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Quantum correlations between two free spinless dissipative distinguishable particles (interacting with
a thermal bath) are studied analytically using the quantum master equation and tools of quantum
information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are
shown. We show that for temperature T > 0 the time-evolution of the reduced density matrix
cannot be written as the direct product of two independent particles. We have found a time-scale
that characterizes the time when the bath-induced coherence is maximum before being wiped out
by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The
Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is
studied as an indirect measure of the induced correlations among particles. We have supported the
quantum character of the correlations by analyzing the geometric quantum discord.
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I. INTRODUCTION

In many practical situations where classical mechanics is enough to make a good description of a system, the
interaction with a surrounding (bath) leads to dissipation and fluctuations. This program has also been extended
to quantum mechanics concluding with fundamental results which can be summarized in the Fluctuation-Dissipation
theorem, see [1, 2] and references therein. Nevertheless, if we wish to describe the quantum non-equilibrium evolution
the problem is inevitably outside of the scope of the previous Kubo-like approach. Other approximations must be
introduced to work out an open quantum mechanics system [3]. Of importance is the analysis of the quantum
mechanics correlations generated during the elapse of time of the interaction with a measurement apparatus [2]. In
particular quantum mechanics correlations in a bipartite system have generated much interest for various tasks such
as computing [4], imaging and metrology [5]. Thus, the understanding of the mechanism of decoherence is an issue of
great interest as it would allow progress in construction of quantum mechanics devices [2].

The effect of a thermal quantum bath B on a microscopic system S has in particular been much discussed, the
general consensus being that B leads to dissipation and decoherence on S. Breaking the isolation of S is then believed
to significantly increase the decoherence [4, 6, 7]. Nevertheless, if this were true for all quantum mechanics open
systems, no matter how small is the interaction with B, fluctuation and dissipative effects would become very costly
for the operation of quantum mechanics devices as needed in quantum computation. Indeed very recently it has been
shown that entanglement between two qubits can be generated if the two qubits interact with a common thermal
bath [8], also research on quantum information processing –in finite dimensional systems– have led to the picture of
entanglement as a precious resource [9]. Additional studies concerning the analysis of a common bath vs individual
baths have lead to support the idea of bath-induced correlations in Markovian and non-Markovian approximations
[10]. A related result has also been found where the role of non-Markovian effects for the quantum entanglement has
been studied [11].

In this context an important point of view is achieved if we could analyze systems associated with an infinite
dimensional Hilbert space. However, this is not a simple task for dissipative systems using the quantum information
theory. In this work we propose to study –analytically– quantum correlations between two particles (in an infinite
discrete dimensional Hilbert space) interacting with a thermal bath. Then we will show that indeed the bath B
generates not only dissipation, but induces coherence and correlations between particles immersed on it. In order
to prove this fact, we will do exact calculations of the dynamics of spinless quantum walks [12–15]. Then exact
analytic results for the induced correlations can be computed showing that B may generate correlations between
particles originally uncorrelated. In what follows, we present calculations to measure correlations and so to define a
characteristic time-scale for a maximum coherence in the system before being wiped out by dissipation. We prove that
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these correlations are of quantum mechanics nature using the tools of quantum information theory, thus we show that
our results can be used to measure the quantum to classical transition as we have already done studying associated
qubit systems [16, 17].

The simplest implementation that reflects the role of a coherent superposition can be proposed in the framework of
quantum walk experiments, or its numerical simulations [18–22]. A Dissipative Quantum Walk (DQW) has also been
defined as a spinless particle moving in a lattice and interacting with a phonon bath [12, 13, 15–17, 23, 24]. These
models can also be extended considering a many-body description as we present here. In particular in this work we will
implement explicit calculations for a system constituted by two distinguishable DQW’s. Therefore, our approach can
be used to tackle this general problem pointing out the interplay between dissipation and the bath-particle interaction.

A non-Markov extension of the present DQW model can also be introduced using the Continuous-time Random
Walk (CTRW) approach introduced by Montroll and Weiss [25, 26]. In appendix A a short review on the subject of
quantum jumps in presented, this picture can also be related to the random quantum maps approach in the context
of the Renewal theory [27].

II. DISSIPATIVE QUANTUM WALKS

A model of two free distinguishable particles coupled to a common bath B can be written using the Wannier base in
the following way. Let the total Hamiltonian be HT = HS +HB+HSB, here HS is the free tight-binding Hamiltonian
[28] (our system S), which can be written in the form:

HS = 2E0I−
Ω

2

(
a†12 + a12

)
,

here {a†12, a12} are shift operators for the particles labeled 1 and 2, and I is the identity in the Wannier base

I =
∑
s,s′

|s, s
′
〉〈s, s

′
|, (1)

then:

a†12|sj , sl〉 = |sj + 1, sl〉+ |sj , sl + 1〉 (2)

a12|sj , sl〉 = |sj − 1, sl〉+ |sj , sl − 1〉. (3)

We note that a “shift operator” translates each particle individually. Here we have used a “pair-ordered” brac-ket
|sj , sl〉 representing the particle “1” at site sj and particle “2” at site sl. From Eqs. (2)-(3) it is simple to see that[
a†12, a12

]
= 0 and the fact that

a12a
†
12|sj , sl〉 = 2|sj , sl〉+ |sj − 1, sl + 1〉+ |sj + 1, sl − 1〉.

HB is the phonon bath Hamiltonian HB =
∑
n
~ωnB

†

nBn, thus {B†

n,Bn} are bosonic operator characterizing the

thermal bath at equilibrium.
The term HSB in the total Hamiltonian represents the interaction term between S and B, here we use a linear

interaction between the particles and the bath operators. Our model is a many-body generalization of the van Kampen
approach used to address the nature of a physical dissipative particle interacting with a boson bath [13]. Because the

shift operators a1,2 and a†12 are constant of motions, any bath interaction with these shift operators will lead to a
completely positive infinitesimal generator, see Kossakowski and Lindblad [3]. Thus, for two distinguishable particles
we propose the interaction term HSB in the form

HSB = ~Γ

(
a12 ⊗

∑
n

vnBn + a†12 ⊗
∑
n

v∗nB
†

n

)
, (4)

where vn represents the spectral intensity weight function from the phonon bath at thermal equilibrium, and Γ is the
interaction parameter in the model. We have chosen this interaction Hamiltonian in order to recover the classical
master equation for two independent random walk in the case when Ω = 0, for a more extended discussion on this
issue see Appendix A in [16, 26].
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In order to study the non-equilibrium evolution of S we derive from HT , eliminating the bath variables, a dissipative
quantum infinitesimal generator (see appendix A). Tracing out bath variables in the Ohmic approximation and
assuming as initial state of the total system a density matrix in the form of a product

ρT (0) = ρ (0)⊗ e−HB/kBT /Z,

where Z =Tr
(
e−HB/kBT

)
, we can write the Markov Quantum Master Equation (QME) [2, 3, 15]:

ρ̇ =
−i
~

[Heff , ρ] +
D

2

(
2a12ρa

†
12 − a

†
12a12ρ− ρa12a

†
12

)
+

D

2

(
2a†12ρa12 − a12a

†
12ρ− ρa

†
12a12

)
, (5)

here D ≡ Γ2kBT/~, where T is the temperature of the bath B. In the present paper we are interested in solving this
QME with a localized initial condition in the Wannier lattice, i.e.,: ρ(0) = |s1, s2〉〈s1, s2|.

Adding −2E0 + Ω to HT the effective Hamiltonian turns to be

Heff = Ω

(
I− a†12 + a12

2

)
− ~ωca12a

†
12, (6)

where ωc ≡ 2ω̃cΓ
2 is related to the frequency cut-off ω̃c in the Ohmic approximation [3, 13, 15]. It can be seen from the

strength function g (ω) of thermal oscillators (defined by g (ω) ∆ω ↔
[∑

n v
2
n

]
{ω<ωn<ω+∆ω}), that the high-frequency

oscillators (beyond ω̃c) only modify the effective Hamiltonian, that is its unitary evolution, see appendix A. This von
Neumann dynamics can be defused by going to the interaction representation. However, here we will be interested in
studying the non-equilibrium evolution of the system as a function of the rate of energies Ω and D ≡ Γ2kBT/~. Then,

in order to simplify the analysis of the QME (5) we will drop-out the term ~ωca12a
†
12 in the effective Hamiltonian,

which only produces additional reversible coherence. Under the assumption that ~ω̃c/kBT � 1, the dissipative
coefficient D appearing in (5) depends on the strength function and the thermal bath correlation function. This terms
only involves oscillators in the low-frequency region. It is also possible to see that the Markov approximation used
to get (5) involves a coarse-grained time scale such that ω̃c∆t � 1 in addition to a second order weak interaction
approach, which at the end leads to the damping dissipative factor D.

From (5) is simple to see that as temperature vanishes (D → 0) the unitary evolution is recovered. On the contrary,
the case Ω→ 0 (or D →∞ ) would correspond to two classical random walks. We note, however, that for the present
two-body quantum problem, when D/~Ω� 1, the classical profile cannot be recovered because correlations between
particles are induced from thermal bath B. In addition, here we note that the initial condition of particles would be
relevant for the calculation of the time-dependent bath-induced decoherence.

A. Solution for two QDW

We will solve this QME (5) with a localized initial condition in the Wannier lattice, i.e.,:

ρ(0) = |s1, s2〉〈s1, s2| = |~0〉〈~0|. (7)

The operational calculus in the QME will be done using Wannier vector states to evaluate elements of the density
matrix ρ(t).

To solve Eq.(5) we apply |s1, s2〉 from the right and 〈s1, s2| from the left, then using Eqs.(2) and (3) the evolution
equation can be written in terms of the usual Wannier ”brac-ket”. Therefore, we can introduce the discrete Fourier
transform noting that a Fourier ”brac-ket” is defined in terms of a Wannier basis for two particles in the form:

|k1, k2〉 =
1

2π

∑
s1,s2∈Z

eik1s1eik2s2 |s1, s2〉 ,

with kj ∈ (−π, π) and s1, s2 ∈ integers. Thus finally the QME (5) can be written as:〈
k1, k2

∣∣∣∣dρdt
∣∣∣∣ k′1, k′2〉= F(k1, k

′
1, k2, k

′
2) 〈k1, k2 |ρ| k′1, k′2〉 ,
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here

F(k1, k
′
1, k2, k

′
2) ≡ {F (1)(k1, k

′
1) + F (1)(k2, k

′
2) + 2D[C (k1, k

′
2) + C (k2, k

′
1)−C (k1, k2)−C (k′1, k

′
2)]},

where

F (1)(k2, k
′
2) ≡

[
−i
~
(
Ek2−Ek′2

)
+2D(C (k2, k

′
2)−1)

]
,

is the one-particle infinitesimal generator in the Fourier representation [24],

C (k1, k2) ≡ cos (k1−k2) and Eki ≡ Ω {1− cos ki} .

Note that F(k1, k1, k2, k2) = 0 leading to a momentum-like conservation law: 〈k1, k2|dρ(t)dt |k1, k2〉 = 0.
Elements of ρ(t) can be calculated in the Wannier basis

|s1, s2〉 =
1

2π

∫ π

−π

∫ π

−π
dk1dk2 e

−ik1s1e−ik2s2 |k1, k2〉.

After some algebra and using Bessel’s function properties we can write an analytical formula for ρ(t) in Wannier
representation 〈s1, s2|ρ(t)|s′1,s′2〉 (to simplify the notation we use tΩ ≡ Ωt

~ , tD ≡ 2Dt whenever it is necessary)

〈s1, s2|ρ(t)|s′1, s′2〉= i(s1−s
′
1+s2−s′2)e−2tD

∑
{n1,n2,n3,n4,n5,n6}∈Z

(−1)n4+n5 (8)

× Js1+n1+n2+n5
(tΩ) Js′1+n1+n3+n4

(tΩ)

× Js2+n3−n5+n6(tΩ) Js′2+n2−n4+n6
(tΩ)

6∏
ni=1

Ini(tD) , {sj , s′l} ∈ Z

where Jn and In are Bessel’s functions of integer order n ∈ Z. These functions satisfy that

J−n(t) = (−1)nJn(t), Jn(−t) = (−1)nJn(t),

and

I−n(t) = In(t), In(−t) = (−1)nIn(t).

This solution is symmetric under the exchange of particles [29] (therefore preserving the symmetry of the initial
condition), is Hermitian and fulfills normalization in the lattice Tr[ρ(t)] =

∑
{s1,s2}∈Z〈s1, s2|ρ(t)|s1, s2〉 = 1, ∀t;

positivity is assured because the infinitesimal generator fulfills the structural theorem [3]. The probability of finding
one particle in site s1 and another in s2 is given by the probability profile: Ps1,s2(t) ≡ 〈s1, s2|ρ(t)|s1, s2〉 and shows
the expected reflection symmetry in the plane: s1 − s2 = 0.

In the case D = 0, i.e., a quantum closed system without dissipation, we recover the solution for two quantum walk:

〈s1, s2|ρ(t)|s′1, s′2〉D=0 =
∏2
j=1 i

(sj−s′j)Jsj (tΩ)Js′j (tΩ), this means that from an uncorrelated initial condition ρ(0), the

solution ρ(t ≥ 0)D=0 is written as the direct product of two independent quantum particles.
As we mentioned before a classical random walk regime [1, 26] cannot be recovered. For D � Ω/~ the two-body

density matrix is ρ(t) 6= ρ1(t)⊗ρ2(t), showing a complex pattern structure in terms of convolutions of classical profiles.
From Eq.(8) it can be proved that when D � Ω/~ we get

lim
D�Ω/~

Ps1,s2(t) 6= Ps1(t)× Ps2(t) = e−2tD Is1 (tD) Is2 (tD) ,

here Psj is the classical probability profile for each particle. So a classical regime [for t → ∞] cannot be obtained.
This means that the profile for two DQW will not be a Gaussian bell-shape in 2D. In addition, it is intriguing to
note that from the QME there exist an important competition between building correlations vs inducing dissipative
decoherence.

Note that the one-particle density matrix is recovered tracing-out the degrees of freedom of the second one, say
j = 2:

ρ(1)(t) ≡ Tr2[ρ(t)],
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then

〈s1|ρ(1)(t)|s′1〉 = i(s1−s
′
1)e−tD

∑
n∈Z

Js1+n(tΩ) Js′1+n(tΩ) In(tD) ,

solution that indeed shows, for D � Ω/~, a random walk behavior for one particle [24]. In addition we note that in

the lattice the classical random walk solution is Pt(s) = e−2Dt Is (2Dt), and from this expression it is simple to get
the Gaussian profile in the continuous limit [26].

III. CORRELATIONS AND COHERENCE IN THE INFINITE DIMENSION HILBERT SPACE

A. Purity

To measure the influence from B into S we study the Purity P(2)
Q (t) ≡ Tr[ρ(t)2] [4].

P(2)
Q (t) = Tr[ρ(t)2] =

∞∑
s1,s2=−∞

∞∑
s′1,s

′
2=−∞

〈s1, s2|ρ(t)|s′1, s′2〉〈s′1, s′2|ρ(t)|s1, s2〉

= e−8Dt
∞∑

m=−∞
Im (4Dt)

∞∑
α,β=−∞

(−1)α+βIα (4Dt) Iβ (4Dt) Iα+m (4Dt) Iβ+m (4Dt) Iα+β+m (4Dt) . (9)

We can prove that P(2)
Q (t ≥ 0) = 1 for D = 0, and for D 6= 0 we get P(2)

Q (t) ≤ 1 decreasing in the course of time.

Interestingly, for D 6= 0, P(2)
Q (t) is different from the Purity for two particles with independent quantum baths, i.e.,

P(2)
Q (t) 6= P(1)

Q (t)P(1)
Q (t), where

P(1)
Q (t) = e−4DtI0 (4Dt) ,

is the one-particle Purity (with independent bath [24]). Thus a common bath produces a difference in the total purity

∆PQ ≡ P(2)
Q (t)− P(1)

Q (t)P(1)
Q (t) ≥ 0,

which shows the occurrence of bath-induced correlations.
An outstanding conclusion can be observed by introducing a change of basis in the representation of the two-particle

density matrix ρ(t) ≡ ρ(Ω, D, t). Using the time-dependent unitary transformation:

〈s1, s2|U1|s′1, s′2〉 = i(s1+s2+s′1+s′2)Js1−s′1(
Ωt

~
)Js2−s′2(

Ωt

~
)

in Eq.(8) it is possible to prove that

U1ρ(Ω, D, t)U†1 = ρ(Ω = 0, D, t).

Thus, properties as Purity P(2)
Q (t), Information Entropy S(t) = −Tr [ρ ln ρ] (von Neumann’s entropy) can straight-

forwardly be shown in this new representation, see Fig.1(a),(b) with and without a common bath. As ρS+B(0) is a
pure state, S(t) is a good measure for the entanglement between the two particles with B. We noted that even when

the Purity is related to the Information Entropy, P(2)
Q gives much insights: we see that ρ(t) for two DQW’s with a

common bath the system has more Purity than the case of two DQW’s with independent baths. The inset Fig.1(b)
shows the difference ∆PQ from the mentioned cases showing a maximum of correlation for tmax

D ≈ 1.2 before the
dissipation wipes out the bath-induced coherence.

B. Quantum mirror correlations

Another measure to quantify the correlations build up between the particles, can be evaluated calculating correlation
events for two particles. We define the total-mirror correlation T(1,2), ∀{Ω, D}, as:

T(1,2) =
∑
s1,s2

〈s1, s2|ρ(t)| − s1,−s2〉 −
(
T (1)

)2

,



6

FIG. 1: (Color online) (a) Information Entropy and (b) Purity for two different cases (using an initial condition as in Eq.7):
two DQW’s with a common B and two DQW’s with independent baths. Insets show the corresponding differences, and T(1,2);
all as a function of tD = 2Dt.

where

T (1) =
∑

s1,s2,s′2

〈s1, s2|ρ(t)| − s1, s
′
2〉 = e−2DtI0(2Dt).

The quantity T (1) can be interpreted as the one-particle classical random walk return to the origin [26], to see this
note that

ρ(1)(t) = Tr2[ρ(t)],

and so ∑
s1

〈s1|ρ(1)(t)| − s1〉 = e−2DtI0(2Dt).

In the inset of Fig.1(b) we plot the correlation T(1,2)(t) showing that there is a time-scale when this quantum correlation
reaches a maximum tmax

D ≡ 2Dtmax ' 1.9 · · · before the long-time asymptotic regime ∼ 1/t, characterizing the
decoherence in the two-particles system.

C. Relative entropy of coherence

In this section, we will quantify the quantum coherence in our system. For such purpose we use a entropic measure
of the quantum coherence called the Relative Entropy of Coherence [30, 31].

For any quantum state ρ = ρ (t) on the Hilbert space H, the Relative Entropy of Coherence is defined as

CRE = S (ρdiagnal)− S (ρ) ,

where S (ρ) = Tr [ρ ln ρ] is the von Neumann entropy. In [30], Baumgratz et al. shown that the Relative Entropy
of Coherence is a good measure of the quantum coherence. In what follows we will use Wannier’s basis to calculate
CRE . The results of this measure is shown in figure 2. We have studied the CRE as a function of t′ = tΩ = Ωt

~ and we

use several values of rescaled dissipation parameter rD ≡ 2D
Ω/~ = 0, 0.1, 0.5, 1, 2. These results can also be used as an

indicator that bath has created correlations between particles for t′ < τc ≈ 0.4. For long times t′ > τc the function
CRE decreases with increasing rD; this means that there is a strong competition between the bath-induced coherence
and the inherent decoherence due to dissipation. Long-time values of CRE are not plotted due to numerical computer
limitations.
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FIG. 2: (Color online) Relative entropy of coherence for two particles with localized initial condition (see Eq.7) as function of
t′ = tΩ ≡ Ωt/~. This function shows a crossover at t′ ' 0.4 as a function of time t′. The CRE is calculated for different values
of the dissipation parameter rD = 2D

Ω/~ .

D. Quantum profile coherence

As before, let us use rD the rate of energy scales rD ≡ 2D
Ω/~ and t′ a dimensionless time (depending on the plotting

we used tΩ or tD). In Fig.3(b), (c), (d) we show the probability profile for having particles at the site s1 and s2, i.e.,
Ps1,s2(t′ = tΩ) for different values of rD (see Eq.(8)). Here, Fig.3(b) corresponds to the case when the two particles
do not interact with the bath (D = 0), the inset shown the one-axis projection of one tight-binding quantum walk
[24]. In Fig.3(d) Ps1,s2(t′ = tD) corresponds to the high dissipative regime.

When D > 0 the probability profile is modified appearing interference patterns along of line s1 = s2, raising the
value of the probability in the direction s1 = −s2 (conservation of total momentum), see Fig.3(c). In the case Ω→ 0
(or rD � 1), the Ps1,s2(t′ = tD) shows a different pattern signing the quantum nature in its profile, see Fig.3(d).
This is in contrast to the case of two particles with independent baths B1 and B2 in this case the probability profile
is a Gaussian bell-shape as is shown in the inset. We remark that for two DQW with a common bath the probability
profile can never be represented as a Gaussian distribution due to the bath-induced correlations.

E. Geometric quantum discord

To characterize the quantum correlations in the system we use the geometric quantum discord measure [32–35],
which is easier to obtain instead of original quantum discord measure (which involves an optimization procedure [36]),
and it has been proved to be a necessary and sufficient condition for non-zero quantum discord [32].

The geometric quantum discord (GQD) is defined as

DG (ρ) = min
χ∈Ω0

||ρ− χ||2 , (10)

where Ω0 denotes the set of zero-discord states and ||X − Y ||2 = Tr (X − Y )
2

is the square norm in the Hilbert-
Schmidt space. Additionally, the lower bound of the GQD is calculated using the density operator, which is defined
on a bipartite system (belonging to Ha ⊗Hb, with dimHa = m and dimHb = n) [32–35] as:

ρ =
1

mn

Im ⊗ In +
∑
i

xiλ̃i ⊗ In +
∑
j

yjIm ⊗ λ̃j (11)

+
∑
j

tij λ̃i ⊗ λ̃j

 ,
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FIG. 3: (Color online) (a) Representation of two DQW’s interacting with B. (b) Profile as a function of s1 and s2. The inset
shows the profile tracing out the second particle. (c) Here the pattern can be seen even when D 6= 0. (d) Profile for rD � 1
(or Ω → 0). The inset shows the Gaussian bell-shape for two particles with independent baths. Blue indicates, roughly, the
value zero while red a high value of probability.

here λ̃i, i = 1, · · · ,m2 − 1 and λ̃j , j = 1, · · · , n2 − 1 are the generators of SU(m) and SU(n) respectively, satisfying

Tr
(
λ̃iλ̃j

)
= 2δij , and Im is the identity operator in m-dimension. In this expression the vectors ~x ∈ Rm2−1 and

~y ∈ Rn2−1 of the subsystems A and B are given by:

xi =
m

2
Tr
(
ρλ̃i ⊗ In

)
=
m

2
Tr
(
ρAλ̃i

)
yj =

m

2
Tr
(
ρIm ⊗ λ̃j

)
=
n

2
Tr
(
ρBλ̃j

)
,

and the correlation matrix T ≡ [tij ] is given by

T ≡ [tij ] =
mn

4
Tr
(
ρλ̃i ⊗ λ̃j

)
.

The lower bound of the GQD is calculated in the following form:

DG (ρ) ≥ 2

m2n

(
||~x||2 +

2

n
||T ||2 −

m−1∑
i=1

ηi

)
, (12)

where ηi, i = 1, 2, · · · ,m2 − 1 are eigenvectors of the matrix
(
~x~xt + 2

nTT
t
)

arranged in non-increasing order [33].

1. Lattice bipartition, the qubit-qubit set

We need to define a procedure on the lattice in order to study the GQD (a similar approach has been done in [17]),
in this context introducing a bipartition we will end with a qutrit-qutrit system.
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In the figure 4(a) we show the mirror bipartition used in this work (a similar bipartition has been used for a spin
system under the SU (2) projection [37]). In the present case, tracing out (in the lattice) sites different from ±s it is
possible to define a three-level system. Thus, in order to trace over all non-mirror sites (6= ±s ) we defined the kets

|A〉 ↔ |s〉
|B〉 ↔ | − s〉
|φ〉 ↔ |s′〉, s′ 6= ±s.

Then, the ket |s1, s2〉, representing a state of two particles, can be written in the form

|s1, s2〉 = |αβ〉 ⊗ |R〉, (13)

where {α, β} ∈ {A,B, φ}, and R is the complement, i.e., the set of all non-mirror sites.
Replacing (13) in (8) and tracing over |φ〉 we obtain the density matrix ρAB . Thus ρAB turns to be a reduced

(9× 9) matrix, where the new ordered basis can be written as:

{|AA〉, |AB〉, |Aφ〉, |BA〉, |BB〉, |Bφ〉, |φA〉, |φB〉, |φφ〉}.

In order to simplify this analysis we now reduce the representation to a qubit-qubit set, then we do not consider
elements of the density matrix ρAB with vectors contribution:

{|Aφ〉, |Bφ〉, |φA〉, |φB〉, |φφ〉},

i.e., representing the basis for the one-particle state and the empty state.
Therefore final density matrix reduces to a (4× 4) matrix, within this approach we obtain the representation of a

qubit-qubit system. Then, the lower bound of the GQD from Eq.12) is reduced to:

DG (ρ) ≥ 1

4

(
||~x||2 + ||T ||2 − kmax

)
, (14)

where kmax is the largest eigenvalue of K = ||~x||2 + ||T ||2 [32]. Now, we calculate the total mirror contribution for
the GQD defined as

DT
G (ρAB) =

∞∑
s=1

D
(s)
G (ρAB) , (15)

where D
(s)
G (ρAB) corresponds to (Eq.14) for a fixed value of s (D

(s)
G (ρAB) measures the quantum correlation between

particles 1 and 2 to be confined at sites ±s.). We have plotted DT
G (ρAB) as a function of time t′ = tΩ, for different

values of rD ≡ 2D
Ω/~ . In figure 4(b) the GQD (lower bound given by Eq.14) is shown for different values of rD =

0.1, 0.5, 1, 2.
One important conclusion from this result is that bath-induced correlations (between the particles) are in fact of

quantum nature because DT
G (ρAB) > 0 for almost all t > 0 and rD > 0. Note that only if rD = 0 the GQD vanishes

at all times. From figure 4(b), we can see that the GQD shows a non-monotonic behavior as function of rD then a
characteristic time-scale τM can be defined signing its maximum value; note that as rD decreases τM is delayed. In
this figure we have not plotted the long-time behavior of GQD because we have numerical computed limitations.

IV. PHASE-SPACE (LATTICE) REPRESENTATION

A important point of view is achieved if we introduce a quasi probability distribution function (pdf) for the infinite
dimensional discrete Hilbert space associated to two DQW’s. The crucial point in defining a Wigner function is to
assure the completeness of the phase-space representation [38, 39]. Then for this purpose we consider the enlarged
lattice of integers (Z) and semi-integers (Z2). Denoting

~k = (k1, k2), ~x = (x1, x2), xj ∈ (Z ⊕ Z2)

we define

Wt(~k, ~x)=
∑

x′
1,x

′
2∈(Z⊕Z2)

〈x1 + x′1, x2 + x′2|ρt|x1 − x′1, x2 − x′2〉
e−i2

~k·~x′

(2π)
2 , (16)
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FIG. 4: (a) The bipartition to calculated the GQD. (b) The function DT
G (ρAB) takes into account all the mirror contributions

(qubit-qubit set) as defined in (15). A characteristic time τM can be defined when these correlations are maxima.

which indeed fulfills ∑
~x∈(Z⊕Z2)

∫ π∫
−π

d~k Wt(~k, ~x) = 1

Where ρt ≡ ρ(t) is the two-body density matrix. Note that when ρ(t) satisfies the exchange of particles symmetry
(due to the particular initial condition we have used) our definition of the Wigner function fulfills also the invariance
under exchange of particles but in the phase-space; i.e., under the exchange x1 ↔ x2 and k1 ↔ k2 (indicating that

Wt(~k, ~x) has a reflection symmetry in the planes: x1 − x2 = 0 and k1 − k2 = 0).

The present definition of Wt(~k, ~x) can be proved to be equivalent to the definition using phase-point operators in
finite systems [39–41]. We remark the prescription that

〈~x|ρt|~x′〉 = 0,

if some index xj ∈ Z2 (this is so because Wannier’s index are on Z). Thus, our Wt(~k, ~x) fulfills the fundamental

conditions pointed out by Wigner et al. [38]:
∫ π∫
−π

d~k Wt(~k, ~x) = 〈~x|ρt|~x〉 ≥ 0 and
∑
~x∈(Z⊕Z2)Wt(~k, ~x) = 〈~k|ρt|~k〉 ≥ 0.

In addition, we noted that the enlarged lattice (Z⊕Z2) is the crucial key for a correct definition of a Wigner function.
From the discrete Fourier transform we can obtain the inverse relation on the Wannier lattice (sj ∈ Z,∀j = 1, 2) as:

〈s1, s2|ρt|s′1, s′2〉 =

∫ π∫
−π

d~k Wt(k1, k2,
s1 + s′1

2
,
s2 + s′2

2
)ei

~k·(~s−~s
′
).

Note that the inverse relation demands the necessity of a Wigner function defined on the enlarged lattice. After some
algebra using solution (8) in definition (16) we get

Wt(~k, ~x)=
e−2tD

4π2
(−1)2x1+2x2

∑
{α,β,q,n2,n3,n5}∈Z

(−1)n2+n3+q (17)

×J2x1+2α−q(−2tΩ sin k1)J2x2+2β+q(−2tΩ sin k2)

×In2
(tD)In3

(tD)In5
(tD)In2+n5−α(tD)

×In3+n5+β(tD)In2+n3+n5−q(tD)eiq(k1−k2).

As we commented before this solution is symmetric under exchange of particles because we have used a localized
initial condition. In the case D = 0 we recover the non-dissipative description

Wt(~k, ~x)D=0 =
(−1)2x1+2x2

4π2
J2x1(−2tΩ sin k1)J2x2(−2tΩ sin k2)
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representing two-independent quantum walks, and showing the possibility to be negative depending on the argument

of the Bessel’s functions and sites on the enlarged lattice. Thus, our Wigner function Wt(~k, ~x) can be used to detect
whether a point in phase-space has a pure quantum mechanics character or not. In Fig.5 we show several portraits,

in particular it is clear to identify regions where Wt(~k, ~x) < 0. Therefore we propose to use Wt(~k, ~x) to measure the
quantum to classical transition. In Fig.5 we show patterns for several values of ∆k ≡ k1 − k2 and tD = 5 on the

enlarged lattice Z ⊕ Z2. On the other hand, putting Ω = 0 in Wt(~k, ~x) simplifies its analytical expression and shows
also that there are domains where it is negative. This proves the quantum mechanics character of the bath-induced
correlations between the two DQW, even in the large dissipative regime 2D

Ω/~ � 1. Note that the behavior of the

Negative Volume of Wigner’s function in phase-space can enlighten the understanding of the quantum character of
the system behavior, as well as supporting the characterization of the typical time-scale for the coherence between
particles, work along this line is in progress.

V. DISCUSSIONS

We have analyzed two free spinless initially uncorrelated particles (in the lattice) in interaction with a common
boson thermal bath B. Even when the QME is a second order approach, the Markov approximation is enough to
show bath-induced correlation among free particles. We have solved analytically the QME showing that if D 6= 0,
we get ρ(t) 6= ρ1(t)⊗ ρ2(t),∀t > 0, i.e., the time evolution is not a direct product of two independent particles if the
temperature of the bath is non null. For D = 0 the probability profile Ps1,s2(t) ≡ 〈s1, s2|ρ(t)|s1, s2〉 is ballistic and
starts to be modified by the presence of dissipation D > 0, showing a X-form pattern. In the case of large dissipation,
rD ≡ 2D

Ω/~ � 1, this structure is accentuated and additional interferences are observed. Several correlations measures:

T(1,2), C(1,2), Purity and Relative Entropy of Coherence CRE have been analyzed showing a degree of coherence between
particles, these correlations are induced by the common bath B despite the presence of dissipation for temperature
T 6= 0. PQ, Mirror Correlation T(1,2) and GQD have been used to show the existence of a time-scale when the
quantum correlations reach a maximum. All these measured of correlations have also been indirectly supported by an
independent analysis using a Wigner function defined on the enlarged lattice of integers and semi-integers (Z ⊕ Z2);
showing that this function is negative in some domains of phase-space. Thus we propose to use the total negative
volume of the Wigner function in phase-space to characterize the quantum to classical transition in this type of
many-body system, work along this line is in progress.
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VI. APPENDIX A. SEMIGROUP FOR TWO DISTINGUISHABLE QUANTUM RANDOM WALK

Starting from the total Hamiltonian HT and eliminating the bath variables (in the Markov approximation), the
Kossakowski-Lindblad infinitesimal generator [3] can be written in the form

KL [•] = − i
~

[Heff , •] + F [•]− 1

2
{F ∗ [1] , •}+ , (18)

where Heff is the effective Hamiltonian, 1
2F
∗ [1] can be regarded as a dissipative operator, and F [•] the fluctuating

superoperator (F ∗ [•] is the dual operator of F [•], and {•, •}+ the anticonmutator). Using a separable initial condition
for the total density matrix ρT (0) = ρ(0)⊗ ρeB, and working in a second order approximation we can write (ρeB is the
thermal density matrix of the bath at temperature T )

Heff = HS − i
1

2~

∫ ∞
0

dτ TrB ([HSB, HSB (−τ)] ρeB) ,

F [ρ(t)] =

(
1

~

)2 ∫ ∞
0

dτ TrB [HSBρ(t)⊗ ρeBHSB (−τ)

+ HSB (−τ) ρ(t)⊗ ρeBHSB] ,

where HSB (−τ) = e−iτ(HS+HB)/~ HSB e
iτ(HS+HB)/~ [3, 15]. Noting that a12 and a†12 are constant in time,

[
a12, a

†
12

]
=

0 and using the full expressions of HS , HB and HSB, after some algebra we can write

F [•] =
π4Γ2

2~/kBT

[
a12 • a†12 + a†12 • a12

]
, (19)

where πΓ2kBT/~ is a dissipative constant (here we have used the Ohmic approximation for the strength function g (ω)

of the bath, i.e., g(ω) =
∑
k |vk|

2
δ (ω − ωk) ∝ ω, if 0 < ω < ω̃c). In a similar way the effective Hamiltonian can be

calculated given

Heff = HS − ωc~ a12a
†
12,

here ωc ≡ 2ω̃cΓ
2 is an upper bound frequency.

Using these expressions we can write down the QME (5) in the form

ρ̇ = L [ρ] , L [•] ≡ − i
~

[Heff , •] + F [•]− 1

2
{F [1] , •}+ ,

then the solution can be written in the formal form:

ρ (t) =

∞∑
m=0

∫ t

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1 {L0 (t− tm)F [•]L0 (tm − tm−1) · · ·F [•]L0 (t1)} ρ (0) ,

where it is evidenced that the system is exposed to a succession of quantum jumps associated to the superoperator
F [•], and intercalating a smooth evolution characterized by

L0 (t) ρ = exp

{(
− i
~

[Heff , •]−
1

2
{F [1] , •}+

)
t

}
ρ.

This picture allows to generalize the description of a QDW into a non-Markovian evolution using the CTRW
approach [25, 26]. See also a related contribution, in the present issue, for describing completely positive quantum
maps in the context of the Renewal theory [27].
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