼

Z l=2

�l=2

qMðyÞ
qy

cos
2pn

l
y

� �
dy, ð8Þ

ISðnÞ ¼

Z l=2

�l=2

qMðyÞ
qy

sin
2pn

l
y

� �
dy, ð9Þ

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pn

l

� �2

þ k2
x

s
. ð10Þ

It is convenient to write explicitly the potential using the
Fourier coefficients of the magnetization. The magnetic
charge density is given by Eq. (6) and to simplify, we do not
write explicitly the Heaviside functions, so that

s ¼ �
qMðyÞ
qy

¼
X1
n¼0

�
2pn

l
an cos

2pn

l
y

� �
þ

2pn

l
bn sin

2pn

l
y

� �� �
.

ð11Þ

Therefore, ICðnÞ ¼ �pn an and ISðnÞ ¼ pn bn. We can
thus write the magnetic potential as:

fðx; y; zÞ ¼ �
4p
l

X1
n¼0

Z
dkx

e�kjzj

k kx

sin
kxw

2

� �
cos kxxð Þ

� n an cos
2pn

l
y

� �
� n bn sin

2pn

l
y

� �� �
. ð12Þ

The case of interest here is when jzj ¼ e5w. Up to now
the only approximation was to consider the magnetic tape
as bi-dimensional. Under this restriction, the analytical
solution is exact but not very intuitive. However, upon the
assumption of very small distance from the xy plane, we
can obtain an approximate result that fits very satisfacto-
rily the observed experimental results as will be shown
below.
Let us make the change of variable kx ! u ¼ ekx. We

obtain

f ¼ �
4p
l

X1
n¼0

Z
du

e�kjej

ku
sin

uw

2

1

e

� �
cos

ux

e

� �
� nan cos

2pn

l
y

� �
� nbn sin

2pn

l
y

� �� �
.

Now sinððuw=2Þ1=eÞ cosðux=eÞ ¼ 1
2
sin½u=eðxþ w=2Þ	 þ 1

2
sin

½u=eðx� w=2Þ	.
Note that for Z ¼ �1, we can evaluate the limit:

lim
e!0

sin½uðxþ Zðw=2ÞÞ1=e	
u

¼ lim
e!0

sin½uðxþ Zðw=2ÞÞ1=e	
uðxþ Zw=2Þ

�ðxþ Zw=2Þ

¼ ðxþ Zw=2Þdðuðxþ Zw=2ÞÞ

¼ dðuÞ.

The previous reasoning is valid if xa� Zw=2: The idea is
then to approximate

sin½u=eðxþ Zðw=2ÞÞ	
u

! dðuÞ.

Therefore,

sin
uw

2

1

e

� �
cos

ux

e

� �
! dðuÞ

is valid if x is not too near the border of the tape. We can
now proceed with the integration over u to obtain

f ¼ �
4p
l

X1
n¼0

e�2pnjej=l

ð2pn=lÞ

� nan cos
2pn

l
y

� �
� nbn sin

2pn

l
y

� �� �
.

The physical quantities of interest are the z and y

components of the magnetic field ~H:

Hz ¼ �
4p
l

X1
n¼0

sgðeÞe�2pnjej=l

� nan cos
2pn

l
y

� �
� nbn sin

2pn

l
y

� �� �
, ð13Þ
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Hy ¼ �
4p
l

X1
n¼0

e�2pnjej=l

� nan sin
2pn

l
y

� �
þ nbn cos

2pn

l
y

� �� �
. ð14Þ

Note that for jzj ¼ e5l , and if high frequencies are not
relevant, the exponential factor e�2pnjej=l 
 1 in Eq. (13).

In this case the perpendicular component of the
magnetic field can be approximated to the gradient
of the magnetization, Eq. (11). On the other hand,
the y component of the magnetic field (Eq. (14))
can be approximated to the second derivative of MðyÞ
although the relation is more restricted. Consider
the case where the magnetization has a definite parity,
say odd. Then, the second derivative of MðyÞ will also be
odd, as will be the case for Hy. Then, q

2MðyÞ=qy2 and Hy

will have their minimum, maximum and zeros at the
same place.

To validate our approximation, we have to confront its
prediction with the experimental results. Let us then
analyze some examples of magnetization.

The first example is a square signal:

MðyÞ ¼
m0; 0oyol=2;

�m0; �l=2oyo0;

(

which can be represented by the following Fourier series:

MðyÞ ¼
X1
k¼0

4m0

pð2k þ 1Þ
sin

2pð2k þ 1Þ

l
y

� �
.

The square magnetization waveform is plotted in units of
m0 in Fig. 2(a), top row. In panel (b) top row, the z

component of the magnetic field, Hzðy=lÞ, slightly above
the tape using our approximation of Eq. (13) is shown in
units of 4pm0l

�1. Additionally, the y component of the
magnetic field, Hyðy=lÞ, (in the same units), slightly
above the tape as calculated in Eq. (14) is plotted in panel
(c) top row.

The second example is a sawtooth signal, expressed as:

MðyÞ ¼
2m0

l
y�m0

with the corresponding Fourier expansion:

MðyÞ ¼ �
X1
n¼1

2m0

pn
sin

2pn

l
y

� �
.

Graphically, we have for Mðy=lÞ the plot in Fig. 2(a)
second row, and the z and y components of the magnetic
field are shown in panels (b) and (c) second row,
respectively.

As third example, we present a triangular signal, plotted
in Fig. 2(a) third row:

MðyÞ ¼

2m0 þ
4m0

l
y; �

l

2
pyp�

l

4
;

�
4m0

l
y; �

l

4
pyp

l

4
;

�2m0 þ
4m0

l
y;

l

4
pyp

l

2
:

8>>>>>><>>>>>>:
The Fourier series is

MðyÞ ¼ �
X1
k¼0

8wð�1Þk

p2ð2k þ 1Þ2
sin

2pð2k þ 1Þ

l
y

� �
.

Our result for the z component of the magnetic field is
plotted in panel (b) third row. Finally, the y component of
the magnetic field is shown in Fig. 2(c) third row. Note that
in this case, both components are plotted in a more
sensitive scale. We do not plot results for the sinusoidal
waveform, because they are straightforward.

4. Discussion

Calculations have shown that for the four different
magnetization waveforms, the perpendicular component of
the stray field near the sample surface, Hz, is approximately
proportional to �dM=dy and that the parallel component
Hy has its minimum, maximum and zeros at the same place
as d2M=dy2. If one assumes that Faraday rotation is
determined by the perpendicular field component at the
garnet position, then the MO image provides information of
the derivative of the strip magnetization, as was deduced
empirically by observing the images shown in Fig. 1.
However, in our calculations we have shown that for the

magnetic field components near the sample, only the higher
Fourier harmonics are attenuated by the exponential
factor (see Eqs. (13) and (14)), so that the quality of the
approximation depends on the relevance of the high
frequency terms in the gradient of the magnetization: if
these are not relevant then the approximation is good (as in
the case of the square or sawtooth waveforms). This
explains why for the triangular waveform, the field
components seem not to be so well described by the first
and second derivatives of the magnetization.
Before we proceed to compare experimental results with

calculations, let us present some remarks regarding the role
of both the perpendicular and parallel field components in
MO imaging.
Linearly polarized light propagating through the FGF

will experience a rotation of its polarization vector if a
magnetic field is present [4,5]. The Faraday effect relates to
the fact that the FGF is a ferrimagnet having a
spontaneous magnetization, Ms, with the easy axis lying

in the film plane. An external magnetic field H
!

at an angle
a will force the magnetization vector out of the plane, see
Fig. 3(a), while the magnetization is essentially constant in
magnitude. The equilibrium tilt angle Z of Ms represents
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the balance between the shape anisotropy and the tendency
to align with the external field. In the simplest form this can
be expressed as a minimum of

K1sin
2
ðZÞ �HMs cosða� ZÞ, (15)

where K1 is the anisotropy energy volume density. The
anisotropy term in Eq. (15) has a different form than the
one used in Ref. [5], which we believe now is incorrect.

Minimizing Eq. (15) with respect to Z gives

Hz

sinðZÞ
�

Hy

cosðZÞ
¼

2K1

Ms
� HA. (16)

The Faraday rotation, yF , is proportional to the
component of Ms along the light beam direction, so that

yF ¼ ysatF sinðZÞ, (17)

where ysatF is the maximum rotation angle. When only a
perpendicular field is present, i.e., Hy ¼ 0, it follows from
Eq. (16) that for HzpHA,

yF ¼ ysatF

Hz

HA
, (18)

giving a simple linear relation between the field and the
Faraday rotation shown in Fig. 3(b). When the field
exceeds HA the Faraday rotation remains constant. Since
ysatF is proportional to the film thickness, t, the FGF
characteristics can also be expressed in the more familiar
form,

yF ¼ VHzt, (19)

where V is the Verdet constant.
If the field also has a parallel component Hy, the

expression for yF is modified according to Eq. (16), which
gives a slight reduction in the Faraday effect. Fig. 3(b)
shows yF ðHzÞ for different parallel field components,
Hy ¼ 0, HA=5, HA=2 and HA. The fact that the effect is
small justifies our first approach in which only the
perpendicular field component determines the polarization
rotation and gives a linear relation between yF and Hz (see
Eq. (18)). For the films used in the present studies,
calibration experiments show that HA 
 6:4� 104 A=m
and ysatF 
 5�, giving a sensitivity of V 
 8�=mmA=m [4].
After the light is rotated by the FGF and reflected by the

mirror layer, the beam re-enters the objective lens. In the
microscope a second polarizer (analyzer) filters the light
according to Malus’ law. With the analyzer set at 90� þ y0
relative to the original polarization, the intensity distribu-
tion arriving at the camera becomes

IðyÞ

I0
¼ sin2ðyF ðyÞ þ y0Þ þ E 
 ðyF ðyÞ þ y0Þ

2
þ E. (20)

Here I0 is the intensity before the analyzer and E is the
effective extinction ratio of the optical system, which is
negligible, E ¼ ð1� 3Þ10�4 and y0 is the analyzer–polarizer
uncrossing. Combining this with the characteristics of the
FGF it follows that at magnetic fields below HA the light
intensity versus magnetic field is a parabolic function.
It then becomes clear that in our first simplified

approach we have made several approximations: we related
the observed light intensity only to the perpendicular field
component and we approximated the perpendicular field
component to the derivative of the magnetization. More-
over, the light intensity is quadratic in Hz, but this last
dependence is not detected by naked eye observation, and
describes qualitatively the observed intensity.
Fig. 4(a) shows the measured light intensity IðyÞ in

arbitrary units, after averaging it along the width of the
tape (x direction). The four rows, from top to bottom,
represent results for the square, sawtooth, triangular and
sinusoidal waveforms. To the right, in panels (b), we have
plotted the calculated Hzðy; �Þ in units of 4pm0l

�1. Hz was
shown to be approximately proportional to �dM=dy (see
Section 2). We find that IðyÞ is qualitatively described by
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Fig. 3. (a) The spontaneous magnetization, Ms, of the ferrite garnet film

(FGF) has an easy axis lying in the film plane. An external magnetic field
~H at an angle a forces Ms out of the plane. The equilibrium tilt angle Z
represents the balance between the shape anisotropy and the tendency to

align with the external field, and determines the Faraday rotation, yF , of

the linearly polarized light (see text). (b) If the field has a component Hy

parallel to the FGF, yF is slightly reduced. Polarization rotation yF as a

function of Hz for different parallel field components, Hy ¼ 0, HA=5,
HA=2 and HA.
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the magnetization gradient, and therefore the image can be
used to estimate the variation of M with position.

However, the correct calculation of light intensity is
plotted in Fig. 4(c) and it clearly adjusts better to the
experimental results. Particularly for the square waveform,
top panels, the different dip and peak heights observed in
(a) are reproduced in (c), because the analyzer and
polarizer were not completely crossed and an additional
phase was added to yF in Eq. (20) (see Section 2). For the
sawtooth waveform, second row, the curvature of IðyÞ is
reproduced satisfactorily, and the measured intensity for
the triangular waveform (third row from the top) is well
described by the calculated intensity plotted in (c). The
description is also more satisfactory for the sinusoidal
waveform in the bottom row. Observe that the valley in the
light intensity is wider than the crest, feature that is
reproduced by the calculated I but not by HzðyÞ.

The smeared features in the measured light intensity
have been reproduced by including the parallel field
component contribution. However we must point out that
calculated light intensity is strongly dependent on the
distance of the FGF to the sample surface, and for larger
distances the smearing of light intensity may not be
dominated by the parallel field component contribution,
but only by the perpendicular field component dependence
with the distance to the sample surface.
The observed profile asymmetry on symmetric structures

is due to the asymmetry of the right and left Faraday
rotation relatively to the polarizers (the pair polarizer–
analyzer was set slightly out of crossing so that perpendi-
cular fields of opposite polarity are distinguished in the
MO image). It can be corrected by subtraction of two
images obtained with opposite polarizers uncrossing as
shown in Ref [14], but was not done in the present work.
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Fig. 4. (a) The four panels from top to bottom show the measured light intensity I in arbitrary units as a function of y, averaged along x (see inset in

Fig. 2), for the square, sawtooth, triangular and sinusoidal magnetization waveforms. (b) The four panels from top to bottom show the calculated Hzðy; eÞ
(also shown in Fig. 2(b), except for the sinusoidal waveform) for the square, sawtooth, triangular and sinusoidal magnetization waveforms. (c) The four

panels show the calculated light intensity, including the effect of the parallel field component and the initial polarizer–analyzer crossing, neglecting the

extinction ratio E (see text).
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A structure in some of the peaks in Figs. 4(a) can be
observed even after having averaged the signal along the
tape width, and this structure is related to the presence
of induced magnetic domains in the garnet (see images in
Fig. 1(b)). Note that these domains coincide with the
change in sign of the parallel component of the magnetic
field, Hy, plotted in Fig. 2(c) [11]. This description is valid
for all studied waveforms.

The zigzag domains in the indicator have been used in
the past to experimentally plot the profile of the parallel
field above a superconductor in the absence of perpendi-
cular component [15] by applying an external parallel field,
and observing the displacement of the zigzag domain walls.
In addition the presence of domain walls could be used to
detect sample misalignments.

5. Conclusions

Magneto-optical imaging of in-plane magnetized sam-
ples has been addressed. For this purpose, audio tapes were
magnetized with square, sawtooth, triangular and sinusoi-
dal audio-waveforms. The stray magnetic field generated
by the tapes was calculated analytically, modelling the
magnetic tapes as infinite strips, with periodic in-plane
magnetized waveforms. Calculations were made near the
sample surface to describe the field where the MO indicator
was placed. MO images were compared with theoretical
results, showing that the light intensity in the image follows
qualitatively the calculated perpendicular field component.
We have additionally found that the perpendicular
magnetic field component can be approximated to the
gradient of the in-plane magnetization, while the parallel
field component approximates to the magnetization second
derivative. The quality of these approximations reduces as
the relevance of the higher harmonics in the Fourier
transform of the magnetization waveform increases.

To obtain a more precise description, light intensity was
calculated following the known equations for Faraday light
rotation, where both the perpendicular and parallel field
components contribute, and Malus law was applied.
Experimental results are well reproduced by these calcula-
tions, particularly the smeared features that can be
accounted for the contribution of the parallel field
component and the distance of the garnet to the sample
surface. The asymmetry observed in the light intensity
is related to the asymmetric positioning of the pair

polarizer–analyzer to distinguish perpendicular fields of
opposite polarities.
The magnetic domains in the FGF are related to the

parallel field component, and we have shown that the
magnetic domains are spontaneously created in the garnet
where the calculated parallel field component changes sign.
We believe that this ‘‘artifact’’ could be used to detect
sample misalignments, or the presence of external magnetic
field components, in cases where domains are observed
displaced from positions where symmetry arguments lead
to the prediction of the change in sign of the parallel field
component.
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