
Journal of Discrete Algorithms 18 (2013) 75–88
Contents lists available at SciVerse ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Modelling efficient novelty-based search result diversification in metric
spaces

Veronica Gil-Costa b,c,∗, Rodrygo L.T. Santos a, Craig Macdonald a, Iadh Ounis a

a University of Glasgow, UK
b Yahoo! Research, Santiago de Chile, Chile
c CONICET, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 7 August 2012

Keywords:
Diversification
Metric spaces
Clustering
Pivoting
Permutation

Novelty-based diversification provides a way to tackle ambiguous queries by re-ranking
a set of retrieved documents. Current approaches are typically greedy, requiring O (n2)

document–document comparisons in order to diversify a ranking of n documents. In
this article, we introduce a new approach for novelty-based search result diversification
to reduce the overhead incurred by document–document comparisons. To this end, we
model novelty promotion as a similarity search in a metric space, exploiting the properties
of this space to efficiently identify novel documents. We investigate three different
approaches: pivoting-based, clustering-based, and permutation-based. In the first two,
a novel document is one that lies outside the range of a pivot or outside a cluster. In the
latter, a novel document is one that has a different signature (i.e., the document’s relative
distance to a distinguished set of fixed objects called permutants) compared to previously
selected documents. Thorough experiments using two TREC test collections for diversity
evaluation, as well as a large sample of the query stream of a commercial search engine
show that our approaches perform at least as effectively as well-known novelty-based
diversification approaches in the literature, while dramatically improving their efficiency.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Search result diversification has emerged as an effective approach for tackling ambiguous queries. In particular, a diverse
ranking aims to satisfy as many aspects of an ambiguous query as possible, and as early as possible. By satisfying multiple
query aspects, a high coverage of these aspects is achieved. By having different aspects satisfied as early as possible, a high
novelty is also attained [26].

Promoting coverage is typically more efficient than promoting novelty: while coverage can be estimated for different
documents independently, the same is not true for novelty. In particular, the notion of novelty entails a dependence between
the relevance of different documents—i.e., a novel document is one that covers aspects not covered by the other documents.
As a result, novelty-based diversification becomes essentially the problem of finding a set of documents that together cover
most of the aspects of a query at a given rank cutoff. In this general formulation, this is an NP-hard problem [1]. Most
novelty-based approaches proposed in the literature for this problem deploy a greedy approximation algorithm: at each
iteration, the algorithm selects a document that covers the most aspects not yet covered by the documents selected in the
previous iterations. In a typical case, after the system retrieves n documents to be diversified, this greedy algorithm performs
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O (n2) document–document comparisons—i.e., O (n) similarity searches across n iterations [21]—which can severely impact
the efficiency of these approaches.

In this article, we propose to reduce the number of required similarity computations in novelty-based diversification
approaches, by modelling novelty in a metric space [21]. Metric spaces have been typically used to locate user-relevant
information in collections of objects. In general terms, a metric space consists of a set of objects. To estimate the closeness of
objects, their similarity is quantified using a pairwise distance metric. Hence, we can measure the similarity or dissimilarity
between any two objects.

Many modern database applications [6] use metric spaces to model the similarity between objects. Similarity search in
metric spaces focuses on retrieving objects, which are similar to a query point. Certain properties of such metric spaces offer
an opportunity for enhancing the efficiency of similarity searches. In particular, by representing the retrieved documents as
m-dimensional vectors in a metric space, we can exploit the properties of such spaces to dramatically reduce the number
of similarity computations required to diversify these documents.

Metric spaces applied to search result diversification were first studied in the context of image search [56]. The first
attempt to leverage the properties of metric spaces for diversifying textual documents was made by Gil-Costa et al. [32].
In particular, they showed that the number of required similarity computations for novelty-based diversification can be
reduced using a pivoting algorithm [9], which selects sparse pivot documents from the result set at running time. In other
words, the algorithm selects dissimilar pivot documents which are far away from each other in the metric space.

In this article,1 we show that effective and efficient diversification can be attained using metric spaces algorithms based
upon different principles. In particular, besides the pivoting-based diversification approach presented in [32] we introduce
permutation- and clustering-based approaches. More precisely, we employ pivoting-, permutation-, and clustering-based
construction algorithms without actually storing extra information neither using additional data structures. To the best of
our knowledge, this work is the first attempt to use permutation- and clustering-based approaches for diversifying textual
documents.

In our pivoting-based diversification approach, novelty is promoted by selecting sparse documents as pivots. In particular,
we use a pivoting technique that can adapt itself to different spaces by dynamically determining the number of pivots. Each
pivot has a radius. The geometric shape of the pivot along with its radius, corresponds to a ball around the pivot. Hence
each pivot covers a specific area in the metric space. Documents within the area are considered redundant, as they are too
similar to the already selected pivot.

Our second approach deploys clustering to cover different areas in the space. The idea is to divide the set of documents
into compact groups or clusters, meaning that the documents in each cluster are close to each other. A representative doc-
ument, named centre, is chosen from each cluster. Documents representing a cluster centre are considered novel, whereas
the remaining documents in a cluster are considered redundant, as they are too similar to the already selected centres.
Our clustering-based approach is built on top of a data structure that has been proven to be efficient on high-dimensional
metric spaces [17]. In such metric spaces, the probability distribution of distance among documents has a very concentrated
histogram, with a larger mean as the dimension grows, rendering the search for novel documents more difficult to perform.
In our approach clusters are built with a fixed number of documents k. By fixing k, we can adjust the desired level of
diversification. The cluster radius is given by the distance from the centre to the k-nearest document. The geometric shape
of the centre along with its radius corresponds to a ball around the centre. In high-dimensional spaces, the value of k can
be dynamically increased as many documents may have the same k-th distance to the centre. In this case, the number of
clusters can be dramatically reduced.

Our third approach is based on probabilistic and approximate approaches [3,18]. It does not use the concept of covered
areas in a metric space. Instead, it uses the idea that documents are similar or dissimilar according to their distances to a
set of fixed documents, called permutants. Each document is associated with a signature (vector of permutants sorted from
closest to farthest to the document). The basic idea is to select a random set of permutants and produce all the signatures
by comparing every document against the permutants. Then, these permutants are sorted (permuted) in increasing order to
obtain the signature for each document. Two documents with the same signature are considered redundant.

The efficiency of both pivoting- and permutation-based approaches depends on the number of selected pivots or per-
mutants. With a larger set of pivots/permutants, more document–document comparisons will be required to diversify the
ranking of retrieved documents. The efficiency of the clustering-based approach relies on the number of centres. But this
number of centres can be quickly limited in high-dimensional spaces due to more documents being very close to one an-
other; therefore, they may have the same distances to the centres. Hence, each cluster may contain more than k documents.

The contributions of this article are two-fold:

(1) We model novelty-based diversification as a similarity search in a metric space. At this point we include, besides the
pivoting-based approach presented in [32], two more approaches to explore and take advantage of the properties of
metric spaces.

1 An early version of this work appeared in the Proceedings of the 18th International Symposium on String Processing and Information Retrieval [32].
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(2) We thoroughly investigate the effectiveness and efficiency of our three proposed metric space approaches, using two
publicly available test collections for diversity evaluation, as well as a large sample of the query stream of a commercial
search engine.

Our experimental results attest both the effectiveness and the efficiency of our approach compared to existing novelty-
based diversification approaches. In terms of effectiveness, our results show that the proposed approaches perform as well
as current well-known novelty-based diversification approaches. They also present similar effectiveness to one another.
Regarding the efficiency, our approaches improve the quadratic cost of current greedy approaches presented in the literature.
Our clustering-based approach reports the best running time.

The remainder of this article is organised as follows. In Section 2, we review existing approaches for search result
diversification and similarity search in metric spaces. Section 3 shows how novelty-based diversification can be modelled in
a metric space. Sections 4 and 5 detail our experimental setup and evaluation, respectively. Conclusions follow in Section 6.

2. Background and related work

In this section, we describe related approaches to the ones presented in this article. In particular, in Section 2.1, we
review existing approaches to search result diversification, with a focus on novelty-based approaches. In Section 2.2, we
provide background on metric spaces.

2.1. Search result diversification

Diversification approaches can be classified as implicit or explicit [53]. Implicit approaches assume that different docu-
ments will cover different query aspects. As a result, these approaches promote novel documents as a means to indirectly
cover multiple aspects. The definition of a ‘novel’ document is precisely what distinguishes the approaches in this family.
For instance, Carbonell and Goldstein [13] proposed to compare documents based on their cosine similarity. Zhai et al. [62]
proposed an extension of this idea, by comparing documents with respect to the divergence of their language models.
Recently, Wang and Zhu [58] proposed to use the correlation of documents’ relevance scores.

Instead of assuming that different documents cover different aspects, explicit diversification approaches directly model
these aspects as part of their strategy. For instance, Agrawal et al. [1] proposed a diversification approach based on an
explicit representation of query aspects as taxonomy classes, in order to promote documents that cover classes also covered
by the query. A similar approach was proposed by Carterette and Chandar [14], but with query aspects represented as
topic models built from the top retrieved results for the query. Finally, Santos et al. [51] proposed to represent the aspects
underlying a query as ‘sub-queries’. In their approach, documents are promoted according to their estimated relevance to
multiple sub-queries, as well as to the estimated importance of each sub-query.

Although having the same goal, these two families of approaches deploy rather distinct strategies. While implicit diver-
sification approaches are driven by novelty, explicit ones usually target coverage. In general, coverage focuses on tackling
query ambiguity, by actively promoting documents that are potentially relevant to multiple query aspects. Novelty, on the
other hand, combats redundancy, by demoting documents that cover already well covered aspects. While promoting cover-
age is generally a more effective diversification strategy than promoting novelty, their combination as a hybrid strategy can
outperform both strategies individually. In particular, novelty can effectively break the tie between documents with similar
coverage estimates [52].

Despite having the potential to improve upon the application of coverage alone in terms of effectiveness, promoting
novelty is generally more computationally expensive. Indeed, while coverage can be estimated independently for different
documents, promoting novelty incurs additional costs. For explicit diversification approaches, the additional cost comes from
the need to iteratively update the marginal utility of the identified query aspects, given how much each aspect is covered
by the documents selected in the previous iterations of these approaches’ greedy process [1,51]. To overcome this problem,
Capannini et al. [12] proposed to adapt hybrid diversification approaches to avoid having to update the aspect marginal
utility estimates at every iteration. Instead, they approximate the effect of novelty by pre-scoring each retrieved document
with respect to each query aspect and the document’s dissimilarity to all other documents retrieved for this aspect. Although
efficient, this approximation of novelty can be unsafe in terms of effectiveness, as it does not consider the position of each
document in the final diversified ranking. As a result, it may promote a document that is novel with respect to documents
ranked after it in the final ranking, as opposed to the documents placed at higher ranks.

For implicit diversification approaches, the additional costs incurred by promoting novelty equate to directly comparing
the retrieved documents to one another, so as to identify documents that carry novel content [13,58,62]. To overcome the
inefficiency of existing novelty-based diversification approaches, we propose to tackle novelty seeking as a search in a metric
space. In particular, the properties of a metric space offer an opportunity for reducing the number of document comparisons
required to identify novel documents.
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Fig. 1. Disperse (left) and concentrated (right) distance histograms. The shaded region in both histograms denotes the fraction of objects within the range
of the query object. The latter histogram denotes a more challenging search space.

2.2. Metric spaces

Metric spaces have been widely studied to perform sequentially searches for objects which are similar to a given query
object (e.g. [39,42,43]). Additionally, some works have used metric spaces in other settings like distributed environments [11,
31,48] and peer-to-peer (P2P) systems [7,15,37].

Formally, a metric space (U , δ) comprises a universe of objects U and a distance function δ : U × U → R+ , which deter-
mines the similarity between any pair of objects [21]. The function δ can be regarded as a measure of object dissimilarity.
Therefore, the smaller the distance between two objects, the more “similar” they are. The definition of the distance func-
tion depends on the type of the objects being compared. In an m-dimensional vector space—a particular case of metric
spaces in which every object is represented by a vector of m real coordinates—δ could be a distance function of the fam-

ily Ls(x, y) = (
∑

1�i�m |xi − yi |s)
1
s . For example, s = 2 yields the Euclidean distance. For any x, y, z ∈ U , the function δ

holds several properties: non-negativity (δ(x, y)� 0), reflexivity (δ(x, y) = 0 iff x = y), symmetry (δ(x, y) = δ(y, x)), and the
triangle inequality (δ(x, z) � δ(x, y) + δ(y, z)). Some good surveys about metric spaces can be found in [21,61] and [50].

Although general metric spaces do not have an explicit dimensionality (as in vector spaces), we can discuss their intrinsic
dimensionality [21]. Metric spaces with high intrinsic dimensionality typically present highly concentrated histograms of
distances among objects. In practice, this has a negative impact on the efficiency of any similarity search algorithm [60].
This observation is illustrated in Fig. 1. Given an object p and a query q with radius search r, the triangle inequality implies
that all objects x such that |δ(q, p) − δ(p, x)| > r are outside the query range, and hence can be safely discarded. However,
in a concentrated histogram, the probability of discarding an object is lower, because the objects tend to be close to one
another. The intrinsic dimensionality provides a means to quantify the inherent difficulty of performing a similarity search
in this space.

Metric space search algorithms preprocess the working set of objects X to build an index I . Different indexing al-
gorithms have been proposed in the literature to speed up similarity searches [50], most of them fall into one of two
categories: clustering and pivoting.

Clustering techniques divide the working set of objects into groups (called clusters), such that similar objects fall into
the same group [17,21,22,41]. Thus, the space is divided into zones as compact as possible, usually in a recursive fashion.
This technique stores a representative point (“centre”) for each zone plus extra information that permits quickly discarding
the zone at query time. Two criteria can be used to delimit a zone. The first one is the Voronoi region [4], where we select
a set of centres and put every other point inside the zone of its closest centre. The regions are bounded by hyperplanes
and the zones are analogous to Voronoi regions in vector spaces. The second criterion is the covering radius cr(ci) (e.g. [22]),
which is the maximum distance between ci and any object in its zone. Moreover, these techniques can be combined. Some
tree-like data structures (e.g., [8,10,55,59,60]) use the clustering technique in a more indirect way: they select a pivot as the
root of the tree and divide the space according to the distances to the root.

Pivoting techniques select some objects as pivots and calculate the distance between every other object and each pivot.
The resulting index is a data structure that can be seen as a table T with the pivots in the columns and the object identifiers
in the rows, where each cell Ti, j stores the distance between the object i and the pivot j. Several algorithms (e.g., [5,19,20,
40,44,57]) are almost direct implementations of this idea. Essentially, only their extra data structure (e.g. additional memory
space is assigned to store pre-computed distances and other relevant information) is used to reduce the cost of finding the
candidate points. A key challenge for pivoting techniques is to determine the number of pivots needed to cover all objects in
the working set. Moreover, the number of pivots tends to increase with the size of the working set. Some hybrid approaches
(e.g., [30,38]) combine clustering techniques with pivoting techniques.

Recently, a new class of approaches was proposed for approximate similarity search [3,18]. An approximated answer is
formed by those objects, which are close to the current query, but that are not necessarily the k closest ones. In particular,
Amato and Savino [3] proposed a method using inverted files based on the idea that two objects are similar if they have
the same distance to each object of a fixed set. Independently, Chavez et al. [18] presented a similar idea. They proposed
an algorithm that predicts the proximity between objects by taking into account the order of the distances between these
objects and a set of reference objects, called permutants. The idea is to compute the distances between objects and the
permutants. To this end, each object is associated with a list of permutants (called permutation or signature), sorted by their
distance to the object. Formally, given a set of permutants P , with |P| = k, an object xi is associated with a signature
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Fig. 2. Objects in the range of pivots p1, p2, and p3 are considered redundant.

〈p1, p2, . . . , pk〉 where pi ∈ P for 1 � i � k and δ(p1, xi) � δ(p2, xi) � · · · � δ(pk, xi). In order to determine whether two
objects of the working set are similar, their corresponding orderings of permutants are compared.

Additional work on permutation-based algorithms was described by Skala [54], who evaluated the number of possible
permutations that can occur in a given space. Esuli [28] presented a permutation prefix index, called PP-Index, which
produces effective approximate answers to queries. In particular, dataset objects are kept on secondary memory. For each
object permutation, the PP-Index selects a prefix of size �. These prefixes are indexed in a main memory tree-based data
structure. The leaves keep the information required to retrieve the disk blocks relative to the objects represented by the
prefix permutation obtained in the path of the tree. In a previous work, Esuli [27] also used the PP-Index in the MiPai
image-retrieval system. Gennaro et al. [29] presented a permutation-based approach building upon the full-text retrieval
library Lucene.2 A similar approach integrating the Lucene library was presented by Lux et al. [35]. Recently, Novak et
al. [45,46] presented a distributed metric space index for P2P systems called M-Index.

In the next section, we propose to adapt three metric space index construction algorithms for novelty-based search
result diversification. In particular, we exploit pivoting-, clustering-, and permutation-based approaches for identifying novel
documents in the ranking.

3. Metric space diversification

Let D contain the documents initially retrieved for a query q. Novelty-based diversification approaches typically build
a re-ranking S by iteratively selecting a document d ∈ D \ S that is both relevant (with respect to the initial query) and
novel (with respect to the documents already selected in S). To estimate relevance, any standard retrieval model (e.g.,
BM25 [49]) can be used. To estimate novelty, every document di ∈ D \ S is compared to every document d j ∈ S , where
S comprises the documents selected in the previous iterations. This way, the document di that differs most from the
already selected documents in S is itself included in S . Such document–document comparisons are usually performed as
distance computations in an m-dimensional term-frequency space, where m is the number of unique terms in the underlying
document collection. As discussed in Section 2.1, these approaches differ mainly in their choice of a distance function
(e.g., cosine [13], divergence [62], or correlation [58]). Regardless of the chosen distance function, these approaches require
O (n2) distance computations to diversify a list of n documents. An O (n) similarity search is performed across n iterations.
To reduce the quadratic number of distance computations incurred by the existing greedy novelty-based diversification
approaches, we propose to exploit metric spaces properties.

In the following sections, we present three approaches to model novelty-based diversification over metric spaces. As
discussed in Section 2.2, the first one is a pivoting algorithm, which selects sparse pivots. In other words, pivots which are
far away from each other. The second approach is a clustering-based algorithm, which uses a covering radius criterion to
cluster a set of objects in the space. The last one is a permutation-based algorithm, which represents documents as sorted
list of distances to a set of fixed permutant documents.

3.1. Pivoting-based diversification

Our first approach is based on an efficient pivoting algorithm named Sparse Spatial Selection (SSS) algorithm [9]. As
illustrated in Fig. 2, the SSS algorithm identifies a set of k “pivots” among the n objects in the metric space.

We propose a novelty-based diversification approach inspired by the SSS pivoting algorithm. Our novel Sparse Spatial
Selection Diversification (SSSD) approach incorporates the notion of pivots to reduce the number of distance computations
required to diversify a set of documents. SSSD builds upon the SSS algorithm in order to skip redundant documents in
the ranking. As described in Algorithm 1, SSSD takes as input a query q, an initial set of documents D retrieved for this

2 http://lucene.apache.org.

http://lucene.apache.org
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query, a distance function δ with upper-bound M , and the covering radius φ, with 0 � φ � 1, such that r = φM determines
the covering range of each pivot. The parameter M is the maximum distance between any two objects of the space. The
parameter φ controls the density of pivots with which the space is covered. The higher the value of φ, the less pivots
are selected. The value of this parameter is empirically selected to reduce the number of distance evaluations, without
compromising the resulting diversification effectiveness of the algorithm.

SSSD[q,D = {d1, . . . ,dn}, δ, M, φ]
1: P ⇐ {d1}
2: for all di ∈ D \ {d1} do
3: if δ(di , p j) � φM ∀p j ∈ P then
4: P ⇐ P ∪ {di}
5: end if
6: end for
7: P ⇐ P ∪ (D \P)

Algorithm 1. Sparse Spatial Selection Diversification (SSSD).

The core of SSSD is the selection of pivots (lines 1–4 in Algorithm 1). To this end, let (U , δ) be a metric space, with
D ⊆ U comprising the documents retrieved for the query q. The pivot set P is initialised with the first retrieved document,
i.e., d1 ∈ D. For each remaining document di ∈ D \ {d1}, di is chosen as a new pivot if its distance to every pivot in P is
greater than or equal to the range φM . Hence, a retrieved document becomes a new pivot if and only if it is located outside
the range of all current pivots. Moreover, documents within the range of an already selected pivot are considered redundant
and skipped, and are added later to the end of the ranking (line 5), in the same order as they were originally retrieved in
the initial ranking D.

Importantly, during the selection of pivots, it is not necessary that all documents in D be compared against all pivots.
When a document di is compared against a pivot p j and does not satisfy the condition δ(di, p j) � φM , this document is
discarded and no additional comparisons are required. In the best case scenario, documents are compared only with the
first pivot when they are within the range of this pivot. Assuming that an unseen document di has a constant probability
ν = f (U , δ, M, φ) of lying outside the range of all pivots p j ∈P given the metric space (U , δ) and the range φM , it can easily
be shown that Algorithm 1 requires

∑n−1
i=1 ν i−1(n − i) document–pivot comparisons to diversify n documents. In the worst

scenario, when ν = 1 (i.e., all documents are outside the range of all pivots and become themselves pivots), this algorithm
exhibits the same quadratic complexity as the greedy novelty seeking approach. However, in practical deployments, ν � 1,
which results in a drastic reduction in the number of required document–pivot comparisons.

In Fig. 3, we have an initial set D with 15 retrieved documents. The SSSD algorithm processes the documents in the
same order as they were originally retrieved in the initial ranking. Thus, it selects d1 as the first pivot (novel document) and
computes the range φM for d1. Documents d2,d3 and d4 are considered redundant because they are within the range of d1.
Then d5 is selected as the second novel document because it is outside the range of d1. Documents d6 and d7 are considered
redundant as they are within the range of d1. The same happens with d8 and d9 because they are within the range of d5.
The last pivot is d10 because it is located outside the range of all current pivots (d1,d2). All remaining documents are
redundant as they are within the range of the already selected pivots. The final set of documents is rearranged so that the
pivot–documents are located at the beginning.

3.2. Clustering-based diversification

In this section, we propose a clustering-based diversification approach. In particular, we use the List of Clusters (LC)
data structure. LC has been shown to be efficient in high-dimensional metric space searches [17]. The basic idea is to build
clusters (c, r). Each cluster has a centre c with a covering radius r, so that documents in the cluster are within the covering
radius of the centre.

In order to diversify a ranking D of documents initially retrieved for a query q, we first choose a centre c ∈ D and a
radius r. The cluster (c, r) comprises the subset of documents of D which are at distance of at most r from c. We define:

ID,c,r = {
d ∈ D \ {c}: δ(c,d) � r

}

as the set of internal documents, i.e., which lie inside the cluster (c, r), and

ED,c,r = {
d ∈ D: δ(c,d) > r

}

as the set of external documents. Clustering is recursively applied in ED,c,r .
Algorithm 2 describes our List of Clusters Diversification (LCD) approach. The centre set C is initialised with the first

retrieved document d1 ∈ D (line 1). Then, d1 is removed from the set of external documents in line 2. In lines 5–6, we
compute the distance between all documents di ∈ E and the current centre c. These distances are stored in a vector V and
sorted in line 7. In line 8, we obtain the cluster radius r as the distance from the centre c to its k-nearest document. All
documents within the cluster radius are added to the internal cluster, as they are considered too similar to the already
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Fig. 3. Diversification example using the SSSD algorithm.

selected centre. These documents are removed from E in line 10 and are later added to the bottom of the ranking (line 14),
in the same order as they were originally retrieved in the initial ranking D.

Although clusters are of size k, when working with high-dimensional metric spaces, the value of k can be dynamically
increased as many documents may have the same k-th distance to the centre. In this case the number of clusters can be
reduced and therefore the number of computations required to select the centres of the clusters are reduced. On the other
hand, fewer clusters reduces the number of diversified documents which may impact on the effectiveness of the proposed
algorithm. As explained in Fig. 5, if we use k = 5 the first cluster with centre d1 contains seven documents. This is because
documents d2,d4,d7 and d8 have the same distance to the centre.

Chavez and Navarro [17] investigated different heuristics to select cluster centres, and experimentally showed that the
best strategy is to choose the next centre as the object that maximises the sum of distances to the previous centres. In this
work, we use this heuristic to select the centres, as shown in line 11. In line 12, the new centre is added to the set C and
removed from E in line 13. The algorithm ends when all documents in D have been processed.

LCD[q,D = {d1, . . . ,dn},k]
1: C ⇐ {d1}
2: E ⇐ D \ {d1}
3: c ⇐ d1 // current centre
4: while |E| > 0 do
5: for all di ∈ E do
6: V ⇐ V ∪ {δ(di , c)}
7: end for
8: Sort V
9: r ⇐ V[k]

10: I ⇐ {d j ∈ E: δ(c,d j) � r}
11: E ⇐ E \ I
12: c ⇐ di ∈ E: δ(di , c) > δ(d j , c) ∀d j ∈ E
13: C ⇐ C ∪ {c}
14: E ⇐ E \ {c}
15: end while
16: C ⇐ C ∪ (D \ C)

Algorithm 2. List of Clusters Diversification (LCD).

The LCD algorithm produces a list of triples 〈ci, rci , Ii〉. The centres are promoted to the top of the ranking. A centre
chosen first has preference over the subsequent ones. All documents that lie inside the covering radius of the first centre
belong to its cluster, despite that they may also lie inside the clusters of subsequent centres. As a result, these documents
are considered redundant and are added to the bottom of the ranking. Fig. 4 shows three clusters with centres (in order of
construction) c1, c2, and c3. Objects found at the intersection of clusters c2 and c3 are evaluated only by the centre c2.

Fig. 5 shows how the LCD algorithm proceeds using k = 5. Document d1 is selected as the first centre (novel document).
The remaining documents are sorted by distance to d1. The covering radius is computed as the distance from d1 to its
k-nearest document. In this case, we have four documents, denoted d2,d4,d8,d7 with the same distance to d1. All these
documents are considered redundant, inserted into ID,d1,rc and removed from E . The second centre, d16, is selected as a
novel document because it has the maximum distance to d1. The documents in E are sorted by distance to d16. The first 5
nearest documents to d16 are considered redundant, inserted into ID,d2,rc and removed from E . At this point, there are only
two remaining documents to be processed. d11 is selected as a novel document because it maximises the sum of distances
to all current centres. Hence, d14 is considered redundant. The final ranking of documents is rearranged so that the centres
are placed at the top.
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Fig. 4. The influence zone of centres c1, c2 and c3. Objects within the intersection of two clusters are evaluated by the cluster built first. Clusters are
composed by a centre ci , a covering radius rci and a set of internal objects I .

Fig. 5. Diversification example using the LCD algorithm with k = 5.

As explained above, the LCD algorithm promotes novelty by selecting documents as centres that are far away from each
other. After selecting the first document as a centre, the second centre is selected as the document that maximises the
distance to the first one, namely, a centre dissimilar to the already selected ones. The asymptotic cost is O (n2) [36], but in
practice this cost depends on the value of k. For a given k value and a set of n retrieved documents for a query q, the cost

of diversifying this set is
∑ n

k+1
i=1 n − i − (i − 1)k. We can avoid more distance computations with a larger k.

3.3. Permutation-based diversification

In the literature, permutation algorithms have been applied to solve approximate searches over metric spaces [3,18].
The basic idea is to select a set P of special documents, called permutants, and to compute the distance between these
permutants and the remaining documents in the set of retrieved documents D. As a result, each document is represented
by a list of the considered permutants, sorted by their distance to the document. To determine whether two documents are
similar, their vectors of permutants are compared.

PD[q,D = {d1, . . . ,dn},k]

1: P ⇐ Rand(D,k)

2: for all di ∈ D do
3: for all p j ∈ P do
4: V ⇐ V ∪ 〈p j , δ(di , p j)〉
5: end for
6: Sort V by distance
7: di .Sig ⇐ 〈V[1].pm, . . . ,V[k].pr〉
8: end for
9: N ⇐ {d1}

10: for all di ∈ D \ {d1} do
11: if DistSignature(di ,d j ,k) �= 0 ∀d j ∈ N then
12: N ⇐ N ∪ {di}
13: end if
14: end for
15: N ⇐ N ∪ (D \N )

Algorithm 3. Permutation Diversification (PD).
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Fig. 6. Using permutant signatures to promote novel documents.

Our Permutation Diversification (PD) approach is described in Algorithm 3. In line 1, we select the set P of k per-
mutants at random from the ranking D. In particular, Chavez et al. [18] showed that different selection heuristics of
linear time complexity (including the random selection) present similar performances in terms of the effectiveness of
the permutation algorithm. For each document di ∈ D, we compute its distance to all permutants p j ∈ P . In line 4,
we store the pairs 〈p j, δ(di, p j)〉 into V , where the first component is the permutant identifier and the second com-
ponent is the distance between the permutant and the document. In line 5, we sort the identifiers of the k permu-
tants according to their distance to di . In line 6, we build a signature denoted di .Sig = 〈V[1].pm, . . . ,V[k].pr〉 where
δ(di,V[1].pm) � δ(di,V[2].pn) � · · · � δ(di,V[k].pr), and V[i].pm indicates the permutant identifier allocated in the i-th
position of the sorted vector of permutants.

To diversify the ranking D, we select d1 as part of the set N of non-redundant documents in line 7. To compute the
distance between di ∈ D and d j ∈ N , we employ a permutation similarity measure described by Chavez et al. [18]. If both
signatures are different, di is included as a novel document into N . Otherwise, the document is considered redundant and
added to the bottom of the ranking. As with classical pivoting techniques, the key challenge for the permutation algorithms
is to determine the number of permutants needed to efficiently diversify a document ranking without losing effectiveness.
The number of document comparisons grows linearly with the number of permutants.

In Fig. 6, we illustrate how the PD algorithm proceeds. Assuming k = 3 permutants, denoted p1, p2 and p3, each doc-
ument has a signature according to its distance to these permutants. The signature of document x1 is 〈p1, p2, p3〉. If we
first include document x1 into N , documents x2 and p1 are considered redundant, because they have the same signature
as x1. The same happens with documents p2 and x3. One of them is included into N and the other is discarded. But p2
is different from any previous document in N (according to the vector of permutants), therefore it is promoted as a novel
document to the top of the ranking. The final set of documents is rearranged so that the non-redundant documents in N
are located at the beginning.

4. Experimental setup

Our investigation aims to answer two major research questions:

(1) How do SSSD, LCD, and PD compare to existing novelty-based diversification approaches in terms of effectiveness?
(2) How do SSSD, LCD, and PD compare to existing novelty-based diversification approaches in terms of efficiency?

To evaluate our approach in different metric spaces, we experiment with two standard test collections for diversity
evaluation, comprising both Web and newswire documents. The first collection, denoted WT, comprises 150 queries from
the diversity task of the TREC 2009, 2010, and 2011 Web tracks [23–25]. The second collection, denoted IT, includes 20
queries from the Interactive track of TREC-6, TREC-7, and TREC-8 [33]. For the WT test collection, we index the TREC
ClueWeb09 (cat. B) corpus, which consists of 50 million Web documents. For the IT collection, we index the Financial Times
portion of TREC Disks 4&5, with 210,000 newswire documents. Both corpora are indexed using the Terrier Information
Retrieval Platform [47],3 with Porter’s stemmer and standard stopword removal. In addition to using these standard test
collections for evaluating both the effectiveness and the efficiency of our proposed approaches, we further evaluate their

3 http://terrier.org.

http://terrier.org
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Table 1
Diversification performance across the WT and IT topics. The best performances on top of BM25 and DPH are highlighted in bold.

WT IT

ERR-IA α-nDCG ERR-IA α-nDCG

@20 @100 @20 @100 @20 @100 @20 @100

BM25 0.2057 0.2127 0.3043 0.3575 0.1541 0.1600 0.4703 0.5324
+MMR(c) 0.2089 0.2157 0.3091 0.3608 0.1565 0.1622 0.4814 0.5351
+MVA(ρ) 0.2053 0.2123 0.3032 0.3570 0.1542 0.1602 0.4706 0.5330
+SSSD(c) 0.1972� 0.2043� 0.2939� 0.3499� 0.1541 0.1605 0.4601 0.5291
+SSSD(ρ) 0.2058 0.2127 0.3047 0.3577 0.1541 0.1600 0.4703 0.5324
+LCD(c) 0.2124 0.2193 0.3095 0.3627 0.1633 0.1693 0.4804 0.5430
+LCD(ρ) 0.2124 0.2193 0.3095 0.3627 0.1633 0.1693 0.4804 0.5430
+PD(c) 0.2063 0.2129 0.3068 0.3581 0.1536 0.1600 0.4655 0.5323
+PD(ρ) 0.2110 0.2175 0.3114 0.3623 0.1493 0.1552 0.4574 0.5239

DPH 0.2349 0.2410 0.3387 0.3861 0.1658 0.1716 0.4833 0.5468
+MMR(c) 0.2353 0.2412 0.3394 0.3862 0.1647 0.1705 0.4798 0.5436
+MVA(ρ) 0.2360 0.2417 0.3427 0.3871 0.1655 0.1712 0.4787 0.5443
+SSSD(c) 0.2308 0.2367 0.3344 0.3814 0.1324� 0.1406� 0.3900� 0.4921�
+SSSD(ρ) 0.2349 0.2410 0.3387 0.3861 0.1691 0.1749 0.4864 0.5501
+LCD(c) 0.2316 0.2376 0.3357 0.3831 0.1643 0.1701 0.4827 0.5463
+LCD(ρ) 0.2340 0.2400 0.3381 0.3855 0.1660 0.1718 0.4859 0.5491
+PD(c) 0.2351 0.2413 0.3373 0.3858 0.1631 0.1695 0.4698 0.5419
+PD(ρ) 0.2377 0.2432 0.3436 0.3877 0.1661 0.1720 0.4779 0.5464

efficiency on a sample of the query stream from the MSN 2006 query log.4 In particular, we selected the first 1000 queries
from the log, after removing empty queries and queries with no results in the ClueWeb09 corpus.

To retrieve an initial pool of documents to be reranked by the several considered diversification approaches, we apply
either the Okapi BM25 [49] or the Divergence from Randomness DPH model [2]. On top of these ad hoc retrieval base-
lines, we deploy two well-known novelty-based diversification approaches as diversification baselines: Maximal Marginal
Relevance (MMR [13]) and Mean-Variance Analysis (MVA [58]). As these approaches compute novelty based on cosine or
correlation estimations, respectively, we deploy our proposed approaches using both cosine and Pearson’s correlation as
instantiations of the distance function δ, as described in Section 3. Since the standard cosine function is not a proper metric
distance, we use the angular dissimilarity (i.e., one minus the normalised arccos of the inner product) between the vectors
representing a pair of documents as the function δ. To cope with the quadratic complexity of MMR and MVA while keeping
a uniform setting across all approaches, both of these baselines as well as our approaches are applied to diversify the top
100 documents retrieved by BM25 or DPH.

Effectiveness is assessed using the primary metrics in the diversity task of the TREC 2011 Web track [24], namely, ERR-
IA [16] and α-nDCG [26]. To train the parameters of our approaches, namely, φ for SSSD (Algorithm 1) and k for both LCD
(Algorithm 2) and PD (Algorithm 3), as well as the parameters of our baselines (λ for MMR [13]; σ and b for MVA [58]),
we perform a simulated annealing [34] through a 5-fold cross validation. In particular, we train the parameters of all
approaches to maximise ERR-IA@100 on the training folds, and report the results as an average across the corresponding
test folds. As for efficiency, we report the number of document–document comparisons performed, as well as the time spent
in performing such comparisons.

5. Experimental results

In this section, we investigate whether novelty-based diversification approaches can be made efficient without com-
promising their effectiveness. Before investigating the efficiency of our proposed approaches, we evaluate their effectiveness
compared to MMR [13] and MVA [58] as baselines. As discussed in Section 2.1, novelty-based approaches have been recently
shown to play a tie-breaking role in search result diversification, with the potential to further improve on top of a purely
coverage-based ranking [52]. Table 1 shows the diversification performance of our three proposed metric space approaches
as well as the two used baselines across the WT and IT test collections. As mentioned in Section 4, for the distance func-
tion δ, we consider both cosine (denoted c) and Pearson’s correlation (denoted ρ). All diversification approaches are applied
on top of both BM25 and DPH, which do not perform any diversification, serving as pure ad hoc retrieval baselines. The
best diversification performance on top of each of the two ad hoc baselines is highlighted in bold. Statistically significant
differences between each of SSSD, LCD, and PD and the best between MMR and MVA are verified by a paired t-test. The
symbols � and � denote a significant increase or decrease with p < 0.05.

From Table 1, we note that our approaches provide small improvements across several settings. In particular, the results
over BM25 (top half of Table 1) show that LCD(c) and LCD(ρ) provide the best diversification performance for both WT
and IT collections, followed by PD(ρ) on the WT collection. Over DPH (bottom half of the table), the best performing

4 http://research.microsoft.com/en-us/um/people/nickcr/wscd09/.

http://research.microsoft.com/en-us/um/people/nickcr/wscd09/
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diversification approaches are PD(ρ) for the WT collection, and SSSD(ρ) for the IT collection, followed by LCD(ρ) on the
IT collection. These results are consistent for both ERR-IA and α-nDCG. As for the choice of distance function, Pearson’s
correlation (ρ) generally outperforms cosine (c). Compared to our diversification baselines, namely, MMR and MVA, the
only significant decrease is observed for SSSD(c), which underperforms over BM25 for the WT collection, and over DPH for
the IT collection. In all other settings, there is no significant difference between any of our proposed approaches and the
two diversification baselines. This answers our first research question, by showing that our metric space approaches perform
at least as effectively as existing novelty-based approaches. While our proposed approaches show a similar effectiveness to
one another and to the considered baselines, their efficiency varies considerably, as we will show next.

To answer our second research question, we investigate how the organisation of a metric space around search centres
impacts the efficiency of our proposed approaches. As described in Section 3, SSSD, LCD, and PD represent search centres as
pivots,5 clusters, and permutants, respectively. Accordingly, we analyse the efficiency of these approaches as a function of
the number k of such centres. In particular, for the WT and IT test collections, Fig. 7 shows how the number of document–
document comparisons (Figs. 7(a)–(b)) and the running time in seconds (Figs. 7(c)–(d)) of our approaches are affected by
the parameter k. Running times are based on a Linux Quad-Core Intel Xeon 2.4 GHz 8 GB, and denote the time spent to
compare documents, as the cost to initially retrieve and represent these documents in a vector space is the same for all
approaches. Additionally, to enable the analysis of the efficiency of our approaches in context, Figs. 7(e)–(f) show how k
impacts the effectiveness of our approaches, measured by ERR-IA@20, the primary diversity evaluation metric at the TREC
Web track [24]. As baseline diversification approaches, we once again use MMR [13] and MVA [58], which are presented as
horizontal lines, since their performance does not depend on k. As before, all approaches are applied to diversify the top
100 documents retrieved by BM25.6

From Figs. 7(a)–(b), we first note that, while MMR and MVA show a quadratic complexity (i.e., n(n−1)
2 = 4950 comparisons

for n = 100 documents; note that both MMR and MVA have the same complexity, hence their lines are superposed in
Figs. 7(a)–(b)), all our proposed approaches scale linearly with the number of centres. In particular, SSSD shows the best
performance in terms of the number of performed comparisons, followed closely by LCD. Interestingly, the latter never
selects more than about k = 35 centres (i.e., clusters) for the considered metric spaces, even when allowed to. The PD
algorithm shows a much steeper ascending curve, with a similar performance to MMR and MVA with only about k = 15
selected centres (i.e., permutants). These observations are consistent for both the WT and IT collections. While the number
of comparisons in Figs. 7(a)–(b) is a function of the number of selected centres only, the running time demanded by the
various approaches also depends on their choice of a distance function (i.e., cosine or Pearson’s correlation). Indeed, as
shown in Figs. 7(c)–(d), the running times of all approaches based upon the cosine function (i.e., SSSD(c), LCD(c), and PD(c))
are lower than those of their counterparts that use Pearson’s correlation (i.e., SSSD(ρ), LCD(ρ), and PD(ρ)). Moreover, the
cosine-based approaches are faster than the most efficient of our considered baselines (MMR(c)) for almost the entire range
of k values. Notably, the most efficient among our proposed approaches, LCD incurs an almost negligible overhead in order to
diversify the top retrieved results for a query, making it suitable for search environments where query latency is paramount,
such as the Web. Answering our second research question, these results attest the efficiency of our proposed metric space
approaches for search result diversification. To further analyse the efficiency of these approaches over a representative query
stream, Figs. 8(a)–(b) show the performance of all approaches for a sample of 1000 consecutive queries from the MSN 2006
query log, as described in Section 4. These results closely match those shown in Figs. 7(a)–(d), further attesting the efficiency
of our approaches.

Lastly, Figs. 7(e)–(f) bridge our two research questions, by showing the impact of increasing the number of centres k
on the effectiveness of our metric space diversification approaches, in terms of ERR-IA@20. Overall, we observe that all
approaches can at least match the effectiveness of MMR and MVA for some settings. In particular, both the SSSD and LCD
algorithms benefit more from small k values (k � 3 for SSSD; k � 4 for LCD). Interestingly, small k values also result in the
most efficient deployment of these approaches, as shown in Figs. 7(a)–(d). In turn, PD can closely match the effectiveness
of both MMR and MVA for almost the entire range of k values. Once again, these results are consistent across the WT and
IT test collections, and are largely independent of the choice of a distance function. On the other hand, they also show that
carefully choosing an appropriate number of centres for the metric space underlying the test collection at hand is key for
attaining a suitable trade-off between an effective and efficient diversification.

6. Conclusions

We have exploited the properties of metric space construction algorithms to reduce the number of document–document
comparisons incurred by current novelty-based search result diversification approaches. To explore and take advantage of
the properties of metric spaces, we have presented algorithms based upon pivoting, clustering, and permutations.

Our Sparse Spatial Selection Diversification (SSSD) approach selects a set of pivots from the space of documents retrieved
for a query. Our List of Clusters Diversification (LCD) approach selects documents as centres to build clusters and uses the

5 As shown in Algorithm 1, for SSSD, the number of pivots is indirectly determined by the covering radius φ , as opposed to being an input parameter
itself.

6 Results on top of DPH show identical trends and are hence omitted for brevity.
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Fig. 7. Number of regions, number of document–document comparisons, running time, and diversification performance for the WT (left) and IT (right) test
collections, across a range of k values. Figures are averages across the topics of the corresponding collection (150 and 20, respectively). All approaches are
applied on top of BM25.

covering radius scheme to divide the space. Both approaches use the covering radius to regard documents covered by a pivot
or a centre as redundant. Our third algorithm, called Permutation Diversification (PD), represents the retrieved documents
for a query as vectors of permutants. Those vectors are compared to detect redundant documents.

In a thorough investigation across standard TREC test collections for diversity evaluation, we have shown that our pro-
posed metric space approaches perform at least as effectively as well-known novelty-based diversification approaches in
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Fig. 8. Number of document–document comparisons and running time across a range of k values. All figures are averages over 1000 queries from the MSN
2006 query log.

the literature, while dramatically improving their efficiency. Moreover, by evaluating our approaches across metric spaces
induced by different document collections and distance functions, we have shown that a careful division of the underlying
metric space is paramount for appropriately trading off effectiveness and efficiency in novelty-based search result diversifi-
cation.
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