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We have previously demonstrated that parathyroid hormone (PTH) induces apoptosis in human colon
adenocarcinoma Caco-2 cells but the effects of its tumoral analog PTH-related peptide (PTHrP) in this cell line
are still unknown. In the present work we investigated whether PTHrP, as PTH, is able to induce Caco-2 cell
apoptosis or if it exerts protective effects under apoptotic conditions. Using Caco-2 cells cultured under serum
deprivation in the presence or absence of PTHrP we demonstrated that, differently to PTH, its analog employed
at the same concentration (10~ M) is not a pro-apoptotic hormone. Cells were exposed to an oxidative insult in

ffiﬁvrvlf 1 the form of hydrogen peroxide to induce apoptosis, which leads to a 50% loss of cell viability determined by MTS
Caco-2 cell assay, morphological changes observed under fluorescence microscopy and Western blot analysis. Herein we
Apoptosis demonstrate, for the first time, that pre-treatment with PTHrP prior to H,0, incubation, prevents cell death
MAPK induced by the apoptotic inductor; and using specific inhibitors we evidenced that protein kinase B (AKT), extra-

AKT cellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2) and p38 mitogen-activated
protein kinase (MAPK) mediate this anti-apoptotic effect. Also, we found that PTHrP decreases the pro-apoptotic
protein BAX levels and increases the protein expression of the anti-apoptotic HSP27. Immunoblot analysis
revealed that H,0, increases the phosphorylation levels of AKT and MAPKSs, exhibiting a cellular defense
response; and consequently increases phospho-BAD levels. The H,0,-induced activation of protein kinases is
reverted when cells are pre-treated with PTHrP. Altogether these results evidence a protective effect of PTHrP

under apoptotic conditions in intestinal cells, which may be mediated by AKT and MAPKs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Colorectal adenocarcinoma accounts for over 90% of the malignant
tumors of the large bowel, and is the second most common cause of
death from malignant disease in the Western world [1,2]. Cellular mi-
gration and invasion are critical for the ability of tumor cells to metas-
tasize locally and to distant sites [3]. These properties are dependent
on inherent tumor cell characteristics [4-6] and on the presence
of several growth factors in the metastatic microenvironment. One
of these factors is parathyroid hormone-related protein (PTHrP),
whose expression correlates with the severity of colon carcinoma
[7]. PTHrP was originally described as the factor responsible for the
humoral hypercalcemia of malignancy [8]. PTHrP has limited homol-
ogy to PTH in its N-terminal region and can bind the same receptor
as PTH with similar biological effects. The PTH receptor (PTHIR) is
found in a variety of tissues not regarded as classical PTH target tis-
sues, including intestinal cells [9,10]. PTHrP exerts a much broader
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spectrum of effects in both normal physiology and disease states.
The protein regulates cell growth, cell survival, smooth muscle relax-
ation and development [11,12]. Multiple studies demonstrate that
PTHrP plays a major role in tumors that metastasize to the bone,
such as breast and prostate cancer [13-15]. There is now increasing
evidence that PTHrP also plays a role in cancers that metastasize to
other regions of the body [16-20], such as colon tumors which
show a preference for liver metastasis [2].

Apoptosis is especially relevant in the gastrointestinal tract, as this
tissue undergoes a continued process of cell turnover that is essential
for its normal function [21]. Defective apoptosis may allow the progres-
sion of disease and maintain the resistance of colon cancer cells to cyto-
toxic therapy [22]. Thus, it is of interest to elucidate the mechanism as
well as the various physiological/pathological apoptotic inductors in
the intestinal epithelium. We have previously demonstrated that PTH,
at long term exposure and in a serum-deprived medium, induces apo-
ptosis in Caco-2 cells expressing PTHIR [23]. However, the effects of
its tumoral analog PTHrP in this intestinal cell line are still unknown.
Taking in account that the gastrointestinal epithelium is prone to cancer
development, particularly in the colon, understanding the role of PTHrP
in this system may provide important information for the diagnosis and
treatment of colon cancer. Since PTHrP inhibits or promotes apoptosis
depending on the cell type involved [24-26], in the present work we
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investigate whether PTHrP, as PTH, is able to induce Caco-2 cell apopto-
sis or if it exerts protective effects under apoptotic conditions.

2. Materials and methods
2.1. Materials

DAPI and MitoTracker Red (MitoTracker Red CMXRos) dyes were
from Molecular Probes (Eugene, OR, USA). High glucose Dulbecco's mod-
ified Eagle's medium (DMEM) and synthetic human PTHrP (1-34) were
from Sigma Chemical Co. (St. Louis, MO, USA). Fetal bovine serum (FBS)
was from Natocord (Cérdoba, Argentina). Antibodies were from the
following sources: anti-phopho-ERK1/2(Thr202/Tyr204), anti-ERK1/2,
anti-SAPK/JNK, anti-phospho-SAPK/JNK(Thr183/Tyr185), phospho-p38
MAPK, anti-phospho-AKT(Ser473), anti-phospho-Bad(Ser112), anti-
phospho-Bad(Ser136) and HSP27 were from Cell Signaling Technology
(Beverly, MA, USA). Anti-AKT1/2/3, anti-p38a MAPK, anti-atubulin,
goat anti-mouse and goat anti-rabbit peroxidase-conjugated secondary
antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Anti-BAX antibody was from Thermo Fisher Scientific (Rockford, IL,
USA). Anti-actin antibody and Trypan blue dye were from Sigma
(Sigma Chemical Co., St. Louis, MO, USA). PD98059 was from Tocris
(Ellisville, MO, USA), and SB203580 and LY294002 were from
Calbiochem (San Diego, CA, USA). CellTiter 96® Aqueous One Solution
Cell Proliferation Assay kit was from Promega (Madison, WI, USA). Pro-
tein size markers were from Amersham Biosciences (Piscataway, NJ,
USA), and PVDF (Immobilon polyvinylidene difluoride) membranes
and ECL chemiluminescence detection kit were from Amersham (Little
Chalfont, Buckinghamshire, England). All other reagents used were of
analytical grade.

2.2. Cell culture

The human colon cell line Caco-2 (from the American Tissue Culture
Bank (Bethesda, USA)) was cultured at 37 °C in DMEM containing 20%
FBS, 1% non-essential acids, 100 Ul/ml penicillin, 100 mg/ml strepto-
mycin and 50 mg/ml gentamycin in a humid atmosphere of 5% CO, in
air. The treatments were performed with sub-confluent cultures in
serum free medium by adding vehicle or PTHrP (10~8 M) for 1 to
5 days. When apoptotic induction was carried out, 0.5 mM H,0, for
4.5 h was added. Where indicated, cells were pretreated for 30 min
with one of the following inhibitors: LY294002, PD98059, SP600125
or SB203580. The inhibitors were also present during subsequent expo-
sure to the hormone or the apoptotic inductor.

2.3. Annexin V staining for apoptosis positive cells and flow cytometry

After treatment, Caco-2 cells were washed twice with cold PBS
and then resuspended in 1x binding buffer at a concentration of
1 x 10° cells/ml. As a marker of cell death, phosphatidylserine expo-
sure was measured by the binding of Annexin V-fluorescein isothio-
cyanate (FITC), by using FITC Annexin V Apoptosis Detection Kit I
(BD Bioscience) according to the instructions of the manufacturer.
For differentiation of apoptosis and necrosis, cells were also stained
with propidium iodide (PI) to detect membrane integrity and were
immediately analyzed with a FACScan flow cytometer (FACSCalibur,
BD Biosciences). A minimum of 5000 events were collected on each
sample by duplicate.

2.4. Cell viability assay

To determine the number of viable cells a CellTiter 96® AQueous
One Solution Cell Assay (MTS) from Promega was used, which is
based on the ability of viable cells to bioreduce the tetrazolium com-
pound (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium, inner salt, MTS) into a colored

formazan product that is soluble in tissue culture medium. The inten-
sity of the product color is directly proportional to the number of
living cells in the culture. Cells were seeded in quadruplicate at
3 x 10% cells/well in 96-well plates. After treatment, 20 ul of MTS
was added per well, followed by incubation for ~30 min at 37 °C. Ab-
sorbance was then measured at 490 nm with a spectrophotometer.
To determine background absorbance, wells without cells were used
as negative controls.

2.5. Trypan blue uptake

The percentage of trypan blue-positive cells in each culture condi-
tion was used to calculate cell survival. Nonadherent cells combined
with adherent cells were released from the cultured dish using trypsin-
EDTA, resuspended in medium containing serum, and collected by
centrifugation. Subsequently, 0.4% trypan blue was added and the per-
centage of cells exhibiting both nuclear and cytoplasmic staining was de-
termined using a hemocytometer. At least 100 cells/condition performed
by quadruplicate were counted.

2.6. Western blot analysis

Proteins in homogenate preparations obtained from Caco-2 cells were
quantified by the Bradford method [27]. Proteins dissolved in 6 x Laemmli
sample buffer were separated (~25 pg/lane) using SDS-polyacrylamide
gels (10% acrylamide) and electrotransferred to PVDF membranes. After
blocking with 5% non-fat milk in TBST buffer (50 mM Tris pH 7.2-7.4,
200 mM Nadl, 0.1% Tween 20), the membranes were incubated overnight
with the appropriate dilution of primary antibody in TBST plus 1% non-fat
milk. After washing, the membranes were incubated with the appropriate
dilution of horse radish peroxidase-conjugated secondary antibody in
TBST plus 1% non-fat milk. Finally, the blots were developed by using
a chemiluminescence substrate and digitalized with a GS-700 Imaging
Densitomer (Bio-Rad, Hercules, CA, USA).

2.7. Stripping and reprobing membranes

The complete removal of primary and secondary antibodies from
the membranes was achieved by incubating the membranes in
stripping buffer (62.5 mM Tris-HCl pH 6.8, 2% SDS and 50 mM
B-mercaptoethanol) at 55 °C for 30 min with agitation. Then, mem-
branes were washed for 10 min in TBST (1% Tween-20) and blocked,
as indicated above, for 1 h at room temperature. After that, mem-
branes were ready to reprobe with the corresponding antibodies.

2.8. Cytochemistry

Cells grown on glass coverslips were stained for 1 h at 37 °C with
100 nM MitoTracker Red CMXRos (Molecular Probes) before fixation
to visualize mitochondria [28]. Then cells were washed with PBS and
fixed in 100% methanol (10 min, —20 °C). After washing, fixed cells
were DAPI-stained for 30 min at room temperature in the darkness. Fi-
nally the coverslips were analyzed using an epifluorescent microscope.

2.9. Statistical analysis

The statistical significance of the data was evaluated using
Student's t test [29], and probability values below 0.05 (P < 0.05) or
0.01 (P < 0.01) were considered significant or highly significant, re-
spectively. Quantitative data are expressed as means 4 SD from the
indicated set of experiments.
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3. Results
3.1. PTHrP is unable to induce apoptosis in Caco-2 cells

In early stages of apoptosis, cells lose membrane asymmetry and
translocate the membrane phospholipid, phosphatidylserine, to the
outer leaflet of the plasma membrane where it can be detected by its
high-affinity binding to Annexin V. To explore the possibility that
PTHrP promotes apoptosis in Caco-2 cells, we analyzed whether
hormone-treated cells have morphological alterations typical of apo-
ptosis. To that end, Caco-2 cells were incubated in a free-serum media
with vehicle (control) or PTHrP 1078 M for 1 or 3 days, and then
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incubated with FITC Annexin V in a buffer containing propidium iodide
(PI) and analyzed by two-parameter flow cytometry analysis, to evalu-
ate early and late apoptosis. As positive control of apoptosis, cells were
exposed to an oxidative insult in the form of hydrogen peroxide (H,0,,
1 mM) for 2 h. As shown in Fig. 1A a great percentage of control cells are
FITC Annexin V and PI negative, indicating that they are viable and not
undergoing apoptosis after 3 days with serum deprivation. As expected,
after H,0-, treatment, a large population of cells are FITC Annexin V and
PI positive, indicating that they are in an end stage of apoptosis or al-
ready dead. However, the treatment with PTHrP does not show changes
in comparison with their respective controls demonstrating that, differ-
ently to PTH, the PTH analog is not a pro-apoptotic agent in Caco-2 cells
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Fig. 1. Flow cytometry analysis of FITC-Annexin V staining. A) Caco-2 cells were treated with vehicle (control) or 10~8 M PTHrP for 1 and 3 days. Positive control cells were treated
with 1 mM H,0, for 2 h. Then were incubated with FITC-Annexin V in a buffer containing propidium iodide (PI) and analyzed by flow cytometry. The lower left quadrants of each
panels show the viable cells, which exclude PI and are negative for FITC-Annexin V binding. The upper right quadrants contain the non-viable, necrotic cells, positive for
FITC-Annexin V binding and for PI uptake. The lower right quadrants represent the apoptotic cells, FITC-Annexin V positive and PI negative, demonstrating cytoplasmic membrane
integrity. One representative experiment out of three is shown. B) Quantification of each quadrant as percentage of total event collected + SD.
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under the conditions employed for this experiment. Fig. 1B shows the
quantification of each quadrant as percentage of total event collect-
ed + SD.

3.2. Loss of cell viability and activation of MAPKs and AKT induced by
H>0,

In order to evaluate the probable anti-apoptotic effect of PTHrP in
Caco-2 cells, we tested its action in the presence of an apoptotic stim-
ulus. Reactive oxygen species such as H,0-, are involved in many cel-
lular processes that positively and negatively regulate cell fate. We
initially evaluated different concentrations and time points of incuba-
tion with H,0; in Caco-2 cells to determine an optimum concentra-
tion to induce apoptosis. The results of Fig. 2A indicate that the
effects of H,0, on Caco-2 cells are both time and concentration de-
pendent. Although a range of 2 to 8 h of treatment resulted in a sig-
nificant decrease of cell viability, the studies reported in this work
were performed with 4.5 h of incubation with 0.5 mM H,0, for
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Fig. 2. Hydrogen peroxide (H,0,)-induced loss of cell viability. A) Caco-2 cells were ex-
posed to 0.5 and 1 mM H,0, and cell viability was measured by MTS assay over time.
Values are expressed as mean + SEM from 2 independent experiments performed in
quadruplicate. Significance levels *p < 0.05, **p < 0.01 vs. control. B) Caco-2 cells
grown on glass coverslips were incubated with vehicle (control) or H,0, (0.5 mM)
for 4.5 h and then stained with 100 nM MitoTracker Red and DAPI to evidentiate mito-
chondria and nucleus, respectively. Cell morphology was analyzed by epifluorescence
microscopy. C) Caco-2 cell lysates were prepared and subjected to Western blot anal-
ysis using anti-phospho-AKT, anti-phospho-ERK and anti-phospho-]NK antibodies. The
blots are representative of three independent experiments.

being a less aggressive apoptotic stimulus. The previous result is
supported by microscopy images that show the typical mitochondrial
and nucleus morphological changes observed in apoptotic cells. Control
cells exhibit normal mitochondrial distribution and nucleus staining
(Fig. 2B; upper panels), whereas H,0, induced nuclear condensation
and mitochondrial redistribution around the nucleus in apoptotic
Caco-2 cells (Fig. 2B, lower panels).

Then, the proteins associated with survival events were studied by
Western blot analysis to evaluate the response of Caco-2 cells to the ap-
optotic agent. As observed in Fig. 2C, using specific antibodies that rec-
ognize phospho-AKT, a downstream PI3-K effector, phospho-ERK1/2
and phospho-]NK MAPKs, we found that, after 2 h of 0.5 mM H,0,
treatment, cells exhibit a defense response with a significant increase
in the activation/phosphorylation of ERK1/2 and AKT. However, at lon-
ger treatment times (4-8 h) with H,0,, a less pronounced effect in the
phosphorylation of ERK1/2 and AKT is observed. Moreover, comparable
effects on phospho-ERK1/2 were obtained when cells were treated with
the apoptotic agent at 1 mM. JNK is also activated but with a different
pattern, and in a time dependent way, being maximal between 6 and
8 h of hydrogen peroxide exposure.

3.3. PTHrP prevents H,0,-induced apoptosis of Caco-2 cells

To investigate whether PTHrP exerts protective effects under apo-
ptotic conditions, we performed the treatments as schematized in
Fig. 3A for the subsequent experiments. After 1,3 or 5 days of treatment
with vehicle or 108 M PTHrP, the apoptosis inductor was added for an
additional 4.5 h and then, the percentage of apoptotic cells was mea-
sured by means of trypan blue uptake as explained in Materials and
methods. Pre-treatment of Caco-2 cells with the PTH analog for 3 and
5 days prevent by 40% and 48%, respectively, the apoptotic effect of hy-
drogen peroxide (Fig. 3C and D). In addition, and in agreement with our
previous observation, these results demonstrate that PTHrP alone, in
the absence of serum, is not able to induce apoptosis in Caco-2 cells
after 1 to 5 days of exposure (Fig. 3B-D, 3rd lane).

3.4. Effect of PTHrP on BAX and HSP27 protein levels

Taking in account that there is a demonstrated correlation be-
tween the expression of heat shock proteins (HSPs) and increased
cell survival, we evaluate through Western blot analysis the chaper-
one expression levels in response to PTHrP. As shown in Fig. 4, immu-
noblot analysis using an anti-HSP27 monoclonal antibody revealed
that PTHrP increases the expression of HSP27 after 3 days of exposure
(Fig. 4B). As expected, the incubation with the apoptotic stimulus
(H20,) decreases the expression of the anti-apoptotic protein
HSP27 and, the pre-incubation of Caco-2 cells with PTHrP for 1 and
3 days prevents the decrease of HSP27 protein levels induced by
H,0, (Fig. 4A and B). After 5 days of pre-treatment with PTHrP, the
levels of HSP27 are highly significant compared to both control and
H,0, conditions. The pro-apoptotic protein BAX, in physiological con-
ditions is a cytosolic protein, however, upon apoptosis induction BAX
inserts into the mitochondrial outer membrane, where it is thought to
form supramolecular openings, alone or in association with other
pro-apoptotic members, to permit the release of pro-apoptotic factors
such as cytochrome c, the second mitochondrial activator of caspases
SMAC/DIABLO and the apoptosis initiating factor (AIF), which acti-
vates caspases in the nucleus [30,31]. Employing a specific anti-BAX
antibody we observed that PTHrP does not modify the protein
expression levels after 1 day of exposure (Fig. 4A) but decrease BAX
levels after 3 days of treatment (Fig. 4B, 3rd lane). Even more,
under apoptotic conditions in the presence of H,0,, PTHrP exposure
for 3 and 5 days significantly reduced BAX protein levels (Fig. 4B
and C, 4th lane).
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Fig. 3. PTHrP prevents H,0,-induced apoptosis of Caco-2 cells. A) Schematic diagram of the cell treatments for the following experiments. To investigate the effect of PTHrP in ap-
optotic conditions the assays were carried out in four groups: (I) Control; (II) H,0, (0.5 mM-4.5 h); (IlI) PTHrP (10~ M); (IV) H,0, + PTHrP. Caco-2 cells were pretreated with
vehicle or 10~8 M PTHrP for 1 (B), 3 (C) and 5 (D) days, and subsequently H,0, was added for 4.5 h. The percentage of apoptotic cells was determined by trypan blue exclusion, as
described in the Materials and methods. Bars represent the mean 4+ SEM of 3 independent experiments performed in quadruplicate. *P < 0.05 vs. control; **P < 0.01 vs. control;

#P < 0.05 vs. H,0,. *P < 0.01 vs. H,0,, n.s. = not significant.

3.5. PTHrP attenuates H>0,-dependent MAPKs and AKT activation

With the purpose of evaluating the signal transduction pathways in-
volved in the anti-apoptotic effect of PTHrP on Caco-2 cells, we studied
the phosphorylation/activation state of the pro-survival kinase AKT and
the well known mitogen-activated protein kinases (MAPKs): ERK1/2,
JNK1/2 and p38 MAPK. As observed in Fig. 5 (A-C), Caco-2 cells respond
to the apoptotic agent (0.5 mM H,0,, 4.5 h) with a high increase in the
phosphorylation levels of AKT and MAPKs. According to the previous
results of this work that clearly demonstrate that H,O, at the concen-
tration employed is an apoptotic inductor, the activation of AKT and
MAPKs suggests a cell defense response against the H,O, injury.
Differently to H,O,, PTHrP alone does not activate AKT and the MAPK
pathways in Caco-2 cells, at none of the times probed (Fig. 5A-C, 3rd
lane). Additionally, after 1 day of incubation with the hormone, no signif-
icant changes were observed in the expression levels of all the kinases

studied among the different conditions (Fig. 5D). Similar results were
obtained at 3 and 5 days of PTHrP exposure (data not shown).

Of relevance, under apoptotic conditions, when cells are pre-treated
with the hormone for 3 days prior the exposure to H,0,, the levels of
phosphorylation/activation of all these kinases decrease (Fig. 5B, 4th
lane). As PTHrP exerts a protective effect, these conditions are less ad-
verse than the cultures exposed to H,0, alone and for this reason, it is
not essential for Caco-2 cells to activate a defense mechanism. Thus,
the activation of AKT and MAPKs seems to be unnecessary.

We next studied possible changes in the phosphorylation status of
the pro-apoptotic protein BAD, a BH3 domain-containing protein,
which forms heterodimers with Bcl-2 or Bcl-xI resulting in cytochrome
¢ release from mitochondria [30]. As shown in Fig. 5 (E-G, 2nd lane)
and, congruent with the above result, the Western blot analysis evi-
dence that apoptosis induction by H,0, increases the phospho-BAD
levels at any time probed, while only the pre-incubation with PTHrP
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Fig. 4. Effect of PTHrP on Caco-2 cell BAX and HSP27 levels. Following the treatments explained in Fig. 3A Caco-2 cells were pre-treated with vehicle or 10~8 M PTHrP for 1 (A), 3 (B)
and 5 (C) days, and subsequently H,0, was added for 4.5 h. Cell lysates were prepared and subjected to Western blot analysis using antibodies that specifically recognizes the
pro-apoptotic protein BAX, the heat shot protein of 27 kDa (HSP27), and alpha-tubulin as loading control. The blots are representative of three independent experiments. Densi-
tometric quantification of each protein normalized with the loading control is shown in the corresponding bar graphics. *P < 0.05 vs. control; **P < 0.01 vs. control; **P < 0.01 vs.

H,0,.
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explained in the scheme of Fig. 3A. Cell lysates were prepared and subjected to Western blot analysis using antibodies that specifically recognizes phospho-AKT, phospho-JNK1/2,
phospho-ERK1/2, phospho-p38 MAPK (A), phospho-Bad (S112), phospho-Bad (S136) (D-F), and alpha-tubulin as loading control. The blots are representative of three independent exper-
iments. Densitometric quantification of phosphorylated kinases (B) and phospho-Bad (D-F) normalized with loading control was performed and represented by the corresponding bar
graphics. Total protein expression of kinases was evaluated with specific antibodies that recognize phosphorylated and not phosphorylated proteins (anti-AKT, anti-ERK1/2, anti-JNK1/2
and anti-p38); and anti-actin antibody was employed as loading control (C). *P < 0.05 vs. control; **P < 0.01 vs. control; #P < 0.05 vs. H,05; #*#P < 0.01 vs. H,0,; n.s. = not significant.


image of Fig.�5

2840

(3 days) showed a decrease in the phosphorylation levels at Ser136 and
Ser112 (Fig. 5F, 4th lane), probably as a consequence of AKT inactiva-
tion. In addition, a longer PTHrP treatment (5 days) also decreases
Bad phosphorylation at Ser112 but not at Ser136 (Fig. 5G, 4th lane).

3.6. Inhibition of apoptosis in Caco-2 cells by PTHrP is dependent on AKT
and MAPK pathways

To examine the role of protein kinases as mediator of the anti-
apoptotic effects of PTHrP, Caco-2 cells were pre-incubated with
50 uM LY294002, an inhibitor of AKT or 20 uM PD98059, SP600125
and SB203580, inhibitors of the MAP kinases ERK1/2, JNK1/2 and
p38, respectively. Then, apoptosis was evaluated by trypan blue up-
take, after challenging the colon adenocarcinoma human cells with
H,0, in the absence and presence of PTHrP. The effectiveness of the
kinase inhibitors employed was confirmed by determining phosphor-
ylated protein levels of AKT and MAPKs by Western blot (Fig. 6B-D).
As shown in Fig. 6A (1st bar), as expected, H,0, induces Caco-2 cell
death (1.5-fold of control) and this effect is not modified by treatment
with the inhibitors employed, except for SP600125 that allows a
0.7-fold increase of H,0,-induced apoptosis vs. control (Fig. 6A, 2nd
bar), suggesting that AKT, ERK1/2, and p38 do not mediate the apo-
ptosis induced by hydrogen peroxide, and that H,O, may exert its ap-
optotic effects in Caco-2 cells via the ]NK MAPK pathway [32]. Of
relevance, the pre-treatment with AKT and MAPKs specific inhibitors
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completely reverses the anti-apoptotic effect of PTHrP, suggesting
that these protein kinases participate in the mechanism of PTHrP nec-
essary to prevent the apoptosis induced by oxidative stress in Caco-2
cells (Fig. 6A, 4th bar).

4. Discussion

Parathyroid hormone and PTH-related peptide share the same re-
ceptor (PTH receptor type 1, PTH1R); however they show a great var-
iability in regard to target cells and intracellular signaling. Although
PTHrP was initially characterized by its PTH-like activities, it must
be considered as a peptide hormone on its own, with several newly
discovered effects distinct from those exerted by PTH. We have previ-
ously reported the pro-apoptotic effect of PTH on Caco-2 cells [23]
and herein, for the first time, we demonstrate that its tumoral analog
PTHrP may exert a protective effect of Caco-2 cells under oxidative
stress. PTH1R is a class b of G-protein coupled receptor (GPCR) with
seven transmembrane domains (7TMR) that are bound and activated
by PTH and PTHrP [33]. The PTH1R couples to Gs, Gq/11 and Gi/o and
signals via adenylyl cyclase (AC) and phospholipase C (PLC) [34,35].
The fact that PTH and PTHrP exert opposing effects on apoptosis in
Caco-2 cells even though they interact with the same receptor
(PTH1R), could be explained because of cell-specific responses elicit-
ed by either ligand that are dependent of the complement of available
G proteins and also, of cytosolic factors that are not G proteins but are
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Fig. 6. Specific inhibition of MAPKs and AKT reverses the anti-apoptotic effect of PTHrP. A) Caco-2 cells were pre-treated with vehicle (DMSO) or kinase inhibitors (50 pM PI3-K
inhibitor LY294002, 20 uM p38 MAPK inhibitor SB203580, 20 uM MEK-1 inhibitor PD98059 and 20 M JNK inhibitor SP600125) for 30 min prior to treatment with vehicle (control)
or PTHrP for 5 days, as explained in Fig. 3A. The percentage of apoptotic cells was estimated by Trypan blue uptake after 4.5 h of H,0, incubation. Bars represent the mean 4+ SEM of
3 independent experiments performed in quadruplicate. *P < 0.05 vs. control; **P < 0.01 vs. control; *P < 0.05 vs. H,0,; **P < 0.01 vs. H,0,; n.s. = not significant. The effectiveness
of the kinase inhibitors employed was confirmed by Western blot analysis (B-D).
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able to bind and regulate the activity of the PTH1R. The main signal-
ing pathways by which GPCRs have normally been thought to func-
tion are by activation of heterotrimeric G proteins. Previous studies,
however, have provided evidence for G-protein-independent signal-
ing by PTH, the b2 adrenoceptor, vasopressin V2, and angiotensin
AT1 receptors [36-43]. The potential for GPCRs to form complexes
with signaling proteins other than G proteins also raises the possibil-
ity that agonists and antagonists can discriminate between these
complexes in terms of both binding affinity and efficacy. Thus, each
downstream signaling pathway measured in a particular cell type
might have its own unique pharmacology depending on the pathway
stimulated by each unique ligand-receptor conformation or complex
involved.

Apoptotic cells can be recognized by its characteristic morphological
changes, which are similar across cell type and species [44,45]. Assess-
ment of cell death by detection of phosphatidylserine exposure and
loss of membrane integrity, by combining Annexin V and PI staining
with multiparameter flow cytometry, is a simple and reproducible
method and one of the few techniques usually accepted as able to dis-
tinguish among viable, apoptotic, and necrotic cells [46]. In this work,
we found that PTHrP, unlike PTH, and, in a serum-deprived medium,
did not induce apoptosis in Caco-2 cells. It has been reported that apo-
ptosis induced by serum deprivation is a late event in Caco-2 cells
[47]. According to this, our data show that the percentage of Caco-2 ap-
optosis in control conditions after 1-3 days of serum deprivation is not
significant. Apoptosis occurs in response to environmental or develop-
mental cues, cellular stresses, and specific cell death signals. Reactive
oxygen species such as hydrogen peroxide are involved in many cel-
lular processes that positively and negatively regulate cell fate
[48-51]. H,0,-mediated signaling alters the function of various pro-
teins, including protein phosphatases, protein kinases, phospholipases,
transcription factors, and ion channel proteins [52]. In this regard,
through flow cytometry analysis we herein found that the response of
Caco-2 cells to H,0, is mainly apoptotic. Oxidative stress occurs when
the production of oxidizing agents exceeds the antioxidant capacity of
cellular antioxidants in a biological system. This imbalance between ox-
idants and antioxidants leads to tissue injuries and to the progression of
degenerative diseases in humans, such as cancer [53,54]. Oxidative
stress also leads to the development of other intestinal pathological con-
ditions [55]. Therefore, it is important to study the damaging effects of
oxidative stress on the intestinal epithelium and to understand protec-
tive mechanisms by which the cells respond to stress.

As we found that PTHrP is not a pro-apoptotic hormone in Caco-2
cells, we then investigated if it presents a protective effect under apo-
ptotic conditions such as oxidative stress. Our results support other
findings that show that the effects of H;0, on Caco-2 cells are both
time and concentration dependent [56,57]. In agreement with results
obtained in other cell lines [57,58], our data suggest that stimulation
with H,0, activates MAPKs and AKT, signaling pathways that are
thought to be a protective response against oxidative stress, in order
to avoid apoptosis. Moreover, the apoptotic agent also triggers morpho-
logical features consistent with apoptosis. We found that PTHrP is capa-
ble of preventing Caco-2 cell apoptosis induced by H,0, showing a
highly significant response. In accordance with previous observations
by flow cytometry, PTHrP alone did not induce apoptosis at any time
of incubation probed, while H,0, provoked 50% of Caco-2 cell apoptosis.
Our data indicates that, even though PTH and PTHrP bind the same re-
ceptor, the long term exposure of these two hormones in Caco-2 cells
cultured in serum-deprived medium, exert a totally opposite biological
effect. PTH behaves as a pro-apoptotic hormone [23] and in this work
we present evidence showing PTHrP-anti-apoptotic activity. PTHrP
has been shown to have multiple and opposing roles in other circum-
stances, such as its ability to both protect and promote apoptosis in os-
teoblastic cells and pneumocytes [25,26,59]. This dual behavior may be
based on novel 7 transmembrane receptor signaling mechanisms that
are distinct from the classical G-protein second messenger-dependent

pathways. The potential signaling diversity of 7TMRs also suggests the
possible existence of multiple discrete “active” receptor conformations.
This implies that specific ligands might direct distinct signaling re-
sponses by preferentially stabilizing one or more of these active con-
formations. The latter, may have significant implications both for
understanding the molecular signaling mechanism of PTH/PTHrP as
well as for the development of novel therapeutics for the treatment of
various pathologies. For example, PTH stimulation can lead to anabolic
or catabolic effects dependent upon intermittent or persistent exposure,
respectively [36]. The regulatory mechanisms invoked in these contrary
responses are incompletely understood.

Effects of PTHrP on apoptosis and survival have been noted in
other cell lines not intestinal in origin. For example, PTHrP has been
found to protect chondrocytes against apoptosis induced by serum
depletion [60], protect cerebellar granule cells from kainic acid toxic-
ity [61], and protect prostate cells against phorbol-induced apoptosis
[62]. Even more, the peptide has been recently shown to reduce apo-
ptosis mainly through the paracrine pathway in messangial cells [63].
However, this is the first report, to our knowledge, that demonstrates
an anti-apoptotic effect of PTHrP on Caco-2 intestinal cells. The exact
mechanisms underlying the ability of PTHrP to prevent apoptosis in
Caco-2 cells remain to be clarified. Our initial attempts to address
this question in the present study suggest that the hormone may
alter the expression of HSP27 and BAX, an anti-apoptotic protein reg-
ulator and a pro-apoptotic regulator, respectively. A correlation be-
tween the expression of heat shock proteins and increased cell
survival was already shown, pointing them as regulatory agents of
components of apoptotic pathways [64-66]. HSPs are a group of evo-
lutionarily conserved proteins with diverse functions, including
anti-apoptosis [67], mitochondrial protection [68], prevention of
Ca?™ disturbances [69], and protection against oxidant-induced inju-
ry [59]. HSPs have been demonstrated to exert these diverse
cytoprotective effects in many tissues, including the colon [70,71].
In our cell system we demonstrated an increment of HSP27 protein
expression in response to PTHrP treatment. It has been reported
that HSP27 decreases apoptosis by inhibiting BAX [72]. In agreement
with this observation, we found that PTHrP decreased BAX protein
expression simultaneously with the increase of HSP27 expression. In-
terestingly, both anti-apoptosis and molecular changes occur since
3 days of PTHrP treatment, resulting in a more significant biological
effect after a longer time of peptide exposure. Another important
finding identified in our study, is that H,0, induces phosphorylation
of AKT, ERK1/2, ]NK1/2 and p38 MAPK, indicating that Caco-2 cells
exert a defense response against the apoptotic agent. The activation of
AKT, ERK1/2 and p38 MAPK may not be involved in the H,0,-induced
intestinal epithelial cell apoptosis since the inhibition of these pathways
using specific inhibitors did not attenuate the apoptotic response. How-
ever, the inhibition of the JNK pathway decreased the apoptosis induced
by H,0,, indicating that in these cells the apoptotic agent may be
exerting its effects via JNK.

The function of the pro-apoptotic molecule BAD is regulated by the
phosphorylation of two sites. It has been shown that phosphorylation/
inactivation of BAD at Ser-136 is mediated by the serine/threonine pro-
tein kinase AKT-1 and that the signaling process leading to phosphory-
lation of BAD at Ser-112 is mediated by MAPKs [73]. In Caco-2 cells, we
observed the phosphorylation of the pro-apoptotic protein BAD, as a
consequence of AKT and MAPKs activation, which is in agreement
with observations made in other cell lines [58]. Under the experimental
conditions employed, we observed that PTHrP alone did not induce the
activation of AKT and MAPKSs but, interestingly, this hormone has the
ability to revert the activation of the kinases induced by H,0,, without
modifying its total protein expression. When Caco-2 cells are pretreated
with PTHrP prior to the exposure to the apoptotic agent, the conditions
are less adverse than the cells treated with H,0, alone and thus, it is not
essential for cells to activate a defense mechanism, because of the
protecting effect of the peptide.
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Altogether these results indicate that Caco-2 cells activate a de-
fense response under oxidative stress, whereas the programmed cell
death finally starts, and it is at 3 days previous of that effect that
PTHrP carries out its protective action against apoptosis.

Finally, when PI3K/AKT and MAPKs pathways were blocked with
specific pharmacological inhibitors, we found a complete reversion
of the anti-apoptotic action of PTHrP, suggesting that these protein ki-
nases are involved in the mechanism necessary for PTHrP to prevent
H,0,-induced apoptosis.

These results suggest that PTHrP action might contribute to colon
cancer progression. However, additional studies are necessary to fur-
ther elucidate the signaling mechanisms which mediate the
anti-apoptotic action of PTHrP in intestinal Caco-2 cells. Strategies
aimed at decreasing PTHrP production or blocking PTHrP action in
colon cancer may thus provide therapeutic benefits.
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