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Abstract

To complement existing knowledge of the density matrix γF(x, y) of independent fermions for N particles in one dimension under harmonic
confinement, the corresponding matrix γIB(x, y) for impenetrable bosons is given for N = 2 and 3 (with the N = 4 form available also). For
fermions the momentum density is then obtained and illustrated numerically for N = 10. The boson momentum density is studied analytically
at high momentum p, the coefficients of the p−4 and p−6 terms being tabulated for N = 2–5 inclusive. Their dependence on powers of N is
exhibited numerically. Finally, the functional relationship between γIB(x, y) and γF(x, y) is formally set out and illustrated.
© 2006 Elsevier B.V. All rights reserved.

PACS: 05.30.-d; 05.30.Fk; 05.30.Jp; 31.15.Ew
In a recent study, Howard et al. [1] have written the Dirac
density matrix γF(x, y) for N independent spinless fermions
which are harmonically confined in one dimension in terms of
the wave function ψN(x) of the highest occupied level. Their
result (see Eq. (4) of [1]) takes the form

(1)γF(x, y) = 1

2

[
L(x, y) + 1

]
ψN(x)ψN(y),

where L is the differential operator [2] defined by

(2)L(x, y) = 1

(x − y)

(
∂

∂y
− ∂

∂x

)
.

This expression (1) is quite explicit, since the wave function
ψN(x) of the highest occupied state, with confining potential
V (x) = x2/2, is given by

(3)ψN(x) = CN−1 exp
(−x2/2

)
HN−1(x),
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where H(x) denotes a Hermite polynomial, while the normal-
ization factor is given by

(4)CN−1 = 1

π1/4

√
1

2N−1(N − 1)! .

It has been known for a long time that for one-dimensional im-
penetrable bosons (IB) the diagonal of the first-order density
matrix, or the boson density, is identical with that of the above
fermion problem, which we denote by ρ(x), and is obtainable
from Eq. (1) as

(5)ρ(x) = γF(x, y)|y=x .

Our interest in this Letter is to compare and contrast properties
of the fermion density matrix given in Eq. (1) with those of its
impenetrable boson counterpart γIB(x, y), to be defined imme-
diately below. The momentum distribution (see Eq. (14)) will
prove an important focus. Our starting point is the explicit re-
sult of Forrester et al. [3] for γIB(x, y) in their equation (78).
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This takes the form

(6)

γIB(x, y) = 2N−1

√
π�(N)

exp

(
−x2 + y2

2

)

× det

[
2(j+k)/2

2
√

π�(j)�(k)
bj,k(x, y)

]
j,k=1,...,N−1

.

The elements of the determinant are fixed by

bj,k(x, y) =
∞∫

−∞
dt exp

(−t2)|x − t ||y − t |tj+k−2,

(7)j � 1, k � N − 1.

Suffice it to say here that Forrester et al. [3] obtained the density
matrix (6) from the ground-state wave function ΨIB simply by
taking the modulus of the Slater determinant ΨF which must
lead according to [1] to the Dirac density matrix in Eq. (1).
Forrester et al. noted that when bj,k appearing in (6) above is
replaced by fj,k given by

(8)fj,k(x, y) =
∞∫

−∞
dt exp

(−t2)(x − t)(y − t)tj+k−2

(evaluated in turn in terms of Gamma functions), γIB(x, y) be-
comes the fermion density matrix, which must then equal that
given in Eq. (1) above.

We turn next to the explicit evaluation of γIB(x, y) for a
number of small values of N . Using MATHEMATICA, we have
evaluated the difference

(9)	(x,y) = γIB(x, y) − γF(x, y)

for 2, 3 and 4 particles. The explicit results for 2 and 3 particles
are quoted below. The interested reader may obtain the (now
very lengthy) expression for 4 particles on request. First of all,
for 2 particles

	(2)(x, y) = sign(x − y)

π
e− 3

2 (x2+y2)
(
2xex2 − 2yey2

(10)+ ex2+y2√
π(1 + xy)

(
erf(y) − erf(x)

))
.

If one needs γIB(x, y) the operator L can readily be used on
the harmonic oscillator wave function ψ1(x) = 21/2π−1/4x ×
exp(−x2/2) to find

(11)γ
(2)
F (x, y) = 1 + 2xy√

π
exp

(
−x2 + y2

2

)
.

One immediate check on Eq. (10) is to put y = x: this yields
	(x,x) = 0, which must be so since the particle density is iden-
tical for spinless fermions and impenetrable bosons.

Analogous, though inevitably more lengthy expressions for
3 particles are given below:

	(3)(x, y)

= e− 5
2 (x2+y2)

2π3/2

{
e2x2(

8x2 − 4xy − 8
)

+ e2y2(
8y2 − 4xy − 8

) + 4ex2+y2(
x2 + y2 − 4xy + 4

)

− 2
√

2ex2+y2[
erf(x) − erf(y) − sign(x − y)

]
× [

ex2(
x − 5y + 6x2y − 2xy2)

− ey2(
y − 5x + 6xy2 − 2yx2)

+ ex2+y2
√

π

2

(
3 + 4xy − 2y2 − 2x2 + 4x2y2)

(12)× (
erf(x) − erf(y)

)]}
.

Again, using the harmonic oscillator wave function ψ2(x) and
the operator L(x, y) the analogue of Eq. (11) is readily found
to be

γ
(3)
F (x, y) = 1

2
√

π

(
3 + 4xy − 2y2 − 2x2 + 4x2y2)

(13)× exp

(
−x2 + y2

2

)
.

This is identical to the result given by Forrester et al.
We consider next a simpler (in principle!) characterization of

the density matrices γF(x, y) and γIB(x, y) by the momentum
density n(p), defined (with h̄ = 1 throughout) by

(14)n(p) = 1

2π

∫
γ (x, y)eip(x−y) dx dy.

For the fermion case, use of γF(x, y) plus properties of the
fermion operator L(x, y) allow nF(p) to be obtained for an ar-
bitrary number of particles as

(15)nF(p) = 1

2
φ2
N (p) +

∞∫
p

kφ2
N (k) dk,

where N is the number of nodes in the momentum wave func-
tion φN (p), i.e. N = 1 for 2 particles, N = 2 for 3 parti-
cles, etc. Eq. (15) was obtained from Eq. (1) by calculating
separately the contribution originating from the constant 1/2
and that from the differential operator L. Integration of the
first is straightforward and yields n1(p) = 1

2φ2
N (p), whereas

to obtain the second term we first differentiated Eq. (14) with
respect to p to eliminate the denominator (x − y) and then
integrated by parts on spatial coordinates. Integration over mo-
mentum finally yields the second term on the RHS of Eq. (15),
n2(p) = ∫ ∞

p
kφ2

N (k) dk. It is worth noticing that n1(p) con-
tributes to nF(p) a total probability 1/2 irrespectively of the
number of particles, from the normalization of φN (p): the con-
tribution n2(p) will therefore be progressively more important
as N increases. We have used Eq. (15) to obtain nF(p) for 10
particles, the two separate terms on the RHS of Eq. (15) also
being displayed in Fig. 1. Evidently, n2(p) is the dominant con-
tribution to nF(p) as N gets larger.

To date, we have no simple analytical counterpart of Eq. (15)
for the density matrix difference 	(x,y) defined in Eq. (9)
above. However, we can progress somewhat beyond the re-
sults of Minguzzi et al. [4] on the high momentum tail of the
momentum density nIB(p) for impenetrable bosons. Using our
analytical results for γIB(x, y) plus MATHEMATICA, we find

(16)n
(N)
IB (p)

∣∣
p→∞ = AN

p4
+ BN

p6
+ O

(
p−8).
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Fig. 1. Momentum distribution nF(p) for 10 harmonically confined fermions as
function of momentum p (arbitrary units). The dotted and dashed lines refer to
the two contributions n1(p) and n2(p) to the total momentum distribution nF
(solid line).

Table 1
Coefficients of the large-p expansion of nIB(p), Eq. (16), for N = 2 to 5

N = 2 N = 3 N = 4 N = 5

AN ( 2
π )3/2 27

8 ( 2
π )3/2 475

64 ( 2
π )3/2 13715

1024 ( 2
π )3/2

BN
11
2 ( 2

π )3/2 429
16 ( 2

π )3/2 9889
128 ( 2

π )3/2 353485
2048 ( 2

π )3/2

The coefficients AN and BN are collected in Table 1 for N =
2–5 inclusive. Additionally, Fig. 2 shows plots of AN and BN

vs N , demonstrating that both AN and BN approximately fol-
low power laws in this range of N with exponents 3 and 4,
respectively. Though we have not achieved an analytic result
for the low-momentum limit nIB(p → 0), Papenbrock’s find-
ing [5] from his numerical studies is that this is proportional
to N .

We shall conclude this Letter by enquiring as to the rela-
tion between γIB(x, y) and γF(x, y), using the formalism of
density functional theory. This theory tells us (formally, be-
cause presently we do not know the relevant functionals) that
both density matrices are functionals of their diagonal elements,
which as already stressed are equal to the particle density ρ(x).
From the symmetry between x and p space for γF and then the
use of the x coordinate analogue of Eq. (15) we have

(17)ρ(x) = ρ
[
ψN (x)

]
,

where again N is the number of nodes. Since ρ(x) is also the
diagonal element γIB(x, x) we have, with γF(x, y) ≡ γF[ρ], the
formal result

(18)γIB(x, y) ≡ γIB
[
γF(x, y);ρ;ψN

]
.

Though we cannot proceed generally from Eq. (18) for an ar-
bitrary number of particles N + 1, we have for 2 particles
utilized the explicit Eqs. (9)–(11) to write γIB(x, y = 0) in the
form (18). Since from Eq. (11) at y = 0 we have γF(x,0) =
π−1/2 exp(−x2/2), it is straightforward from Eq. (10) to show
Fig. 2. Coefficients AN and BN (in log scale) of the large-p expansion of
nIB(p) as function of N (in log scale). The lines are guides to the eyes.

that

(19)
	(2)(x,0)

γ
(2)
F (x,0)

= sign(x)

π1/2

[
2x − π1/2 erf(x)

]
.

From ψ1(x) quoted above we can express the RHS of Eq. (19)
solely in terms of ψ1(x)/γ

(2)
F (x,0). The result is

	(2)(x,0)

γ
(2)
F (x,0)

= sign(x)

[
21/2π−3/4ψ1(x)

γ
(2)
F (x,0)

(20)− erf

{
2−1/2π−1/4ψ1(x)

γ
(2)
F (x,0)

}]
.

Eq. (20) for N = 2 exemplifies the functional relationship (18).
At y = 0, Eq. (18) evidently reduces to γIB(x,0) ≡
γIB[γF(x,0);ψ1(x)/γF(x,0)] and hence, for this admittedly
simple case we can reconstruct γIB(x,0) explicitly using solely
harmonically confined fermion properties. In fact, the above
argument is readily generalized for all y �= 0 and again the func-
tional form (18) is confirmed. However the detail proliferates
and we shall not quote the y generalization.

In summary, the main achievements of the present Letter are
as follows: (i) the construction of the explicit forms of the dif-
ference density matrix 	(x,y) in Eq. (9) for 2–4 particles inclu-
sive, with the evident demonstration that 	(x,y)|y→x is identi-
cally zero for those three examples; (ii) the fermion momentum
density nF(p) given solely in terms of the momentum eigen-
function φN (p) in Eq. (15), where N is the number of nodes
in the momentum wave function; (iii) the high momentum tail
of the impenetrable boson density nIB(p) → ANp−4 +BNp−6

where AN is approximately proportional to N3 and BN to N4

in a range of low particle numbers; and (iv) the formal density-
functional-theory relation (18) between the one-body density
matrix for impenetrable bosons and purely harmonically con-
strained fermion properties. However, in (iv) only for 2 particles
has it proved possible to construct such a functional relationship
quite explicitly, and this may prove a useful direction for future
studies.
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