Future Generation Computer Systems 30 (2014) 254-264

Contents lists available at ScienceDirect 2 = ;
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

Web search results caching service for structured P2P networks

/Q\‘
G) CrossMark

Erika Rosas®, Nicolas Hidalgo >*, Mauricio Marin*°, Veronica Gil-Costa®¢

2Yahoo! Labs Santiago, Chile
b DIINF, University of Santiago, Chile
€ CONICET, National University of San Luis, Argentina

HIGHLIGHTS

The paper proposes building a Web result cache on settop boxes available at homes.
Settop boxes are organized as a P2P network with efficient algorithms for query routing.
The P2P network contains algorithms to deal with peaks in user query traffic.

The P2P network contains algorithms to increase cache hits in the user community.

The proposed Web result cache reduces communication traffic outside the ISP network.

ARTICLE INFO ABSTRACT

Article history:

Received 16 January 2013
Received in revised form

9 May 2013

Accepted 17 June 2013
Available online 8 July 2013

Keywords:

Web search engines
Caching services
Load balancing

P2P networks

This paper proposes a two-level P2P caching strategy for Web search queries. The design is suitable for
a fully distributed service platform based on managed peer boxes (set-top-box or DSL/cable modem)
located at the edge of the network, where both boxes and access bandwidth to those boxes are controlled
and managed by an ISP provider. Our solution significantly reduces user query traffic going outside of
the ISP provider to get query results from the respective Web search engine. Web users are usually
very reactive to worldwide events which cause highly dynamic query traffic patterns leading to load
imbalance across peers. Our solution contains a strategy to quickly ease imbalance on peers and spread
communication flow among participating peers. Each peer maintains a local result cache used to keep
the answers for queries originated in the peer itself and queries for which the peer is responsible for
by contacting the Web search engine on-demand. When query traffic is predominantly routed to a few
responsible peers our strategy replicates the role of “being responsible for” to neighboring peers so
that they can absorb query traffic. This is a fairly slow and adaptive process that we call mid-term load
balancing. To achieve a short-term fair distribution of queries we introduce a location cache in each peer
which keeps pointers to peers that have already requested the same queries in the recent past. This lets
these peers share their query answers with newly requesting peers. This process is fast as these popular
queries are usually cached in the first DHT hop of a requesting peer which quickly tends to redistribute
load among more and more peers.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper proposes implementing a result cache service for
Web queries using the concept of a nano datacenter infrastructure

Web search engines are systems devised to cope with a highly
dynamic and demanding query rates, potentially of the order of
many hundred thousand queries per second. To support redun-
dancy and fault tolerance, large search engines operate on mul-
tiple, geographically distributed data centers. Intensity of query
traffic is featured by the unpredictable behavior of users who are
usually very reactive to worldwide events [1]. Web search queries
typically follow a Zipf-like distribution of data [2,3] which produce
load balancing problems over the query result cache servers.

* Corresponding author. Tel.: +56 29780671.
E-mail address: nicolas.hidalgo@usach.cl (N. Hidalgo).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.018

implemented over a P2P network composed by small peers. The
nano datacenter architecture uses ISP-controlled home gateways,
like the ubiquitous set-top-boxes or STBs [4], to provide computing
and storage services, and adopts a managed peer-to-peer model to
form a distributed infrastructure [5].

We organize the STBs following a Distributed Hash Table (DHT)
model which generally provides better routing/searching perfor-
mance with much smaller overheads when compared against
unstructured P2P overlays [6]. DHTs enable building scalable, de-
centralized and self-organizing systems. These systems balance
storage, transparently tolerate peer failures, and provide efficient
routing of queries. However, they suffer from load balancing prob-
lems under the presence of highly imbalanced query distributions.
The emergence of hot-spots (popular queries) and flash crowds

http://dx.doi.org/10.1016/j.future.2013.06.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.018&domain=pdf
mailto:nicolas.hidalgo@usach.cl
http://dx.doi.org/10.1016/j.future.2013.06.018

E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264 255

can lead to saturation of peers degrading performance of a result
caching service.

Caching schemes for DHTs and P2P networks have been
proposed for applications such as Web caching and streaming,
and have been the subject of research. In our context, the main
difference with systems studied in previous works is that a cache
service for Web search engine queries must be devised to be
efficient under the following requirements: (1) query traffic can
be very dynamic both in intensity and trending topics, and it can
be subjected to sudden peaks occurring at unpredictable time
instants; (2) cached queries are not expected to remain valid
for a long time as current search engines supporting real time
search may include new documents within a few minutes from
publication on the Web; and (3) it is necessary to transfer the
whole query answer to the requesting user as opposed to pointers
to answer objects for later retrieval.

To address these requirements, a portion of each peer main
memory is used as a result cache to hold query answers retrieved
from one or more Web search engines. These queries are assumed
to be distributed uniformly at random on N peers by means of
a hash function on the query terms. They correspond to queries
submitted by users in the recent past. Thus, any given peer is
responsible for a fraction of these queries and (on request) it must
contact the appropriate Web search engine to get the current
answers for them. Users submit queries at their local peers, and
each peer must respond with a query answer to its respective user.

The contribution of the proposed P2P result caching are mainly
the following:

e A strategy that quickly reacts upon a sudden and drastic
increase in query traffic where possibly query contents are
highly skewed to a relative small number of different terms.

e A strategy to replicate the role of overloaded peers which
provides load fairness among the peer replicas using a small
amount of communication.

We propose using the two strategies in combination to efficiently
cope with user query traffic on a P2P result caching system for Web
search queries.

We evaluate our proposal by using a query log from a commer-
cial Web search engine to compare it against state of the art base-
line strategies. The results show that our approach (1) improves
load balancing among participant peers, (2) increases cache hits,
(3) reduces the amount of traffic generated within the peers com-
munity and towards the Web search engines, and (4) significantly
reduces the communication volume associated with the replica-
tion of highly popular queries. All this leads to a more efficient
performance than the alternative approaches, which also has a
positive impact on reduction of overall power consumption.

An early version of this paper was presented in [7]. In this pa-
per we extend [7] to significantly improve the performance of
the strategy devised to react upon sudden query traffic peaks and
present a more comprehensive experimental performance study.

The rest of this paper is organized as follows. Section 2 surveys
related work and presents some background concepts about our
solution. Section 3 presents the architecture, model, and the
proposed solution. Section 4 presents a performance evaluation
study conducted through process oriented discrete simulation.
Finally, Section 5 presents concluding remarks.

2. Background and related work

In the following we briefly explain DHTs in order to make our
paper self-contained. Then, we present related work on caching
and replication in the context of DHTSs.

2.1. Distributed hash tables

A Distributed Hash Table (DHT) is a self-organized structured
substrate built over P2P overlay networks which provides data
availability and persistence through replication. Every peer in
such systems is associated with a unique identifier which defines
the peer’s position in the structure and the range of keys it is
responsible for. Data is identified by a key in the same identifier
space and can be located within a logarithmic number of routing
hops.

DHT overlays maintain a strong topology, for example a ring in
the case of Chord [8], Pastry [9] or Tapestry [10]. We design our
solution in the context of Pastry [9] but it can be applied to other
DHT realizations.

Every peer in Pastry is assigned a unique nodelD in a space of
128-bit identifiers generated using a cryptographic hash SHA-1.
The neighbors of a peer in Pastry are stored in a leafset that contains
the L numerically closest peers, L/2 clockwise and L/2 counter-
clockwise. This set can handle replicas to improve fault tolerance
in an environment where peers join and leave the network with-
out warning. A “keep alive” message is used periodically to detect
failed peers.

The Pastry routing algorithm is prefix based and it routes a
message to the numerically closest peer of a given key k. In this
paper we call this peer the responsible peer of k. The Pastry routing
table stores on the nth row the IP address of peers whose nodelDs
share the first n digits with that of the present peer. The algorithm
forwards the messages to a peer from its routing table that shares
at least one more digit with the key k than the current peer. If
no such a peer can be found and the current peer does not know
any other peer numerically closer to k, then the current peer is the
responsible of k and the routing ends.

In the case of Pastry, the leafset and the routing table compose
the out-links of a peer.

2.2. Caching and replication in DHTS

Caching and replication in DHTs are active areas of research.
P2P cache schemes have been proposed mostly for Web pages
(Squirrel [11], BuddyWeb [12], Backslash [13]), storage systems
(Aren [14,15]) and video streaming applications [16].

Approaches for cache mainly focus on optimizing one metric,
such as hit rate, latency, or communication.

Kangasharju et al.[17] propose a caching P2P community, as our
work does. Their key assumption is that traffic is cheaper within
the community than transferring content from external nodes.
They propose an algorithm called Top-K MFR that stands for most
frequently requested objects. Each node tracks the files for which
it has received a request and retrieves from the outside only the
most requested ones. Their model assumes that cached objects are
large in space, like videos, and that the size of space for caching is
relatively small, namely there is space to hold in the order of dozen
objects. This is why selecting the objects stored in cache is their
main focus. Our solution, on the other hand, is designed to handle
many small-sized objects which occupy space in the order of a few
KBs.

Despotovic et al. [18] aim at improving caching with respect to
the total traffic originated within the DHT search. They propose
to replicate an object i when a high demand for i is detected by
sending a reference of i to the previous hops that forwarded the
queries for i in the past. A threshold is defined in order to trigger
the replication of references to i. Unlike our work, this solution [18]
replicates references to objects. Our solution builds on the need to
send the full object (query results) to the requesting peer.

Tigelaar et al. [15] explore search result caching in a P2P
model for information retrieval. They have found that a small size

256 E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264

cache offers performance comparable to an unbounded size cache.
Moreover, using simulation they have shown that in distributed
scenarios, caching can greatly reduce query load. Their results also
show that the Least Recently Used (LRU) policy is the best approach
in the P2P setting.

PCache [19] is a proactive caching strategy based on popularity
of objects. Replicas are stored in the overlay nodes that are closest
to the peer responsible for an object. It periodically estimates the
popularity value of a content by using an aggregation protocol
among the peers, which can be costly in a large scale network.

Some of the authors of this paper have proposed solutions
for result caching outside the P2P model environment [20-22].
Their work has focused on caching results for Web search engines
deployed on clusters of processors. We have used one of the terms
presented in [20] to name one of the structures proposed in our
paper: Location Cache. The Location Cache in [20] reduces the
amount of hardware involved in the solution of search engine
queries by storing the nodes which provided the results for a
query in the backend. With this structure they can also select the
search nodes most likely to provide a good approximated answer
to queries so that queries are prevented from hitting all search
nodes (processors) when operating under near saturation query
loads.

Replication has been done mainly in two ways: multiple hash
strategy and path replication. The multiple hash strategy is de-
scribed in [23-25]. However, since DHTs exhibit path convergence,
multiple hash strategies are less adapted to efficiently handle
highly popular objects than path replication.

Most DHT based strategies select a group of neighbor peers to
replicate the data (e.g., the leafset in Pastry [9] contains neighbor-
ing peers). This technique uses uniform replication in a fixed num-
ber of peers to achieve high availability and fault tolerance. In the
path replication techniques, the goal is to have other peers to an-
swer queries instead of the responsible peer. These replicas could
be even closer to the source than the responsible peer.

Stading et al. [13] use a local cache diffusion method which
pushes the replicas of a document (object) to one hop closer to
the source of the last requests. This flood creates a bubble which
grows in relation to the intensity of the flood, until no peer on
the perimeter of the bubble observes high request rates. However,
details on how this decision is taken are not given. They also
propose a directory diffusion, but this is not adapted to hot-spots.

Bianchi et al. [26] compute a popularity value, maintaining
a counter for each object and a query counter. When a peer is
overloaded, it replicates the most popular objects in the most
frequent last peer along the path towards the destination peer.

The solutions in [13,26] suffer from the bubble problem where
aresponsible peer stops answering queries for a popular key.

Yamamoto et al. [27] propose a path adaptive replication
method which determines the probability of replication according
to a predetermined replication ratio and storage capacity. Although
it considers the storage availability of peers, it ignores their current
load.

Ramasubramanian et al. [28] replicate objects based on the
Zipf parameter « in order to minimize the resource consumption
using local measurements and limited aggregation. However, flash
crowds can deviate the requests from the Zipf distribution. A
popular object is replicated by levels in all the peers that share one
digit less with the key than the responsible peer. This work reduces
latency of popular objects, but it creates a high number of replicas
in the system which depends on the size of the network.

Silvestre et al. [14] propose a replication scheme called Aren,
which takes into account content popularity and QoS metrics in
content distribution systems for edge networks. Their strategy uses
a hierarchical network for a cloud environment and relies on the
use of a coordinator to optimize scheduling and replication. The use

of edge networks to build the system is similar to what is presented
in this work. However, our P2P model is fully distributed.

In order to cope with load balancing issues in structured P2P
networks, not only replication has been considered. Most of the
solutions focus on providing a uniform distribution for the range
of keys assigned to peers. Works like [29] for example, balance the
namespace to distribute the workload evenly. The virtual server
strategy is also widely used. In this case, a single physical node
may have multiple virtual nodes in the logical structure. This model
enables resource-aware load balancing as peers may vary the
number of virtual nodes depending on their capacity. A drawback
of this type of solution is that a physical node has to handle
multiple routing tasks for maintenance and forwarding [30-32].

Solutions that modify a node’s identifier to redistribute load do
not consider the fact that query distribution can be highly skewed.
If the identifier of a node changes, the assigned partition is moved
between adjacent nodes. The same occurs if a node leaves and joins
at a different place in the ring, like in [33,34]. The responsible peer
changes but not the load hot-spot. Low loaded peers can exchange
place with highly loaded peers [35,36], but the responsibility lies
in a single peer. Moreover, security may be affected when allowing
arbitrary node identifier modification as malicious peers could
join the ring by adopting IDs to serve portions of queries. Ledlie
et al. [37] propose using a strategy based on k-choices of safe IDs
to solve this problem. Each trusted peer joining the network is
allowed to choose k verifiable IDs which the peer can use to serve
different seemingly random sectors of the DHT ring. Karger and
Ruhl [38] propose that each node chooses log n places in the ring
and initially takes the responsibility for only one of them. This
scheme has been used together with the virtual server strategy.

In our work, as opposed to considering the distribution of
content in the network, we focus on object replication since in our
case we need to cope with hot spots and skewed distribution of
queries.

3. Proposed P2P caching service

3.1. Architecture

We propose to build a Caching Service (CS) to reduce query
traffic towards Web search engines by using a P2P overlay
composed of peers within a single geographic region and operating
as a nano datacenter infrastructure. The idea is to create a fully
distributed service platform based on managed boxes (set-top-box
or DSL/cable modem) located at the edge of the network, where
both boxes and access bandwidth to those boxes are controlled and
managed by a given entity (e.g., by Telco, virtual operator or service
provider) [39]. Fig. 1 presents the proposed architecture. The set-
top-boxes act like peers on the overlay. By utilizing virtualization
technology the application running on a box can be completely
transparent to the end user. The advantages of this approach
rely on their low-energy consumption, self-scalability, and high
availability. Additionally, a nano datacenter does not suffer from
free-riding, peer dynamics, and lack of awareness of underlying
network conditions [5]. Importantly, they provide access to a very
large amount of resources. As an example, in USA there are more
than 160 million set-top-boxes (STBs) which can potentially act as
small servers [4].

For a P2P CS to be of practical interest the issue of low latency
to get query answers is critical. On the other hand, structured
P2P networks suffer from high latency because during search it is
necessary to visit several peers to find the peer that contains the
target object. In order to ease this problem, like in [11], we consider
that peers remain within a geographic region.

In our architecture, user web browsers issue query requests
to the P2P CS overlay. Peers (set-top boxes) route queries among

E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264 257

-

| B :

- — /4D p —
“. . -] RS o ~ f‘

) .'"? =" ~.~>" 4 I{F/‘ i 5
Y, Sny - A -
| 3 D) ! {

{ g =0 i Y
{ P2P Overlay 1)
\ III;‘ e A :

/) 3
L S A -7 *)
N III‘ -
-
\ =
N P

Fig. 1. Architecture.

peers in order to find cached information, namely answers of
queries. Like in a standard DHT, terms of queries are hashed by
using a cryptographic hash, such as SHA-1, and routed through the
overlay to the peer which shares the closest ID with the hashed
query. If the P2P CS finds a valid cached query answer it responds
directly to the requesting user. Otherwise, the query is sent to the
Web search engine to get the answer, cache it on the P2P CS and
respond to the user. The main goal is to alleviate traffic towards
search engines and reduce the costs for ISPs by reducing traffic
outside their networks.

3.2. TLC+: Two-level caching

We assume a classical DHT overlay composed by N physical
nodes (or peers) and K object-keys (query terms) mapped onto
a ring. Objects (query terms plus the respective query answer)
stored in a DHT such as Pastry or Chord, have a responsible peer
in the network that is the peer with the closest ID to the key of
the object. Thus, any given peer is responsible for a fraction of
these queries and (on request) it must contact the appropriate Web
search engine to get the current answers for them. Below we use
query answer and query result to mean the same, namely a valid
html page containing the results of executing the respective query
at the Web search engine which can be directly sent to the user.

Participant peers have the ability to receive, forward, and answer
a given query. In our model we assume that answering a query
(i.e., sending a query answer to a requesting peer) consumes the
highest amount of resources considering that query answers are
expected to be of the order of tens of KBs. On the other hand, receive
and forward operations are in the order of hundreds of bytes.
Requesting an object to the Web search engine is assumed to be
costly to the ISP since the communication traffic leaves its network.

Peers of the network create a collaborative cache which acts as
a distributed CS. The set-top box provider defines a fixed storage
space for caching query answers from the Web search engine for
all peers.

The proposed P2P caching strategy is composed of two levels.
The first one is devised to quickly react upon a sudden and drastic
increase in query traffic where possibly query contents are highly
skewed to a relatively small number of different terms. In this
case, each peer p; that submits a query g and receives the answer
can potentially share it with other peers py that are requesting q
during the same period of time. This quickly eases communication
traffic on the peer r that is responsible for contacting the search
engine and sending back the answer of query g to the requesting
peer p;. Namely, if peer p; requests the answer for a query q to
its responsible peer r, and soon after the peers p, and p3 request
the answer for the same query q (in that order), then the proposed

strategy causes a query answer transfer fromr to py, then a transfer
from p; to py, and finally a transfer from p, to ps. Notice that the
number of sequential transfers cannot be excessively large and
parallelism can be exploited for a new peer p, as peer p; can
transfer the query answer to p4 in parallel with the transfer from
D2 to ps. Below we describe the sequential and parallel solutions
separately. The former is suitable for moderate query traffic and
uses minimum memory space whereas the later is suitable for high
query traffic but it requires more memory space. We call this part
short-term load balancing.

The second level, called mid-term load balancing, is in charge of
replicating the role played by a peer r responsible of a query q in
neighboring peers when traffic intensity exceeds a threshold value.
In this case, peers that are neighbors to peer r in the sense of the
DHT protocol, are also allowed to contact the Web search engine to
get answers for the query g and pass them back to the requesting
peers. The decision on what neighbors to replicate a query q is
made by considering the intensity of query traffic arriving from
each neighbor to peer r. Neighbors routing more instances of query
q to peer r are more likely to get a replica of g, that is they are more
likely to become a responsible peer for q.

3.3. Algorithmic details

Each peer has a standard result cache (RCache) and a special
purpose cache called location cache (LCache). The RCache is used
to store answers to queries and their respective query terms in
a normalized format. This cache stores answers of queries for
which the peer is responsible for (we call this subset as global
cache), and answers of queries delivered to users that submitted
queries in the peer (we call this subset as local cache). Each cache
entry has a state flag indicating whether the respective query
answer is being retrieved from a Web search engine or from some
other peer in the network. Also, in each entry there is a timeout
flag indicating the time instant from which the respective query
answer is no longer valid. The timeout is determined from TTL
values assigned to queries retrieved from the search engine (TTL
stands for “time to live”). The RCache entries are administered with
the LRU replacement policy.

The LCache stores data used to support short-term scheduling.
Each entry stores terms of a query, an IP address of a peer that
contains (or is to contain soon) the answer for the query, and an
expiration counter used to limit the number of times the entry is
used to route incoming queries with the same terms. These cache
entries are also administered with the LRU replacement policy
though their overall size is much smaller than in the RCache as they
do not store query answers.

In the following we describe the combined operation of RCache
and LCache in each peer through an example.

Assume that a peer d is responsible for a query q and that a peer
a; requests the answer for q. Peer a; does not find an entry for g
in either its RCache or its LCache so it must get the query answer
from peer d. The DHT protocol establishes that to go from a; to d
it is necessary to pass through peers b and c. In consequence, peer
ay stores q in its RCache with flag state indicating “answer being
retrieved” and it sends q to peer b. Since b is the first DHT hop
from ay, an entry (q, a;, my) is stored in the LCache of peer b where
mp = m is the initial value for the entry expiration counter. Then
peer b sends q to peer ¢, and as peer ¢ does not find a valid entry for
qineither its RCache or its LCache, it sends q to peer d. At this point,
peer d searches for a valid entry for g in its RCache which, upon a
cache miss, it triggers a request for q to the Web search engine.
In the meantime, another peer a, generates a request for the same
query q by sending q to peer b since b is the first DHT hop from a; as
well. This causes a cache hit in the LCache of peer b which changes
the entry associated with q from (q, a;, mp) to (q, a, my—1). Then

258 E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264

peer b sends the pair (q, ¢) to peer a; where the peer ¢ address is
included for cases in which peer a; contains an invalid entry for q
in its RCache and q is not in its LCache either, so the query is sent
from peer a; directly to peer c to reach peer d if necessary. In either
case, an entry (g, a,, mg) is stored in the LCache of peer a; where
my, = my — 1 or my = m depending on whether there is an entry
for g already stored in the LCache or not. On the other hand, once
peer d contains a valid answer for g in its RCache, it initiates a data
transfer from peer d to peer a; to make it possible for peer a; to
contain a valid answer for g stored in its RCache and respond to
the requesting user. In turn, this triggers a data transfer from peer
ap to peer a, so that a, can respond to its user and store the answer
for g in its RCache.

In this way, the aim of the combined operation of the RCache
and LCache objects in each peer is to quickly prevent the potential
saturation of peer d when an extremely popular query q suddenly
arises. Basically the main idea is to take advantage of the fact
that it is necessary to transfer query answers to requesting peers
which are re-used as replicas by other requesting peers. When the
query traffic on peer d exceeds a threshold value, it shares the
responsibility for g on one or more neighboring peers, such as peer
¢, toreduce the load on d. This peer c is then allowed to contact the
search engine to let it hold a valid replica of the answer for query
g. Overall, the LRU replacement policy takes care of cache entries
that are no longer useful in the RCache and LCache objects.

Algorithms 1 and 2 describe the steps followed by the proposed
two-level scheme upon the occurrence of events triggered by the
reception of query messages in each peer.

Algorithm 1: Event handler in each peer

1 Event: A new query q arrives from a user connected to
2 this peer

3 begin

4 if RCache.find(query= q) then

5 if RCache.isValid(query= q) then

6 L return RCache.answerQuery(query= q)

7 else if IsResponsible(q) then

8 r = getAnswerFromSearchEngine();
9 RCache.insert(query= q, flag="retrieved”, answer=r)
10 returnr

1 if LCache.find(query= q) then
12 L p = LCache.getPeerIP(query= q)

13 else
14 L p = DHTgetNextPeerIP(thisPeer())

15 RCache.insert(query= g, flag="retrieving”)
16 send(peer= p, query= q, source= thisPeer())

17 Event: An answer for query q arrives from another peer

18 begin

19 r = getAnswer(q)

20 RCache.update(query= q, flag="retrieved”,

21 answer=r)

22 foreach query e waiting for r do

23 L send(peer= sourcePeer(e), query= e, answer=r)
24 returnr

3.4. Replication

Popular objects (or hot objects) may produce an overload for
the responsible peer which may not be able to handle the amount
of requests of a hot object. Our solution attempts to solve this issue
by dynamically increasing the number of peers responsible for an
object. The key idea is to spread the load among the replicas taking
into account the current load and capacities of the peers. Unlike

Algorithm 2: Event handler in each peer (cont.)

1 Event: A query q arrives from another peer

2 begin

3 if RCache.find(query= q) then

4 if RCache.isValid(query= q) then

5 r = RCache.answerQuery(query= q)

6 send(peer= sourcePeer(q), query= q, answer=r)
7 else if containNextPeer(q) then

8 | send(peer= nextPeer(q), query= q)

9 efs»e if IsResponsible(q) then

10 r = getAnswerFromSearchEngine();

1 RCache.insert(query= q, flag="retrieved”, answer=r)
12 | send(peer= sourcePeer(q), query= ¢, answer=r)
13 else if LCache.find(query= q) then

14 p = LCache.getPeerIP(query= q)

15 LCache.update(query= q, peerIP= sourcePeer(q))

16 ¢ = DHTgetNextPeerIP(thisPeer())

17 | send(peer= p, query= g, nextPeer=c)

18 else

19 if firstHopDHT(sourcePeer(q)) then

20 L LCache.insert(query= g, peerlP= sourcePeer(q))
21 if containNextPeer(g) then

22 L send(peer= extraPeer(q), query= q)

23 else

24 p = DHTgetNextPeerIP(thisPeer())

25 send(peer= p, query= q)

previous works, we do not overload the saturated peer by sending
the cached objects but sending a small message to authorize the
peer to request the object directly from the Web search engine.

We define C; the maximum capacity of a peer i, as the requests
per unit of time it is able to answer, for example, 100 requests per
second. When the number of queries received for a peeriexceeds G;
we say the peer is saturated. Each peer keeps track of the number of
times an object k was accessed during a time interval. We call this
value fi, the frequency of k. The load of a peer is the total number
of times it has sent a cached object to another peer, which also
corresponds to the summation of the frequencies of all the objects
it had in its cache in that interval.

In order to take replication decision the maximum capacity G
and its current load L; are sent periodically by piggybacking this
information in the routing and keep-alive messages. Additionally,
each peer i stores the query frequency f; coming from its in-links
j for each stored object. An in-link j is a peer j that contains the
address of peer i in its routing table and thereby j can directly send
messages to i.

Algorithm 3 presents our replication approach. We select a
set of in-links to replicate considering that (1) the summation of
incoming frequencies for g has to be higher than the load it wants to
alleviate, and (2) the total available capacity of the involved peers
is enough to answer the number of requests. Notice that in case
all in-links do not have enough capacity available, they have to be
replicated further into their own in-links.

3.5. Parallel LCache transfers

For each query in the LCache we can reduce latency when a
sudden peak in query traffic takes place. In this case, the number
of requesting peers per unit time increases drastically. In such
a situation letting sequential transfers of a query answer from
one peer to the another can degrade performance since the last
requesting peers should experience long latencies. We propose a
solution for this case which consists of parallelizing query answer
transfers.

E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264 259

Algorithm 3: Replication algorithm

input : Object g: most frequently accessed query in the peer
RCache
input : Overload 8

1 sort (inLinks): high to low f;;

2 while 8 > 0do

3 P; < Next in-link

4 Replicate responsibility for q in P;
5 iffl] < (G — L) then
6 —

B=B—Tj
7 else
3 | B=B-(G—-1L)

For a highly popular query in the LCache we can keep more than
one peer ID, say D peer IDs. Thus, for a suddenly popular query q,
the first requesting peer p; would have to get the query answer
from the responsible peer and place its ID in the LCache entry
associated with q. The second peer p, gets the answer from peer p;.
After this transfer, both peer p; and p, are in condition to transfer
the g answer to a third peer p3;. Assuming that a transfer takes t
units of time, on average, peer p3; should expect to receive the q
answer no earlier than 2 - 7 either from p; or p,. For a continuous
stream of newly requesting peers, the number of peers available
for transfers increases significantly. For instance, for D = 2 the
number of available peers follows a Fibonacci sequence for the
number of available peers able to deliverat ,2 - 7, ..., n- t units
of time respectively.

On the other hand, keeping D unbounded does not increase
performance after a threshold value since the peer arrival rate A
limits the total number of peers that can be served in parallel. In
terms of a G/G/oo queuing model of this problem, the average
number of peers being served at any time is given by A - t and
thereby, at steady state, it does not make sense to have D > A - t
in the LCache for q. This indicates the basis of our approach.

We let the value of D grow and shrink in accordance with the
observed arrival rate A. We keep a priority queue to retrieve the
peer ID which is able to serve a transfer in the least time.

Algorithm 4 presents our strategy for selecting the next peer
to let parallel transfer at the lowest cost in accordance with the
current value of D.

Algorithm 4: GetPeer

1 LCache request: A new query q arrives from peer R
2 begin

3 t = current_time()

4 A = update_rate(t)

5 n = heap.size()

6 if n = 0 then

7 heap.insert(new(R), t + 7)
8 return NULL

9 D=A-1

10 p = heap.get()

1 t, = p.timeout()

12 if t, > t then

13 | t=1

14 if n < D then

15 | heap.insert(new(R),t + 1)
16 if n+ 1 < D then

17 | heap.insert(p)

18 return p.ID

4. Evaluation

We have used a process-driven simulation to conduct our
evaluation using the simulation library libcppsim [40]. Libcppsim

Table 1

Default configuration.
Parameter Value
Network size (num. peers) 1000
RCache size (num. entries) 100
Local cache size 50
LCache size (num. entries) 50

is a general purpose library written in C++ where each process
is implemented by a co-routine that can be locked and unlocked
during simulation. We have built a simulator that implements a
transport layer, a P2P overlay and our caching proposal. Pastry [9]
has been used as the overlay in our experimentation. We have
also simulated the Web search engine process, which sends the
answers to the responsible peers and other users that may exist
outside the P2P community.

In our previous work [7] we used an event-driven simulation
over Peersim [41]. However we were not able to have a dynamic
query rate with this simulator. In the present work, we therefore
use our own simulator to create a more realistic environment with
different query rates to simulate flash crowd queries.

From the state of the art we have chosen two efficient strategies
for DHTs to be compared against our approach. The first one, that
we call Leafset, replicates objects of an overloaded peerin its closest
neighbors as suggested in [9] to avoid saturation. The second
approach, that we call Bubble, replicates objects of an overloaded
peer in all of its in-links [18,13]. In order to make a fair comparison,
we also included a Local cache to both approaches. These two
approaches represent the main ideas from the state of the art.

The approach first presented in [7] is named TLC in figures
below and the extended version of TLC proposed in this paper is
called TLC+.

The default configuration of our simulation experiments is
presented in Table 1. The simulation is divided in simulation time
windows of 100 units of time. In our default configuration the
query rate is 1000 queries per unit of time, and every 500 units
of time we increase the query rate to simulate a flash crowd
introducing 5000 queries for 5 units of time.

We have considered the freshness of the query answers by
assuming that queries are assigned a time to live (TTL) value by the
Web search engine (WSE) after which the cached object become
stale. The TTL assigned by the WSE is independent of our cache
solution. As in [42], we use the incremental approach to estimate
the TTL value for objects cached by the responsible peers. Notice
that the WSE does not reveal the TTL values assigned to query
answers and thereby peers can only predict them.

Queries were extracted from a 16 million US-Canada user query
log of the Yahoo! search engine. In the following we present our
performance results.

4.1. Load balancing

In order to measure load balance among peers we use a metric
based on Lorenz curves called the Gini coefficient, which is a metric
commonly used in other fields like economics and ecology.

If all peers have the same load, the Lorenz curve is a straight
diagonal line, called the line of equality or perfect load balancing,. If
there is any imbalance, then the Lorenz curve falls below the line of
uniformity. The total amount of load imbalance can be summarized
by the Gini coefficient G, which is defined as the relative mean
difference, i.e. the mean of the difference between every possible
pair of peers, divided by their mean load. For n peers the Gini
coefficient is calculated by (1), where I; correspond to the load of
the peer i and u is the mean load. G values range from 1 to 0. The
value 0 is achieved when all peers have the same load. The value
1is achieved when one peer receives the whole system load while

260 E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264

0.5 T T T T

Leafset
Bubble ——¢—
TLC/TLC+ —*—

0.45

0.4

0.35

0.3

Gini Coefficient

0.25

0.2

0 20 40 60 80 100
Simulation Progress

Fig. 2. Gini coefficient measuring load balance.

0.3 T T T T

0.25

Gini Coefficient

0.2

0.15 1 1 : :
0 20 40 60 80 100

Simulation Progress

Fig. 3. TLC versus TLC+.

the remaining peers receive none. Therefore when G approaches
0, global load imbalance is small, and when G approaches 1 the
imbalance is large.

n
S Ri—n—1)-]
G= ;12— (1)
n’-u

Notice that a Gini value equal to 0 is extremely rare in a P2P
network. In [23] Pitoura et al. estimate that Gini values under 0.5
represent a fair load imbalance among the peers.

Fig. 2 presents a comparison of load balance conditions in
the network by measuring the Gini coefficient for the TLC+,
TLC, Leafset and Bubble strategies. The results show that our
approach achieves better load balance than the other approaches.
This is explained by our short-term scheduling. This strategy
improves the hit rate of the local cache, since there is one node
strategically chosen that knows its location. We reach an average
improvement of 31% during the simulation as compared to the
other techniques. Fig. 3 shows the difference between TLC+ and
TLC. Both achieve very similar results. There is a 1% of improvement
of TLC+ compared to TLC with respect to overall network load
balance.

Flash crowds can be clearly seen in the Gini coefficient curves
of the other approaches since the imbalance increases drastically.
In our approach, on the other hand, flash crowds do not affect
performance significantly.

4500 T T T
Leafset
4000 Bubble —x— 4
TLC/TLC+ —*—
3500 | 1

3000

2500

2000

New Replicas

1500

1000

500 - f ii f N
b

0 K

Simulation Progress

Fig. 4. Number of replicas.
4.2. Number of replicas

Another important metric is the number of replicas created
in order to cope with peaks in load. The replication of an object
in another peer implies the transfer of the whole object and
when a peer is already overloaded; this can degrade the system
performance even more. TLC/TLC+ only replicates the peer role
of being the responsible for an object. This requires a low cost
message but increases traffic outside the network.

Fig. 4 compares the number of replicas created during the
evolution of the simulation. The number of replicas for TLC/TLC+ is
significantly smaller than the number of replicas in the other
approaches. This improvement is explained by our short-term
scheduling strategy. The LCache greatly reduces the load on the
responsible peers by redirecting requests to peers that have
recently requested the queries and have already received the
results. The peaks observed in the number of replicas generated
by the other approaches are a consequence of flash crowd queries,
and the new versions of expired-TTL objects that these strategies
have to replicate in other peers.

The Leafset and Bubble replication schemes do not consider the
load of other peers when responsible peers send objects to them.
However, if they use the same scheme as the TLC/TLC+ strategy,
that is, they perform replication by sharing the responsibility of
requesting objects to the WSE among several peers, they could
decrease the number of replicas as shown in Fig. 5. Nevertheless, in
this case, the TLC/TLC+ strategy still produces less replication than
the Leafset and Bubble strategies.

The extension of the LCache structure of TLC to support more
than one peer ID (TLC+) has a positive impact on the number of
replicas. The simulations assume a transfer latency between peers
of 0.05 (low latency) and 0.5 (high latency) time units. Fig. 6 shows
that the number of replicas decreases even more with the use of
TLC+. With this solution more traffic is handled by the peer LCache
structures deviating load to the objects located in the peer local
caches.

4.3. Traffic generated

We analyze the traffic generated within the P2P network to
respond to a query and the traffic generated towards the WSE by
measuring the cache hits and misses respectively.

A cache hit takes place when an object (valid query answer) is
found in the P2P network and thereby there is no need to fetch
the object from the WSE. Fig. 7 presents the evolution of cache hits
through simulation progress. TLC and TLC+ equally improve cache
hits, thus, reducing in about 23% the amount of traffic generated

E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264 261

70k T T T

60k]

50k -]

40k b

Number of Replicas

10k b

Leafset Bubble TLC

Technique

Fig. 5. Number of responsibility replicas.

Number of Replicas

o6 S

TLC TLC+q 05 TLC+y5

Tau Value
Fig. 6. Number of replicas D > 1.

140k

130k

T
!

120k b

110K 3

T
!

Cache Hits

100k

90k | <X Yo]

Leafset
80k Bubble —%— |

TLC/TLC+ —*—
70k L L L

0 20 40 60 80 100
Simulation Progress

Fig. 7. Number of hits.

towards the WSE as compared against the alternative approaches.
Leafset and Bubble also achieve the same number of hits. Peaks in
the curves are a consequence of flash crowd queries we injected
during the simulations.

4.4. Latency

We have also measured latency in terms of the number of hops
required to find a cached object in the P2P network. Fig. 8 presents
the results. TLC/TLC+ reduces the number of hops due to our short-
term scheduling which quickly redirects popular queries to peers
where it is likely to find the requested object in a local cache.

3 .
Leafset

Bubble —x— |
TLC/TLC+ —*—

2.8

2.6

2.4

22

Routing Hops

2+

1.8 r b

16 - b

1.4 ‘ ‘ ‘
0 20 40 60 80 100
Simulation Progress
Fig. 8. Average number of hops.

4.6

TLC

44 L TLC+ —x— |

4.2 b

40 - 1

Latency [msec]

34 - 1

3.2
0 20 40 60 80 100

Simulation Progress

Fig. 9. Latency TLC versus TLC+.

In the beginning of the simulation the number of hops starts
at a higher point since cache structures are empty. During the
simulation, the curves tend to decrease as the local caches start to
contain valid answers for popular queries and therefore the routing
process does not reach the responsible peers for all user searches.

The Leafset and Bubble approaches are greatly affected by
TTL expiration since they cannot use invalid query answer copies
stored in local caches and therefore searches have to reach
the responsible peers. Our approach, on the other hand, copes
smoothly with TTL expiration and maintains a stable number of
hops during the whole search process.

TLC and TLC+ have same results in terms of routing hops.
However, the TLC+ strategy decreases average response time
even for a pessimistic case in which communication between
peers is so fast that there is little margin to exploit the object
transfer parallelism introduced by TLC+. Fig. 9 presents the query
latency improvement introduced by TLC+ for the pessimistic case.
TLC+ enables faster searches than TLC since more peers can benefit
from the newly arriving copies of objects stored in the peer local
caches at the same time.

4.5. Cache size

Fig. 10(a) and (b) show results when simulating different cache
size configurations for the global and local cache entries present in
the RCache, and the location cache entries present in the LCache. In
each plot we show two measures: (1) the number of overall cache
hits in the left y axis, and (2) the number of replicas in the right y
axis. The x axes show the number of entries in each type of cache.
In both plots, a hit means a query result that is found in some peer

262 E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264

Hits B30

Replicas 150k

5.0M |

%
202!
X2

3K
2000
KK

4.0M 4.0k

Ve
%%

ERRRIXS
SRR
09600%6%6%0% %%
XRRRRRRK

2

<

3.0M +43.0k

S
&
XX

930
00

o005

dotets

Cache Hits

Ve
%%
%
X

%
%
%!
0

2.0M +42.0k

‘V
%
o
X
Number of Replicas

Ve
%

oV
<>
<X
X
R

2

XS
o
XXX

%

XX
X

R

1.0M +41.0k

e
KL
2K
QXK

.'
%
55

o

0%
%%

L

0.0 0.0

150-0

125-25

100-50
Cache Configuration (Global-Local)

(a) Cache size.

T
Hits DX
5.0M Replicas 15.0k
0500
KX
40M} K 140k
dodode!)
Pode%e! @
ote%
K&K XXX Q
@ %% 3] =
2 R ool
R Pt o)
T 3.0Mf 008! hoto%s! 13.0k
© (%] Do =
o%e% le%ods 5
5 KKK KR
? KX o 5
55 (XX g
o KRS Dot e
2.0M | ,:,:‘:‘ :::::: 12.0k =
e K53 -
R RIK
[XXX] XX
R0%e% [Se2e
1.0M | K %0t 41.0k
K KKK
[RS&L
00 KX KA
15 %%
%! Jodode!
[Pe%e%!
0.0 O 2 0.0

50 25

Cache Configuration (LCache)

(b) Location cache size.

Fig. 10. Cache structures size.

RCache, and a replica means the assignment of a new DHT neigh-
boring peer to share the responsibility of contacting the WSE for a
given popular query.

The results in Fig. 10(a) show that the introduction of a small
percentage of local cache entries in the RCache greatly reduces the
number of replicas in the system. We did not find much difference
between introducing 16% and 33% of local cache entries in the fixed
space assigned to keep the RCache in each peer. In fact, the figure
shows a slight decrease in hits when we increase the local cache
entries whereas replication remains fairly constant. This is because
the number of entries that are no longer available to the whole P2P
community is increased when the global cache entries are reduced.
Popular entries in the local cache, on the other hand, can become
distributed in other peers in the system so they can be re-used by
closer peers in the DHT. Thus the results indicate that it is sufficient
to assign a small percentage (16%) of local cache entries in the space
available for caching query results in each peer.

The results of Fig. 10(a) were obtained with all LCaches
containing 50 entries. We have also analyzed the effects of different
sizes for the LCaches. Fig. 10(b) presents how hit and replication
performance degrade as we reduce the number of entries in the
LCaches. Without the LCache entries, the popular query answers in
the local caches are not found and thereby most of the searches
arrive at the responsible peers. This overloads the responsible
peers and consequently more replicas are generated to ease query
load.

The results in Fig. 10(b) also show that even with a fairly small
size for the LCaches (i.e., 50 entries), it is possible to decrease the
number of replicas and increase the number of hits significantly.
Note that each LCache entry is much smaller in space than a
corresponding RCache entry. Apart from the query terms, the
LCache entries mainly contain peer IDs whereas RCache entries
contain full query answers. The space occupied by the LCache is
less than 1% of the whole space reserved for caching in peers.

4.6. Power consumption

To evaluate our proposal against the alternative P2P caching
strategies in terms of power consumption, we extend our simu-
lators to measure hardware utilization and through this metric we
estimate the energy required to process large sets of Web queries
in the network. We set the simulator energy consumption curves in
accordance with the utilization-to-energy curves presented in [43]
for different commodity hardware devices. The effects of varying

120 T
TLC+ RXXXXXA
TLC
100 Bubble
Leafset !
80
S
g 60
=
[e]
a
40
20
0
Low Medium High
Load (%)

Fig. 11. Power consumption results.

query traffic intensity and flash crowd queries are reflected in the
level of utilization of devices which has a non-linear corresponding
effect in energy consumption. Typically at 0% utilization devices
still consume more than 50% of peak power. To set power values
close to the set-top boxes and network setting we use the baseline
values presented in [5].

Fig. 11 shows the impact on reduction of power consumption of
the proposed TLC and TLC+ strategies under different workloads
as compared against the alternative strategies. The results show
that the better efficiency of the proposed TLC+ strategy, in terms
of communication and overall cache hits, can lead to a significant
reduction of total power consumption with respect to the other
cache strategies.

Note that the work in [5] makes the case for nano data centers
by studying video-on-demand applications. They conclude that,
even under pessimistic scenarios, overall energy consumption
may be reduced between 20% and 30% when compared against
centralized data centers. They argue that the additional energy
cost for home users is not significant. The small extra cost in
electricity bills can be amortized by the ISP with service discounts
and incentives for home users.

As we explain in the following, our application requires
much less computing and communication than the video-on-
demand application and thereby it consumes less energy. As to
communicating single objects inside the network, the size of a
query answer is of the order of a few KBs whereas video sizes are of

E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264 263

the order of MBs and GBs. Current trends in Internet usage indicate
that Web and E-mail applications represent less than 20% of the
total content traffic [5]. Thus, at steady state, user query traffic
should consume a small fraction of network resources. On the other
hand, computing is also expected to be very small because (1) we
perform a few low-cost operations per query on caches and (2) it is
possible to achieve a significant improvement in performance with
very few cache entries per peer. The latter saves energy as there is
no need to use hard-disks in set-top boxes as it may be the case for
the video-on-demand application. Therefore, the effect on home
electricity bills should be negligible.

5. Conclusions

We have proposed a result cache strategy for structured P2P
networks called Two-Level Result Caching (TLC+). It applies a
short-term load balancing strategy based on the use of a LCache
structure in each peer. The LCache is a tiny LRU cache that stores
information about the peers that have recently requested queries
in their first hop of the DHT routing path. The LCaches increase
parallelism in the network by making available to other peers the
queries stored in the local result caches of peers that recently
requested the same queries. In addition, a mid-term load balancing
strategy is applied to replicate the role of being a responsible
peer in its DHT neighboring peers. Responsible peers are in charge
of contacting third-party Web search engines to get answers
to subsets of user queries. They store these answers in their
global result caches for future references. The replication strategy
applied in the mid-term strategy takes into consideration the peer
capacity and its current load in order to decide when to replicate
responsibility for very popular queries.

The experimental results confirm that our solution improves
load fairness among peers by 5% as compared to the best per-
forming alternative strategy evaluated. Query answer replication
is reduced up to 96% by our solution as compared to alternative
strategies. Replica generation is a communication bandwidth con-
suming operation which can saturate peers and increase the cache
miss rate degrading overall performance. Moreover, TLC+ im-
proves in about 10% the number of cache hits as compared against
the best alternative strategy, and about 18% as compared against
the worst performer. This implies that traffic towards the Web
search engine can be reduced by a similar percentage.

Our experimentation contemplated flash crowd queries, namely
situations in which a sudden peak of a few popular queries are in-
troduced in the simulation. This allows the evaluation of real-life
situations where users become reactive to big news events. This
is a type of experiment that has not been considered by related
work and we have observed that it can degrade performance signif-
icantly. In addition, our experiments considered the execution of
millions of queries submitted by actual users of a commercial Web
search engine. The results show that TLC+ is more robust to query
peaks than the alternative strategies as it can quickly spread the
load generated by these queries among several peers. Overall, the
proposed TLC+ improves load balance across peers, reduces object
replications, increases cache hits, reduces the number of network
hops, reduces individual query latency, requires a small number
of cache entries per peer to be efficient, and demands less power
consumption than alternative P2P caching strategies.

References

[1] V.G. Costa,]. Lobos, A. Inostrosa-Psijas, M. Marin, Capacity planning for vertical
search engines: an approach based on coloured petri nets, in: PETRINETS 2012,
in: Lecture Notes in Computer Science, vol. 7347, Springer, 2012, pp. 288-307.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-like
distributions: evidence and implications, in: IEEE INFOCOM'99, Vol. 1, 1999,
pp. 126-134. http://dx.doi.org/10.1109/INFCOM.1999.749260.

[3] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, J. Zahorjan, Measurement,
modeling, and analysis of a peer-to-peer file-sharing workload, in: SOSP, 2003,
pp. 314-329.

[4] NRD. Council, Improving the efficiency of television set-top boxes.
http://www.nrdc.org/energy/files/settopboxes.pdf.

[5] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, P. Rodriguez, Greening the
Internet with nano data centers, in: CONEXT'09, ACM, 2009, pp. 37-48.

[6] J.H. Ahnn, U. Lee, H.]. Moon, Geoserv: a distributed urban sensing platform, in:
CCGRID, 2011, pp. 164-173.

[7] N.H.Erika Rosas, M. Marin, Two-level result caching for web search queries on
structured p2p networks, in: Proceedings of the 2012 IEEE 18th International
Conference on Parallel and Distributed Systems, ICPADS’12, IEEE Computer
Society, Washington, DC, USA, 2012, pp. 221-228.
http://dx.doi.org/10.1109/ICPADS.2012.39.

[8] I Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a
scalable peer-to-peer lookup service for Internet applications, in: SIGCOMM,
2001, pp. 149-160.

[9] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: Middleware 2001, in: LNCS,
vol. 2218, Springer-Verlag, 2001, pp. 329-350.

[10] B.Y.Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, J. Kubiatowicz, Tapestry:
a resilient global-scale overlay for service deployment, IEEE Journal on
Selected Areas in Communications 22 (1) (2004) 41-53.

[11] S.lyer, A.LT.Rowstron, P. Druschel, Squirrel: a decentralized peer-to-peer web
cache, in: PODC, 2002, pp. 213-222.

[12] X. Wang, W.S. Ng, B.C. Ooi, K.-L. Tan, A. Zhou, Buddyweb: a p2p-based
collaborative web caching system, in: NETWORKING 2002 Workshops,
in: LNCS, vol. 2376, Springer, 2002, pp. 247-251.

[13] T.Stading, P. Maniatis, M. Baker, Peer-to-peer caching schemes to address flash
crowds, in: IPTPS'01, Springer-Verlag, 2002, pp. 203-213.

[14] G. Silvestre, S. Monnet, R. krishnaswamy, P. Sens, AREN: a popularity aware
replication scheme for cloud storage, in: Proceedings of the 2012 IEEE 18th
International Conference on Parallel and Distributed Systems, ICPADS’12, IEEE
Computer Society, Washington, DC, USA, 2012, pp. 189-196.

[15] A.S. Tigelaar, D. Hiemstra, D. Trieschnigg, Search result caching in peer-to-
peer information retrieval networks, in: A. Hanbury, A. Rauber, A.P. de Vries
(Eds.), IRFC, in: Lecture Notes in Computer Science, vol. 6653, Springer, 2011,
pp. 134-148.

[16] T. Fujimoto, R. Endo, K. Matsumoto, H. Shigeno, Video-popularity-based
caching scheme for p2p video-on-demand streaming, in: AINA'11, IEEE
Computer Society, 2011, pp. 748-755.

[17]]J. Kangasharju, KW. Ross, D.A. Turner, Adaptive content management in
structured p2p communities, in: InfoScale’06, ACM, 2006, p. 24.

[18] Z. Despotovic, Q. Hofstdtter, M. Michel, W. Kellerer, An operator approach to
popularity-based caching in dhts, in: ICC, IEEE, 2010, pp. 1-6.

[19] W. Rao, L. Chen, A.-C. Fu, G. Wang, Optimal resource placement in structured
peer-to-peer networks, IEEE Transactions on Parallel and Distributed Systems
21(7)(2010) 1011-1026. http://dx.doi.org/10.1109/TPDS.2009.136.

[20] F. Ferrarotti, M. Marin, M. Mendoza, A last-resort semantic cache for web
queries, in: J. Karlgren, J. Tarhio, H. Hyyro (Eds.), SPIRE, in: Lecture Notes in
Computer Science, vol. 5721, Springer, 2009, pp. 310-321.

[21] M. Marin, F. Ferrarotti, M. Mendoza, C. Gbmez-Pantoja, V.G. Costa, Location
cache for web queries, in: D. W.-L. Cheung, L.-Y. Song, W.W. Chu, X. Hy,]J. Lin
(Eds.), CIKM, ACM, 2009, pp. 1995-1998.

[22] M. Marin, V.G. Costa, C. Gémez-Pantoja, New caching techniques for web
search engines, in: S. Hariri, K. Keahey (Eds.), HPDC, ACM, 2010, pp. 215-226.

[23] T.Pitoura, N. Ntarmos, P. Triantafillou, Replication, load balancing and efficient
range query processing in dhts, in: EDBT, 2006, pp. 131-148.

[24] G. Swart, Spreading the load using consistent hashing: a preliminary report,
in: SPDC’04, IEEE Computer Society, 2004, pp. 169-176.

[25] D. Bauer, P. Hurley, M. Waldvogel, Replica placement and location using
distributed hash tables, in: IEEE LCN 2007, IEEE Computer Society, 2007,

pp. 315-324.

[26] S.Bianchi, S. Serbu, P. Felber, P. Kropf, Adaptive load balancing for dht lookups,
in: ICCCN 2006, 2006, pp. 411-418.

[27] H. Yamamoto, D. Maruta, Y. Oie, Replication methods for load balancing on
distributed storages in p2p networks, in: SAINT'05, IEEE Computer Society,
2005, pp. 264-271.

[28] V.Ramasubramanian, E.G. Sirer, Beehive: O(1) lookup performance for power-
law query distributions in peer-to-peer overlays, in: NSDI, 2004, pp. 99-112.

[29] X. Wang, Y. Zhang, X. Li, D. Loguinov, On zone-balancing of peer-to-peer
networks: analysis of random node join, SIGMETRICS Performance Evaluation
Review 32 (2004) 211-222.

[30] B.Godfrey, I. Stoica, Heterogeneity and load balance in distributed hash tables,
in: INFOCOM, 2005, pp. 596-606.

[31] Y. Zhu, Y. Hu, Efficient, proximity-aware load balancing for dht-based
p2p systems, IEEE Transactions Parallel and Distributed Systems 16 (2005)
349-361. http://dx.doi.org/10.1109/TPDS.2005.46.

[32] H.-C. Hsiao, H. Liao, S.-T. Chen, K.-C. Huang, Load balance with imperfect
information in structured peer-to-peer systems, IEEE Transactions on Parallel
and Distributed Systems 22 (4) (2011) 634-649.
http://dx.doi.org/10.1109/TPDS.2010.105.

[33] M. Bienkowski, M. Korzeniowski, Friedhelm, dynamic load balanc-
ing in distributed hash tables, in: IPTPS, 2005, pp. 217-225. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1933.

[34] G. Giakkoupis, V. Hadzilacos, A scheme for load balancing in heterogeneous
distributed hash tables, in: Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC'05, ACM, New York,
NY, USA, 2005, pp. 302-311.

http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref1
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://www.nrdc.org/energy/files/settopboxes.pdf
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref5
http://dx.doi.org/doi:10.1109/ICPADS.2012.39
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref9
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref10
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref12
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref13
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref14
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref15
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref16
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref17
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref18
http://dx.doi.org/doi:10.1109/TPDS.2009.136
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref20
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref21
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref22
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref24
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref25
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref27
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref29
http://dx.doi.org/doi:10.1109/TPDS.2005.46
http://dx.doi.org/doi:10.1109/TPDS.2010.105
http://citeseerx.ist.psu.edu/viewdoc/summary?doi%3D10.1.1.59.1933
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref34

264 E. Rosas et al. / Future Generation Computer Systems 30 (2014) 254-264

[35] C. Chen, K.-C. Tsai, The server reassignment problem for load balancing in
structured p2p systems, IEEE Transactions on Parallel and Distributed Systems
19 (2) (2008) 234-246. http://dx.doi.org/10.1109/TPDS.2007.70735.

[36] H. Shen, C.-Z. Xu, Locality-aware and churn-resilient load-balancing algo-
rithms in structured peer-to-peer networks, IEEE Transactions on Parallel and
Distributed Systems 18 (6) (2007) 849-862.
http://dx.doi.org/10.1109/TPDS.2007.1040.

[37] J. Ledlie, M.L Seltzer, Distributed, secure load balancing with skew, hetero-
geneity and churn, in: INFOCOM, IEEE, 2005, pp. 1419-1430.

[38] D.R. Karger, M. Ruhl, Simple efficient load balancing algorithms for peer-to-
peer systems, in: Proceedings of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA’04, ACM, New York, NY,
USA, 2004, pp. 36-43.

[39] N. Laoutaris, P. Rodriguez, L. Massoulie, Echos: edge capacity hosting
overlays of nano data centers, SIGCOMM Computer Communication Review
38 (1) (2008) 51-54. http://dx.doi.org/10.1145/1341431.1341442. URL
http://doi.acm.org/10.1145/1341431.1341442.

[40] M. Marzolla, Libcppsim: a Simula-like, portable process-oriented simulation
library in C++, in: ESM, 2004, pp. 222-227.

[41] M. Jelasity, A. Montresor, G.P. Jesi, S. Voulgaris, The Peersim simulator.
http://peersim.sf.net.

[42] S.Alici, LS. Altingovde, R. Ozcan, B.B. Cambazoglu, O. Ulusoy, Adaptive time-to-
live strategies for query result caching in web search engines, in: Proceedings
of the 34th European Conference on Advances in Information Retrieval,
ECIR’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 401-412.

[43] L.A.Barroso, U. Holzle, The case for energy-proportional computing, Computer
40 (12) (2007) 33-37.

Erika Rosas obtained her Ph.D. in computer science from
the Pierre and Marie Curie University in Paris, France. She
is currently assistant professor at Universidad de Santiago
de Chile. Her research areas cover large scale networks,
such as P2P and social network, in areas like trust and
reputation systems.

Nicolas Hidalgo obtained his Ph.D. in computer science
from the Pierre and Marie Curie University, Paris, France.
He is currently assistant professor at Universidad de Santi-

- ago de Chile. His research areas cover distributed systems,

Peer-to-Peer resource discovery methods and complex
queries over DHT-based networks. He has worked in lo-
calization mechanisms as well.

Mauricio Marin is a professor of computer engineering at
University of Santiago, Chile. His Ph.D. is from the Univer-
sity of Oxford, UK (1999) with a thesis dissertation on par-
allel computing. Currently he is the head of Yahoo! Labs
Santiago in Chile which is a center for applied research
on scalable infrastructure for the Web and information
retrieval. His research work is on optimizations for Web
search engines.

Veronica Gil-Costa received her M.S. (2006) and Ph.D.
(2009) in Computer Science, both from Universidad Na-

. cional de San Luis (UNSL), Argentina. She is currently a pro-
fessor at the University of San Luis, Assistant Researcher at

the National Research Council (CONICET) of Argentina and
a researcher for Yahoo! Labs Santiago (YLS). Her research
interests are in the field of performance evaluation, simi-

“ larity search, and distributed computing.
-

http://dx.doi.org/doi:10.1109/TPDS.2007.70735
http://dx.doi.org/doi:10.1109/TPDS.2007.1040
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref37
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref38
http://dx.doi.org/doi:10.1145/1341431.1341442
http://doi.acm.org/10.1145/1341431.1341442
http://peersim.sf.net
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref42
http://refhub.elsevier.com/S0167-739X(13)00132-5/sbref43

	Web search results caching service for structured P2P networks
	Introduction
	Background and related work
	Distributed hash tables
	Caching and replication in DHTs

	Proposed P2P caching service
	Architecture
	TLC+: Two-level caching
	Algorithmic details
	Replication
	Parallel LCache transfers

	Evaluation
	Load balancing
	Number of replicas
	Traffic generated
	Latency
	Cache size
	Power consumption

	Conclusions
	References

