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Abstract

We look at a grain rotation mechanism in a bidimensional pattern forming system exhibiting an hexagonal phase. This mechanism is

believed to be relevant in the coarsening process of a variety of physical systems with short- and long-range competing interactions. We

focus on the Cahn–Hilliard model with thermal fluctuations. The grain rotation process is uncovered from the dynamical evolution of a

misoriented circular grain surrounded by an otherwise perfect crystal.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

During the last two decades a great deal of effort was
committed to understanding the mechanisms of pattern
formation, ubiquitous in a number of diverse contexts
(Rayleigh–Benard convection, ferrimagnetic repulsion in
garnet films, and biological growth [1] or block copolymer
thin films [2]). Among the different periodic and quasi-
periodic equilibrium structures experimentally observed in
two dimensional systems are stripes, hexagonally ordered
disks, and quasi-crystals. The hexagonal systems pose a
particularly challenging problem for analytical treatment
and have been addressed in the literature, albeit less
frequently than other stable phases (e.g. stripes), with
varying degrees of success.

In order to understand the ways coarsening proceeds and
order is achieved, several mechanisms have been proposed
and studied: curvature driven grain growth [2,3], annihila-
tion of topological defects [4] and, to a lesser extent, grain
rotation [5] are examples of such mechanisms.

In particular, the mechanism of grain rotation has been
addressed in the context of crystalline solids [6,7].
front matter r 2006 Elsevier B.V. All rights reserved.
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In this work, we consider ‘soft’ 2-D systems displaying
hexagonal symmetry. Differently from crystalline solids or
Lennard-Jones crystals, such soft materials posses the
ability of relaxing the elastic free energy through the strain
of local domains.
We focus on the dynamical evolution of a misoriented

circular region planted in an otherwise perfect lattice
exhibiting hexagonal order. For different initial misorien-
tations of the interior region of the circle, we track its
evolution at later times and compare results. The conclu-
sions prove helpful in elucidating the various paths that
such systems follow to equilibrium.
2. The model and numerical implementation

The context in which our numerical experiments were
conducted is provided by the classical Cahn–Hilliard–Cook
model [8], describing the dynamics for a conserved order
parameter:

qc
qt
¼Mr2 dF

dc

� �
þ z, (1)

where c is the order parameter, M is a phenomenological
constant accounting for the mobility of the system, F ðcÞ is
the free energy functional and z stands for a random noise
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bath that is both time and space dependent, of zero average
and with constant amplitude.

The free energy functional F ðcÞ splits as

F ðcÞ ¼ FSðcÞ þ FLðcÞ, (2)

where each term models short- and long-range interactions.
The short-range term has the typical Landau form,

FSðcÞ ¼
Z

dr HðcÞ þ
D

2
rcð Þ

2

� �
, (3)

where HðcÞ represents the mixing free energy of the two
phases and the gradient term accounts for the free energy
penalty generated by variations of c in space (energy at the
interface), and D is a diffusion coefficient.

The free energy HðcÞ has the form

HðcÞ ¼ ac2=2� lc3=3� mc4=4. (4)

The long-range contribution to the free energy, on the
other hand, is taken to be

FLðcÞ ¼
b
2

Z
dr0 drGðr� r0ÞcðrÞcðr0Þ,

where Gðr� r0Þ solves r2GðrÞ ¼ �dðrÞ.
The numerical experiments were performed using the cell

dynamics method on a two-dimensional square lattice
according to the scheme [9]:

cðn; tþ 1Þ ¼ Gðcðn; tÞÞ � hGðcðn; tÞÞ � cðn; tÞi

� bcðn; tÞ þ Zzðn; tÞ, ð5Þ

where

Gðcðn; tÞÞ ¼ f ðcðn; tÞÞ þDðhcðn; tÞi � cðn; tÞÞ, (6)

and the map function f ðcðn; tÞÞ is defined in Ref. [5]. In this
context, the lattice coordinates are n ¼ ðnx; nyÞ and hXi
stands for the average of X over all nearest neighbors and
next nearest neighbors [9]. The Laplace operator is also in
averaged form r2ðXÞ ¼ 3½hXi � X�.

Our simulations employed cyclic boundary conditions,
typically on a 512� 512 lattice. In Eq. (5) Z is the noise
Fig. 1. Circular misoriented grain in the interior of a larger one: (a) hexagonal

(b) corresponding line of dislocations along the grain boundary.
amplitude and z are random numbers uniformly distrib-
uted in the interval ½�1; 1� (see Ref. [5]). The external
crystal was obtained by setting the following initial
condition in (1):

cðrÞ ¼
1

2
c0

X3
j¼1

ekj �r þ c.c., (7)

where c0 is the initial amplitude, k1 ¼ ðk0; 0Þ, k2 ¼

ð�k0;�
ffiffiffi
3
p

=2 k0Þ and k3 ¼ ð�k0;
ffiffiffi
3
p

=2 k0Þ are the wave
vectors of the hexagonal lattice. The interior of the circle
was also obtained through (7) but with wave vectors
rotated to the desired angle.

3. Results

A series of runs were performed for different orienta-
tional mismatches of the interior circular region, ranging
from small angles (2:5�) to near the largest possible (30�).
For each run, the noise amplitude was held constant
(Z ¼ 0:25).
Fig. 1a shows a circular grain of radius R ’ 13a, were a

is the average inter-sphere distance (in our experiments a ’

6:15 lattice units) with a misorientation of 10�. Note in this
figure that the disks near the interface are strongly
distorted. The local field acts on these disks by changing
both shape and size. This feature, distinctive of soft
materials, allows for extra degrees of freedom to further
relax the free energy.
Fig. 1b shows the Delaunay triangulation corresponding

to Fig. 1a. The triangulation allows us to determine both
local orientation of the hexagonal pattern and topological
defects [5]. For all runs the only defects observed were
dislocations (penta–hepta defects). Disclinations (orienta-
tional defects) did not occur. In this figure penta (dark
grey/red) and hepta (light grey/ green) circles connected
through a line (lighter grey/yellow) represent a dislocation.
Notice that dislocations decorate the grain boundary of the
grain depicted in Fig. 1a. It was observed that the spacing
pattern containing a circular grain with a 10� orientational mismatch and
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between dislocations satisfies d�a=Dy, where Dy is the
misorientation between grains. This result is in agreement
with the description of straight low angle grain boundaries
as arrays of dislocations [10].

In the range of parameters considered in this work the
equilibrium state the system reaches is an hexagonal lattice
with long range order, and its free energy is roughly
invariant under rigid rotations. The paths towards this
equilibrium consists mostly of the shrinking of the circular
domain possibly accompanied by grain rotation. This
shrinking process induces configurations in which the
dislocations spanning the grain boundary are progressively
closer to their neighbors, favoring recombination and
annihilation events. Reducing the average distance between
neighboring dislocations implies the rotation of the interior
circular domain increasing its misorientation. As the
misorientation is bounded above, the grain rotation
mechanism saturates and shuts off. Shrinking, then, stands
as the only resource to achieve order.

This picture does not describe accurately what goes on at
small angle misorientations if the initial setup is not
rescaled. Evidently, the description of grain boundaries as
an array of dislocations fails for configurations in which
the average distance between dislocations becomes of the
order of the grain size.

Fig. 2 shows a snapshot of the evolution of the
misorientation angle as a function of the initial misorienta-
tion. Notice that the mechanism the system chooses to
adjust to local equilibrium depends strongly on the initial
conditions: at the rightmost endpoint of the misorientation
range, the configuration stays put as it cannot increase its
misorientation any further. In this case, the mean distance
between dislocations becomes comparable to a lattice
constant favoring the recombination of dislocations.

For initial misorientations of the order 10� and 22� the
system, not unexpectedly, increases the orientational
Fig. 2. Snapshot of the time evolution of Dy=Dy0 as a function of the

initial misorientation after 106 time-steps.
mismatch (Dy=Dy041) when kicked by the thermal bath,
trying to fall into a local minimum of the potential.
Although according to the Read–Shockley formula [10] the
line tension is expected to increase with misorientation, the
surface energy decreases as a consequence of the circle
shrinking. Throughout this process, the number of
dislocations remains constant. As time proceeds, the
simultaneous effects of shrinking and rotation induce the
recombination of dislocations, rearranging the boundary
of the grain.
Much like in crystalline solids the line tension is expected

to be orientationally dependent. Fig. 3 clearly shows
anisotropic effects for a configuration with initial misor-
ientation of 15�. In this configuration the grain adopts a
quasi-hexagonal form in the sense that dislocations no
longer span a circular boundary but accommodate to the
orientational anisotropy forming an hexagon-like figure
(obviously, in a purely isotropic case the surface minimiz-
ing the free energy is a circle).
In Fig. 2, we observe that the local misorientation is

decreased for low angles (less than 7:5�), contrary to
what occurred for previously discussed cases. Although
Dy=Dy0 ! 0 at the center of the circle, there are important
distortions in the orientational field in the neighborhood of
the core of the dislocations (see Fig. 4b). Since the typical
distance between dislocation is of the order of R no
screening effects of the long range potential occur as the
ones reported for straight grain boundaries [11]. Then, the
reorganization of the pattern at the center of the initial
circle is a consequence of the interaction between the long
range fields of the individual dislocations.
Fig. 3. Grain configuration at intermediate times for an initial condition

with 15�. Note the appearance of facets as consequence of line tension

anisotropy.
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Fig. 4. For small values of Dy0, the orientational energy is not longer uniformly distributed: (a) dislocation array at intermediate times corresponding to

Dy0 ¼ 2:5� and (b) associated orientational map.
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Regarding the noise, it was observed that the relaxation
processes were sensitive to its amplitude (for more details
see Ref. [5]).

4. Conclusions

A grain rotation mechanism was reported for 2D
systems displaying a stable hexagonal phase. Through
numerical simulations of the Cahn–Hilliard–Cook model,
a configuration consisting in a misoriented circular grain
was set up and its evolution tracked. The notion of grain
rotation together with the mechanism of grain shrinking
was addressed through orientational maps and topological
defects. For suitable choices of the grain size and noise
amplitude, the systems ability to reach an ordered state was
shown to correspond to the formation of well defined grain
boundaries by an even distribution of dislocations. This
was achieved mostly by grain shrinking (effectively bring-
ing dislocations together) or by an a priori counter-intuitive
rotation towards a more disoriented configuration. A more
complete picture of mechanisms leading to order and
analytical treatments will be the subject of further research.
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