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Factorization in spin systems under general fields and separable ground-state engineering
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We discuss ground-state factorization schemes in spin S arrays with general quadratic couplings under general
magnetic fields, not necessarily uniform or transverse. It is shown that, given arbitrary spin alignment directions
at each site, nonzero XYZ couplings between any pair and fields at each site always exist such that the
ensuing Hamiltonian has an exactly separable eigenstate with the spins pointing along the specified directions.
Furthermore, by suitable tuning of the fields this eigenstate can always be cooled down to a nondegenerate ground
state. It is also shown that in open one-dimensional systems with fixed arbitrary first-neighbor couplings at least
one separable eigenstate compatible with an arbitrarily chosen spin direction at one site is always feasible if
the fields at each site can be tuned. We demonstrate as well that in the vicinity of factorization, i.e., for small
perturbations in the fields or couplings, pairwise entanglement reaches full range. Some noticeable examples of
factorized eigenstates are unveiled. The present results open the way for separable ground-state engineering. A
notation to quantify the complexity of a given type of solution according to the required control on the system
couplings and fields is introduced.
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I. INTRODUCTION

Over the last two decades quantum information and quan-
tum computation sciences have experienced an extraordinary
theoretical and experimental progress [1–3]. In particular, the
possibility of performing quantum information processing and
quantum simulation tasks in archetypal many-body systems
such as spin arrays has attracted considerable attention [4–11].
Furthermore, the recent noticeable advances in control tech-
niques of quantum systems have made it possible to engineer
and simulate spin interactions by means of cold atoms in
optical lattices [12–14], superconducting Josephson junctions
[15–18], or trapped ions [14,19–24], leading to an ever
increasing interest in these strongly correlated systems.

In this framework, it is well known that the exact eigenstates
of interacting spin systems in the presence of an external
magnetic field are typically entangled states. However, one
of the most exceptional features of these systems is that under
certain conditions they can possess a completely separable
ground state (GS), i.e., a factorized GS which can be expressed
as the product of single spin states [25]. The remarkable
phenomenon of factorization has been thoroughly studied in
spin systems immersed in a uniform transverse field [26–35],
and in finite anisotropic XYZ spin chains the transverse
factorizing field has been shown [31,32] to correspond to
a GS Sz parity transition, the ensuing separable GS being
twofold degenerate. Recently, in Ref. [36] we studied XYZ

models with uniform nontransverse fields, where it was
shown that a uniform, maximally aligned, nondegenerate,
completely separable GS can exist in both ferromagnetic- and
antiferromagnetic-type systems for fields parallel to a principal
plane of the coupling.

In this work we show that if some control over the couplings
or the fields is feasible, then completely separable exact ground
states can be engineered in general XYZ-type systems. This
point is important for the first basic step in most quantum
information processes [37] and quantum simulation schemes
[14,24], since they are based on an initial fully separable
state of the qubits, assumed to be reached with high fidelity.

Whenever such initial state is only approximately achieved
or is prone to decoherence, additional error correction must
be implemented [38]. Therefore, the possibility of having an
exactly separable GS at finite magnetic fields even in the
presence of strong interactions between the spins is highly
desirable, especially if such GS is nondegenerate and can be
well separated from the remaining spectrum. Such possibility
can be also useful in schemes for quantum annealing [39,40].

We first show that for arbitrary alignment directions at
each site, compatible nonzero XYZ couplings between any
pair of spins and concomitant finite factorizing fields always
exist such that the separable state is an exact eigenstate of
the system. Moreover, such state can always be made a
nondegenerate well-separated GS by appropriately tuning the
fields. In addition, it is shown, remarkably, that for an arbitrary
quadratic coupling between two spins and an arbitrarily chosen
spin alignment direction of one of the spins, there is always an
alignment direction of the remaining spin compatible with
an exactly separable eigenstate. This result enables us to
engineer separable GSs in systems with arbitrary first-neighbor
couplings at least in one-dimensional-type geometries, if fields
can be tuned. Furthermore, the factorizing fields for a single
pair can be always chosen as uniform, though in general
nontransverse. A complexity classification scheme for the
control required on the couplings and fields is accordingly
introduced. This general framework also allows us to identify
and prove the existence of nontrivial separable eigenstates
for certain couplings, fields, and geometries, like the spin-
spiral-type solution which will be discussed. We also suggest
two experimental implementations for which the proposed
methods could be realized. A final but not less important aspect
is that the present general factorization points, arising for
not-necessarily uniform couplings and nontransverse fields,
can also be associated to an entanglement transition: pairwise
entanglement, though obviously vanishing at factorization,
will be shown to reach full range in its vicinity if either the
fields or couplings are perturbed, in agreement with previous
results for uniform fields [28,31,36].
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The general rigorous results are presented and demonstrated
in Sec. II and the Appendix. Special examples of factorized
eigenstates are discussed in Sec. III. The ensuing GS engi-
neering schemes, complexity classification, and experimental
implementation are discussed in Sec. IV. Conclusions are
finally drawn in Sec. V.

II. EXACTLY SEPARABLE EIGENSTATES

A. Separability conditions for general quadratic couplings

We consider an array of N spins Si , not necessarily
equal, interacting through general quadratic couplings of
arbitrary range in the presence of a general magnetic field
hi = (hi

x,h
i
y,h

i
z). The Hamiltonian is

H = −
∑

i

hi · Si − 1

2

∑
i �=j

Si · J ij Sj (1)

= −
∑
i,μ

hi
μS

μ

i − 1

2

∑
i �=j,μ,ν

J ij
μνS

μ

i Sν
j , (2)

where i,j label the sites in the array; S
μ

i , μ = x,y,z denote
the spin components at site i; and J

ij
μν = J

ji
νμ are the coupling

strengths between spins at sites i and j , with J ij a matrix of
elements J

ij
μν . The XYZ case corresponds toJ ij diagonal ∀ i,j

(J ij
μν = δμνJ

ij
μ ). The Hamiltonian (1) will possess a completely

separable eigenstate of the form

|�〉 = ⊗n
i=1Ri |0i〉 = | ↗→↙↖ ...〉, Ri = e−ıφiS

z
i e−ıθiS

y

i ,

(3)
where |0i〉 is the local state with maximum spin along
the z axis (Sz

i |0i〉 = Si |0i〉) and Ri is a rotation such
that the resulting spin alignment direction is ni =
(sin θi cos φi, sin θi sin φi, cos θi), if two sets of conditions are
met [36]. The first ones are the pairwise field independent
equations which relate the alignment directions with the
exchange couplings:

nx ′
i · J ij nx ′

j = ny ′
i · J ij ny ′

j , nx ′
i · J ij ny ′

j = −ny ′
i · J ij nx ′

j .

(4)

Here nx ′
i =(cos θi cos φi, cos θi sin φi,− sin θi), ny ′

i =(− sin φi,

cos φi,0) are the corresponding rotated vectors orthogonal to
nz′

i = ni , such that (nx ′
i ,ny ′

i ,ni) forms an orthonormal triad.

Equations (4) mean that the strengths J
ij

μ′ν ′ = nμ′
i · J ij nν ′

j

associated with the rotated spin operators S
μ′
i = RiS

μ

i R
†
i (Si ·

J ij Sj = ∑
μ,ν J

ij

μ′ν ′S
μ′
i Sν ′

j ) satisfy J
ij

x ′x ′ = J
ij

y ′y ′ and J
ij

x ′y ′ =
−J

ij

y ′x ′ , ensuring that H does not connect |�〉 with two spin
excitations.

The second set are the local field dependent equations which
determine the factorizing fields hi at each site:

hi = hi
‖ + hi

⊥, (5)

where hi
‖ = hi

‖ni is an arbitrary field parallel to the local spin
alignment direction ni and

hi
⊥ = ni ×

⎛
⎝ni ×

⎛
⎝∑

j

SjJ ij nj

⎞
⎠

⎞
⎠, (6)

is a field orthogonal to the local alignment direction ni ,
which represents the nontransverse factorizing field of lowest
magnitude and ensures that H will not connect |�〉 with single
spin excitations: Eq. (6), equivalent to hi

⊥ = ∑
j hij

⊥ with hij

⊥ =
−Sj [J ij nj − ni(ni · J ij nj )], implies hi

μ′ = −∑
j SjJ

ij

μ′z′ for
μ′ = x ′,y ′.

If Eqs. (4)–(6) are fulfilled, then H |�〉 = E�|�〉, with

E� = −
∑

i

〈Si〉 · hi − 1

2

∑
i �=j

〈Si〉 · J ij 〈Sj 〉

= −
∑

i

Sih
i
‖ − 1

2

∑
j �=i,μ,ν

SiSjJ
ij
μνniμnjν, (7)

where 〈Si〉 ≡ 〈�|Si |�〉 = Sini . This energy is split into two
contributions: the first one is associated with the parallel field
components hi

‖ = hi
‖ni and the second one, independent of

hi
‖, with the couplings. The parallel components hi

‖ can then
be used to shift the energy of the factorized state and hence to
cool it down to a GS, as discussed below.

B. Fundamental properties

We now provide five fundamental properties of the previous
maximally aligned separable eigenstates. For the sake of clarity
proof details are presented in the Appendix.

Lemma 1. If Eqs. (4)–(6) are satisfied, the state |�〉 given
by Eq. (3) will always become a nondegenerate GS of H for
sufficiently strong yet finite parallel fields hi

‖ = hi
‖ni .

Proof. This result is apparent as no state |�〉 orthogonal to
|�〉 will have an energy 〈H 〉� ≡ 〈�|H |�〉 which decreases
more rapidly with the applied fields hi

‖ than E�, since 〈�|Si ·
ni |�〉 = Si is maximum. Hence, a finite threshold value h‖c
will always exist such that |�〉 becomes a nondegenerate GS
if hi

‖ > h‖c ∀ i. Moreover, the energy gap with the first excited
state can be made as large as desired by increasing the values
of hi

‖. �
Lemma 2. Given two arbitrary alignment directions ni , nj at

sites i,j , a nonzero XYZ-type coupling J
ij
μν = J

ij
μ δμν always

exists such that Eqs. (4) are fulfilled.
This lemma implies that for arbitrary alignment directions

ni at each site of the array, XYZ couplings J
ij
μ and suitable

fields hi always exist such that the associated factorized state
|�〉 is an exact GS of H .

Proof. For J
ij
μν = J

ij
μ δμν , Eqs. (4) can be conveniently

rewritten in vector form as

J ij · U ij = 0, J ij · V ij = 0, (8)

where J ij = (J ij
x ,J

ij
y ,J

ij
z ) is the exchange coupling vec-

tor and U ij , V ij are the vectors defined as U ij = nx ′
i ∗

nx ′
j − ny ′

i ∗ ny ′
j , V ij = nx ′

i ∗ ny ′
j + ny ′

i ∗ nx ′
j , with n ∗ m =

(nxmx,nymy,nzmz) the Hadamard product, such that ni ·
J ij nj = J · (ni ∗ nj ) for J ij diagonal. Hence, by choosing
J ij orthogonal to the subspace generated by U ij and V ij ,
Eqs. (8) [and then Eq. (4)] are fulfilled. The fields can then
be obtained from Eqs. (5)–(6). And by applying sufficiently
strong parallel fields hi

‖, |�〉 can be made a GS (Lemma 1). �
Note that two distinct situations are implied by Eq. (8), as

depicted in Fig. 1: If U ij and V ij are linearly independent, it
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FIG. 1. Left column: Schematic representation of the spin align-
ment directions ni and nj and the perpendicular factorizing fields hij

⊥
and hji

⊥ [Eq. (6)]. Right column: Exchange couplings in the exchange
couplings space compatible with the spin alignment configuration.
Top row: U ij and V ij are linearly independent and Eqs. (8) define a
line [Eq. (9)] of possible exchange couplings. Bottom row: U ij and
V ij are linearly dependent (as ni and nj belong to a principal plane)
and Eqs. (8) define a plane of possible exchange couplings [Eq. (A4)].

determines a line of compatible exchange vectors orthogonal
to the plane generated by U ij and V ij , i.e.,

J ij = j ij (U ij × V ij ), (9)

with j ij an arbitrary real constant.
On the other hand, if U ij and V ij are linearly dependent, it

defines a plane of compatible exchange couplings. This case
arises whenever (i) ni and nj belong to the same principal
plane (i.e., njσ = niσ = 0 for some σ = z, x or y); (ii) nj is
the reflection of ni with respect to a principal plane (|njμ| =
|niμ| ∀ μ, with njσ = −niσ for just one component σ ); and
(iii) ni = −nj , i.e., antiparallel alignment directions. In these
cases V ij vanishes for the present choice of orthogonal vectors
nμ′

i and the plane of compatible exchange couplings is that
orthogonal to U ij . The explicit expressions for J ij are given
in the Appendix.

Lemma 3. Given an arbitrary quadratic coupling SiJ ij Sj =∑
μ,ν J

ij
μνS

μ

i Sν
j between two spins and an arbitrary alignment

direction nj of one of the spins, there is at least one alignment

direction ni of the other spin satisfying the factorization
Eqs. (4), given by

ni = α[a × b ± (ηλ+a + λ−b)], (10)

where a = J ij nx ′
j , b = J ij ny ′

j ,

λ2
± =

√
(|a|2 − |b|2)2 + 4|a · b|2 ± (|a|2 − |b|2)

2
, (11)

and α is a normalization factor, with η = 1 if a · b � 0 and
−1 otherwise (if a · b = 0, λ+ or λ− vanishes and the sign
of η becomes irrelevant). Each sign in Eq. (10) originates a
distinct solution for ni (Fig. 2) if λ± are not both zero. If
b ∝ a and a �= 0, then ni ∝ a. Equation (10) holds if a and b
are not both zero (see the Appendix for the proof and additional
details, including the special case a = b = 0).

This lemma implies that at least in open one-dimensional
systems of N spins with arbitrary, not necessarily uniform
first-neighbor quadratic couplings, a fully separable eigenstate,
compatible with a given (arbitrary) spin alignment direction of
one of the spins, always exists for suitable fields at each site.
The alignment directions of the remaining spins are determined
by successive applications of this lemma, while the fields are
determined by Eqs. (5) and (6). Furthermore, there are typically
2N−1 configurations of spin directions compatible with the
couplings and the initial nj , as illustrated in Fig. 2.

Lemma 4. For a pair of equal spins (Si = Sj = S) in-
teracting through XYZ couplings, if Eqs. (8) are satisfied
for non-anti-parallel directions ni and nj , there always exist
parallel fields hij

‖ and hji

‖ at i and j such that the factorizing

field hij
s for the single pair is uniform:

hij

‖ + hij

⊥ = hji

‖ + hji

⊥ = hij
s . (12)

In the uniform case ni = nj , it is apparent from Eq. (6) that
the perpendicular fields are equal, entailing that hij

‖ = h
ji

‖ with

the strength h
ij

‖ remaining arbitrary. However, when ni �= nj ,

Eq. (12) leads to fixed values of the parallel fields h
ij

‖ , h
ji

‖
(explicitly determined in the Appendix) and the pair uniform
factorizing fields hij

s belong to the ellipsoid (μ �= ν �= σ ):

∑
μ=x,y,z

(
h

ij
sμ

)2

(
J

ij
μ + J

ij
ν

)(
J

ij
μ + J

ij
σ

) = S2. (13)

FIG. 2. Left: Typical contour plot of Eqs. (8) for fixed J ij and nj ( J ij = J (1,0.75, − 0.2), θj = π/3, φj = π/5). The two intersection
points correspond to the two solutions n±

i for ni given by Eq. (10). Right: Schematic representation of the 2N−1 configurations of |�〉 compatible
with the exchange vectors J ij for a spin chain of N spins and an initial alignment direction at site j .
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This equation is just that determined by Kurmann et al. in [25]
for the Néel-type separable GS in an antiferromagnetic cyclic
chain with first-neighbor couplings in a uniform field. Hence,
for a uniform field we recover this result. Note, however, that
under a uniform field such state will be twofold degenerate
if ni �= nj , due to breaking of permutational symmetry [36],
and addition of local nonuniform parallel fields is necessary to
split this degeneracy.

Lemma 5. Pairwise entanglement reaches full range in the
vicinity of factorization.

This result, proved in the Appendix, extends a previous
result shown for uniform couplings and fields [36] to the
present general case of nonuniform fields and couplings. It
means that pairwise entanglement, though obviously vanishing
at a separable eigenstate, reaches full range if either the fields
or the couplings are slightly varied around the factorization
values. It holds for any number N of spins and any spin S > 0.
Factorization can then be also considered as an entanglement
critical point in the present general setting.

III. EXAMPLES

As illustration of the previous lemmas, we discuss here
some special examples of separable eigenstates and show
explicit results for the pairwise entanglement in the vicinity of
the present general factorization conditions.

A. Spin spiral and other separable eigenstates

We consider from the present perspective (i.e., starting from
the state and deriving the compatible couplings and fields)
three examples of separable eigenstates: (i) constant θ (θi = θ

in all alignment directions ni), which includes in particular
spin spiral-type eigenstates; (ii) constant φ (φi = φ ∀ ni); and
(iii) uniform (constant θ and φ).

(i) Let us first consider θi = θ for all spins, with φi arbitrary.
If U ij , V ij are linearly independent, which implies here that
ni + nj does not belong to a principal plane, Eqs. (8) or (A1)
lead to an XXZ coupling,

J ij
x = J ij

y = J ij , J ij
z = J ij cos(φi − φj ), (14)

with J ij arbitrary, which is independent of both θ and the
average (φi + φj )/2. From Eq. (6) it can be seen that the
perpendicular factorizing fields belong to the principal plane
xy: hij

⊥ = J ijSj sin(φi − φj )(ez × ni).
In particular, considering now a one-dimensional chain

with first-neighbor couplings, this case admits solutions with
uniform anisotropy J

ij
z /J ij = cos φ, and hence also uniform

couplings if φ = φi+1 − φi is constant. In a cyclic chain we
should have in addition φ = 2πk/N , with k any integer
between 1 and N − 1, as schematically shown in Fig. 3.
For a spin S chain the total perpendicular factorizing fields
hi

⊥ = hi,i−1
⊥ + hi,i+1

⊥ become

hi
⊥ = (J i−1,i − J i,i+1)S sin φ(ez × ni). (15)

Equation (15) shows that for uniform couplings (J i,i+1 = J

∀i), hi
⊥ = 0 and the spin spiral is an exact eigenstate of the

present XXZ cyclic chain already at zero field (in the open
case, the end-point fields h1

⊥ and hN
⊥ remain nonzero). In the

cyclic case it corresponds to a highly degenerate eigenvalue
of H that arises when J

ij
z /J ij = cos 2πk

N
. In the presence of

parallel fields hi
‖ = h‖ni , the degeneracy will be removed, its

energy becoming

E� = −NS(h‖ + JS cos φ). (16)

It will then be a nondegenerate GS if h‖ is sufficiently large,
typically h‖ = O(|J |S).

(ii) Let us consider now φi = φ for all spins, with the angles
θi remaining arbitrary. Assuming again U ij and V ij linearly
independent, i.e., that ni + nj does not belong to a principal
plane, Eq. (A1) leads again to an XXZ-type coupling,

J ij
x = J ij

y = J ij
(
1 − η2

ij

)
, J ij

z = J ij
(
1 + η2

ij

)
, (17)

where ηij = sin(θj − θi)/ sin θ̄ij , with θ̄ij = (θi + θj )/2 and
J ij arbitrary. Hence, the coupling is independent of
φ but depends now on θi , θj , with |J ij

z | � |J ij |.
For small θi − θj = δθ , the orthogonal fields are hij

⊥ ≈
−J ijSj δθ cos θ̄ij (cos φ, sin φ, − tan θ̄ij ), which belongs to the
plane defined by ni and nj . In a one-dimensional chain
with first-neighbor couplings, a constant coupling becomes
feasible for a Néel-type configuration with alternating angles
θ1θ2θ1 . . ., since in this case θ̄ij and |θi − θj | are constant.
The energy E� is in any case independent of φ, with
〈Si〉 · J ij 〈Sj 〉 = SiSjJ

ij [η2
ij cos 2θ̄ij + cos(θi − θj )].

(iii) Let us finally consider a fixed alignment direction
ni = n for all spins (θi = θ , φi = φ ∀i). If n does not belong
to a principal plane, U ij and V ij are linearly independent
and Eqs. (14) or (17) lead to J

ij
μ = J ij , i.e., to an isotropic

coupling ∝ Si · Sj . Equation (A2) then implies hij

⊥ = 0, i.e.,
no orthogonal field is required since such uniform state is
already an obvious eigenstate of Si · Sj for any orientation n.

If n belongs instead to a principal plane μν (nσ = 0), V ij =
0 and anisotropic couplings become also feasible, provided J

FIG. 3. Schematic representation of the spin spiral separable eigenstate in a spin chain. The alignment direction of the spin at site i is
determined by θi = θ and φi = φ1 + (i − 1)φ ∀i. The top (bottom) panel corresponds to a top (side) view.
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FIG. 4. Left panel: Scaled energy spectrum of a finite spin-1/2 chain with first-neighbor XYZ couplings and eight spins when a factorizing
field hi = hi

⊥ + h‖ni with hi
⊥ fixed and h‖ � 0 is applied. The decreasing straight line represents the energy E� of the separable eigenstate

|�〉, which becomes GS for h‖ > h‖c (dashed line). Right panel: GS concurrences Cij between a central spin and first and second neighbors,
showing that for h‖ < h‖c the GS is entangled whereas for h‖ > h‖c it is completely separable. All labels are dimensionless.

is orthogonal to U ij . This condition leads to

J ij
σ = J ij

μ n2
ν + J ij

ν n2
μ = J ij

ν + (
J ij

μ − J ij
ν

)
cos2 γ, (18)

with J
ij
μ , J

ij
ν arbitrary and γ the angle between n and the μ

axis, implying a fixed ratio J
ij
σ −J

ij
ν

J
ij
μ −J

ij
ν

[36]. The factorizing fields

belong to the same principal plane, with

hi
⊥ = sin γ cos γ (eσ × n)

∑
j

Sj

(
J ij

μ − J ij
ν

)
. (19)

B. Pairwise entanglement

We now show in Figs. 4 and 5 the behavior of pairwise
entanglement in the GS of a finite spin-1/2 chain with
nonuniform first-neighbor couplings under nonuniform fields.
The entanglement between spins i and j is measured through
the concurrence [48] Cij = 2λmax − Tr Mij where λmax is
the largest eigenvalue of Mij = [ρ1/2

ij ρ̃ij ρ
1/2
ij ]1/2, with ρ̃ij =

σy ⊗ σyρ
∗
ij σy ⊗ σy in the standard basis and ρij the reduced

state of spins i and j .
We consider a completely separable eigenstate with the

spin alignment directions of the spins selected at random.
The exchange couplings between every adjacent pair were
then obtained through Eq. (9), setting a uniform norm

FIG. 5. GS concurrences Cij between spins i and j in the chain of Fig. 4 in the vicinity of factorization (point at h‖/|J | = 1 on Fig. 6). In
the top panel, we have set the couplings as J ij

μ + J ∀ i,j , with J ij
μ the factorizing values, such that Cij = 0 ∀ i,j if J = 0. In the bottom

panel, the couplings are fixed at the factorizing values but the fields are now hi + hni⊥, with ni⊥ ∝ hi
⊥, such that Cij = 0 ∀ i,j at h = 0.

Cij is verified to reach full range in the vicinity of the present general factorization point (nonuniform couplings and fields). Right panels show
the same quantities of the left panels at a smaller scale. All labels are dimensionless.
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|J ij | = J for all exchange vectors. In order for |�〉 to be
a GS, nonuniform fields hi = hi

⊥ + h‖ni , with hi
⊥ the fixed

orthogonal factorizing fields (6) and h‖ � 0, were applied at
each site. At h‖ = 0 |�〉 is an exact eigenstate of H although
not the GS. As shown in the left panel of Fig. 4, the energy E�,
given by Eq. (7) decreases linearly (and with maximum slope)
for increasing h‖, and at h‖ = h‖c a GS transition occurs, such
that |�〉 becomes GS ∀h‖ > h‖c. Accordingly, GS pairwise
concurrences Cij vanish for h‖ > h‖c ∀ i,j , as seen in the right
panel of Fig. 4.

The behavior of pairwise concurrence in the vicinity of
factorization is shown in Fig. 5. We have chosen a stable
factorized GS (the point at h‖/|J | = 1 in Fig. 4), such
that the perturbations considered led to a smooth variation
of the GS, without crossings with the first excited state.
The correction to the field was chosen perpendicular to the
alignment direction as any perturbation h‖ni just shifts the
GS energy. It is verified that all concurrences Cij are turned
on in the immediate vicinity of factorization for variations of
the couplings (top panel) or fields (bottom panel), although
those for distant pairs can be very small and vanish outside
a small interval. Nonetheless, the factorization point stands
out as an entanglement “critical point” of the system, in the
sense of exhibiting infinite range in its vicinity. Note also that
coefficients βij in the reduced state of the pair, Eq. (A11), will
vanish and hence change their signs at J = 0 or h = 0.

IV. SEPARABLE GROUND-STATE ENGINEERING

One of the goals of this paper is to provide recipes
for engineering nondegenerate maximally aligned exactly
separable GS in spin systems. In the previous section this
problem was approached from two different perspectives:
(I) specifying the alignment directions ni of the spins and
finding compatible exchange vectors J ij (Lemma 2) and (II)
assuming fixed exchange couplings J ij and finding compatible
alignment directions of the spins (Lemma 3). The first scheme
has, for instance, enabled us to easily identify spin-spiral-type
separable eigenstates in XXZ chains with special values of
Jz/Jx , already at zero field.

In the first case it is evident that a necessary condition for
engineering the separable GS is that the exchange coupling
between the spins must be tunable. This could in principle
be feasible in spin systems based on quantum dots [41,42],
superconducting Josephson junctions [43], and nuclear (or
electron-nuclear) spin states [44]. In the second scenario the
exchange couplings are fixed and Lemma 3 yields the possible
separable eigenstates the system can possess. This is a more
restrictive case, as we suppose little (to none) control over
the exchange couplings. Thus, according to how much control
is available over the system the problem may be considered
from one standpoint or the other. To quantify such control
(and assuming that a uniform field can always be applied) we
introduce the experimental complexity “εc = (m,k),” which
indicates that for a system of N interacting spins to have a
given separable state as its nondegenerate GS, control over
m � N − 1 local fields and k exchange couplings between
spins is required. As expected, the separable state which
requires the simplest control will be shown to be the uniform
separable state.

FIG. 6. Schematic representation of the separable state with
arbitrary spin alignment directions ni at each site (left panel) and
with a Néel-type configuration (right panel). (a) The alignment
directions at each site are specified. Then, for each pair the
(b) exchange couplings and (c) perpendicular fields are determined.
(d) The perpendicular factorizing field at each site is hi

⊥ = ∑
j hij

⊥.
(e) The uniform factorizing field h′

s is determined by Lemma 4.

A. Tunable exchange couplings

As shown in Lemma 2, by specifying the individual spin
alignments ni and nj of an interacting pair, the exchange vector
J ij and the fields hij

⊥, hji

⊥ can be determined. Then, by applying
suitable parallel fields at each site, the separable state |�〉 can
be made a nondegenerate GS of H (Lemma 1). Assuming that
a uniform field can be applied, then εc = (1,1) for a single pair.
Similarly, for a chain of N spins with first-neighbor couplings,
εc = (N − 1,N − 1) in the open case and εc = (N − 1,N) in
the cyclic case (Fig. 6).

A possible way of reducing the complexity is to obtain
separability by only applying a uniform factorizing field.
According to Lemma 4, this is always possible in a system
of two identical spins if Eqs. (8) are fulfilled, provided
the alignment directions n1 and n2 are not antiparallel.
Nonetheless, if n1 �= n2 such eigenstate will be twofold
degenerate (due to basic permutational symmetry breaking)
and local nonuniform parallel fields must be added to split
this degeneracy. Therefore, the complexity remains unchanged
if a nondegenerate GS is to be achieved. The same holds
for finite cyclic chains with first-neighbor couplings and an
even number of spins if an alternating Néel-type separable
eigenstate [ni = n1 (n2) for i odd (even)] is sought. With the
same previous scheme (and just doubling the field at each site
due to the contributions from each neighbor) it is possible to
obtain such eigenstate by applying a uniform field (right panel
in Fig. 6). This state can be a GS for antiferromagnetic-type
couplings [25], although it will be again degenerate. An
additional alternating field will then be required to turn it into
a nondegenerate GS.

On the other hand, if Si = Sj and ni = nj , the uniform
factorizing field is just hs = h‖ + h⊥ with the strength h‖
remaining arbitrary. Thus, according to Lemma 1 it is possible
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to make this state a nondegenerate GS with an arbitrarily large
spectral gap by applying just a uniform field hs , implying
εc = (0,1). Similarly, in a cyclic chain of N (even or odd) spins
with first-neighbor couplings, such states require εc = (0,N),
due to the same arguments. In an open chain it is necessary,
however, to correct the fields at the borders due to one missing
neighbor and hence εc = (2,N − 1).

Achieving the necessary control over the exchange interac-
tions and local magnetic fields is a challenge in itself. However,
this requirement can be relaxed by considering spin clusters
schemes [45] where the qubit is encoded in several spins.
The previous schemes can then be used as building blocks
to engineer (bulk per bulk) the separable GS. If the spin
configuration of each cluster is uniform, the factorizing fields
at each bulk will also be uniform, and we would only require
control over the exchange couplings and fields at the border of
the clusters.

B. Fixed exchange couplings

For a pair of interacting spins, given the alignment direction
nj of one of the spins, according to Lemma 3 an alignment
direction ni of the remaining spin can always be determined,
regardless of the coupling between them. Then, by appropriate
fields the ensuing separable state can be made an exact GS with
εc = (1,0). In finite arrays Lemma 3 can therefore be used
to determine spin configurations compatible with the fixed
exchange couplings. For instance, in an open chain of N spins
with first-neighbor couplings, by specifying the alignment
direction of only one spin, this method determines the possible
alignment directions of the remaining spins (typically 2N−1

configurations, Fig. 2, right panel). This scheme is represented
in the left panel of Fig. 7. In this case εc = (N − 1,0), whereas

FIG. 7. Schematic representation of a spin chain with nonuniform
couplings (left panel) and with uniform anisotropic couplings leading
to a uniform separable state (right panel). (a) The exchange couplings
are fixed. In the left panel one of the spin alignment directions ni is
specified. (b) Left: Using Lemma 3 the spin alignment directions for
the spins at sites i ± 1 can be determined. Right: n belongs to the
principal plane μν determined by the exchange couplings. (c,d) Left:
By successive applications of Lemma 3 the spin alignments of the
remaining spins are determined.

in the cyclic case control on one exchange coupling is required,
meaning that εc = (N − 1,1).

If in the previous system the exchange couplings are
uniform, J ij = J , the uniform separable solution ni = n∀ i

is always feasible provided n is appropriately chosen. If the
coupling is isotropic, Jμ = J , μ = x,y,z, then, as discussed
in the previous section, n is arbitrary, i.e., the solution for ni

given by Lemma 3 is the same nj of the initial spin for any
nj (see the Appendix). However, if the exchange interaction
is anisotropic, a uniform solution is feasible provided nj

belongs to a principal plane and satisfies Eq. (18), as depicted
in the right panel of Fig. 7. In cyclic chains (with either
isotropic or anisotropic couplings) such uniform |�〉 can then
be made a nondegenerate GS with just a uniform magnetic
field, i.e., εc = (0,0), while in open chains εc = (2,0) due to
the border corrections. On the other hand, Néel-type solutions,
also feasible for uniform first-neighbor couplings, require an
additional alternating field in order to become a nondegenerate
GS. The uniform solution is also directly feasible for higher
range couplings [36], as well as in more general arrays and
geometries. Just the fields near the border should be adequately
corrected. The uniform separable GS is therefore that requiring
the least control over the system.

C. Experimental feasibility and implementations

The possibility of simulating interacting spin systems
enables the aforementioned engineering methods to be real-
ized. We mention two physical realizations, in which, with
the current state of technology, couplings and fields can be
controlled.

1. Superconducting devices

Superconducting qubits based on Josephson junctions in
solid-state electrical circuits present an attractive scenario for
a quantum simulator due to their robustness, long coherence
times, and intrinsic low dissipation [15]. It has been shown that
superconducting flux qubits circuits can be used (under specific
regimes) to simulate XX spin systems with nearest-neighbor
interactions with nontransverse nonuniform fields (belonging
to the xz principal plane of the couplings) [16]. In these
systems, the exchange couplings can be tuned if a direct current
superconducting quantum interference device (SQUID) is
used to couple the flux qubits [17], whilst the direction and
strength of the local magnetic fields are controlled by the
phases and amplitudes, respectively, of microwave driving
fields. Realizations of chains with first-neighbor tunable XZ

couplings, not necessarily uniform, in nontransverse and
nonuniform fields have also been recently reported using
planar transmon qubits (a type of superconducting charge
qubits) [18].

2. Trapped ions

When interacting with lasers, trap ions can simulate
XYZ effective spin systems in nontransverse magnetic fields.
Trapped ions methods are highly controllable and versatile and
present long decoherence times and high readout precision.
When simulating interacting spin systems, the exchange
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couplings and the effective magnetic fields can be tuned by
controlling the lasers acting on the internal transition of the
ions [19,24].

In these systems, once the nondegenerate separable GS
is obtained it can be used in actual computing instances
which require an initial fully separable state, as in standard
models for quantum computation and quantum simulation
[1,14,24,37]. In particular, in typical quantum annealing, one
starts from a known separable GS of a trivial noninteracting
Hamiltonian (usually h

∑
i S

x
i ) which is then continuously

driven to a target interacting Hamiltonian whose nontrivial
GS is sought [39,40] (normally an Ising type Hamiltonian
h′ ∑

i S
z
i + ∑

i,j J ij Sz
i S

z
j ). Thus, the previous factorization

schemes enable us to think of annealing protocols with
always-on interactions in which just a part of the original
Hamiltonian is quenched. For instance, one could start from
a convenient maximally aligned uniform separable GS in an
XYZ system with a nontransverse field, such that the GS
is well gapped, and continuously decrease the field along
the x axis and the XY terms leaving the sought Ising
Hamiltonian. Additionally, quantum annealing could be used
in principle to obtain the GS of a complex Hamiltonian
starting from a separable GS by an analogous process (i.e., just
modifying the fields, initially at suitable factorizing values).
In particular, in chains with fixed arbitrary first-neighbor
couplings, Lemmas 3 and 1 ensure the existence of (multiple)
completely separable gapped GSs if the fields are adequately
tuned, entailing that the previous annealing could always be
applied.

V. CONCLUSIONS

We have presented an approach to the problem of fac-
torization, showing the possibility of starting from the state
and determining the compatible couplings and fields. This
approach opens the way to separable ground-state engineering
in interacting spin systems if some control over the couplings
(assumed quadratic) and fields is feasible. For a fully separable
state with arbitrary spin alignment directions at each site,
nonzero couplings between any selected pairs (which can be
all pairs or just some pairs) and finite fields at each site always
exist such that the ensuing Hamiltonian has such state as a
nondegenerate GS. In this way, some noticeable separable
eigenstates (like the spin-spiral solution) were easily identified
in XXZ chains. In addition, in open one-dimensional systems
of N spins with arbitrary first-neighbor couplings, at least one
(and typically many) exactly separable GS compatible with
an arbitrary spin direction at one site is always feasible if the
fields can be tuned at each site. And for a single pair, the
field can always be chosen as uniform. Furthermore, pairwise
entanglement reaches full range in the immediate vicinity of
factorization (for perturbations in the fields or couplings),
regardless of the type of solution, indicating that even in the
present general setting factorization can still be considered as
an entanglement critical point. These results, while providing
useful insight into interacting spin systems and models without
analytical solution, enable us to devise separable ground-
state engineering methods which could be used in quantum
information protocols and quantum annealing.
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APPENDIX

We present here proof details of the lemmas presented in
Sec. II B.

Lemma 1. As previously stated, there is no state |�〉 orthog-
onal to |�〉 whose energy decreases more rapidly with hi

‖ than
E�. For instance, if Si = S ∀ i, |〈Si · J ij Sj 〉� | � J ijS(S + 1)
is bounded (with J ij the maximum singular value of the matrix
J ij ) while 〈−∑

i Si · hi〉� � −(N − 1)Sh‖ − ∑
i〈Si〉� · hi

⊥
if hi = h‖ni + hi

⊥ and N is the number of spins. Hence, no
state |�〉 can match the decrease with increasing h‖ of E�,
which will contain a term ∝ −NSh‖. Typically, if all J ij are
O(J ), the threshold parallel field h‖ c for making |�〉 a GS
will be O(JSl), with l the number of neighbors coupled with
a given spin.

Lemma 2. If J ij is orthogonal to the subspace spanned
by the vectors U ij and V ij , Eqs. (8) are satisfied. Here
we explicitly determine these exchange couplings and the
concomitant factorizing fields for the two different situations
that need to be considered.

(a) U ij and V ij linearly independent. In this case J ij is
given by Eq. (9), which can be explicitly written in terms of
the alignment directions ni ,nj as

J ij
μ = −j ij (njμDi/niμ + niμDj/njμ), (A1)

where Di = ∏
μ niμ = 1

4 sin θi sin 2θi sin 2φi . It satisfies

J
ij
μ = J

ji
μ . The orthogonal fields hij

⊥ can then be specified
just in terms of the alignment directions and the constants j ij :

(hij

⊥)μ = j ijSj

(
n2

jμ − n2
iμ

)
Di/niμ. (A2)

Correspondingly, the energy E�, Eq. (7), becomes

E� = −
∑

i

Sih
i
‖ − 1

2

∑
i �=j

j ij SiSj (Di + Dj ). (A3)

(b) U ij and V ij linearly dependent. For the present
orthogonal vectors nμ′

i , this case occurs when V ij = 0 (and
U ij �= 0). Hence, Eqs. (8) define a plane orthogonal to U ij of
exchange vectors J ij .

(i) If ni and nj belong to the same principal plane, say μν,
with σ the direction orthogonal to this plane (niσ = njσ = 0),
Eqs. (8) lead to

J ij
σ = J ij

μ niνnjν + J ij
ν niμnjμ, (A4)

with J
ij
μ and J

ij
ν arbitrary. There are now two independent

exchange couplings, which are those of the plane containing
the alignment directions (bottom right panel in Fig. 1). From
Eq. (6) it is seen that hij

⊥ also belongs to the principal plane
μν, directly depending on the free couplings J

ij
μ and J

ij
ν .

Moreover, by choosing them such that ni × ( J ij ∗ nj ) = 0,
then hij

⊥ = 0, i.e., |�〉 is an exact eigenstate at zero field.
(ii) If ni is the reflection of nj with respect to the principal

plane μν, with all components of ni(j ) nonzero (otherwise we
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return to previous case i), Eqs. (8) lead to

J ij
σ = J

ij
μ

(
1 − n2

iμ

) + J
ij
ν

(
1 − n2

iν

)

1 − n2
iσ

, (A5)

where J
ij
μ and J

ij
ν are arbitrary. Then, from Eq. (6) the

orthogonal fields are

(hij

⊥)σ = Sj

(
J ij

μ + J ij
ν

)
niσ ,

(hij

⊥)μ(ν) = Sj

(
J

ij

ν(μ) − J ij
σ

)
niμ(ν). (A6)

(iii) Finally, if ni = −nj , we should just replace J
ij
σ by

−J
ij
σ in Eqs. (A5) and (A6), such that J ij belongs to the plane∑

μ=x,y,z

J
ij
μ (1 − n2

μ) = 0, with (hij

⊥)μ = Sj [Tr(J ) − Jμ]niμ.

A final remark is that if one approaches any of the cases
(b) from the linearly independent case (a), it is verified that
Eqs. (A4)–(A6) are in agreement with the corresponding limit
of Eqs. (A1) and (A2). �

Lemma 3. Proof. Assuming first a = J ij nx ′
j and b =

J ij ny ′
j linearly independent, we can define orthonormal

vectors k, l such that a = |a|k, b = b1k + b2l , with b1 =
a · b/|a|. Then normalized vectors nx ′

i ∝ b2k − b1l + λm and

ny ′
i ∝ λl + b1m, with m = k × l , satisfy nx ′

i · b = ny ′
i · a =

nx ′
i · ny ′

i = 0. Hence, the factorization Eqs. (4) are fulfilled

provided nx ′
i · a = ny ′

i · b, which implies λ = ±λ+, with λ+
given by Eq. (11). A suitable alignment direction at site i can
then be obtained as ni = nx ′

i × ny ′
i , which yields Eq. (10).

Additionally, if b ∝ a, with a �= 0, Eq. (10) still holds, since
in this case it leads to ni ∝ a, which is indeed an obvious
solution for ni of Eqs. (4). And if a = b = 0, which occurs
iff both J ij (assumed nonzero) and nj point along the same
principal axis (μ), then ni remains arbitrary. The effect of
the coupling on the product state can here be balanced by
a factorizing field, as it involves just one-spin excitations:
J

ij
μ S

μ

i S
μ

j |�〉 = SjJ
ij
μ S

μ

i |�〉. �
As is evident from Eq. (10), two different solutions for

ni exist unless λ± are simultaneously zero. This case arises,
for instance, if J ij ∝ (1,1,1) (isotropic coupling) or if all
components of J have the same absolute value, e.g., J ∝
(1,1,−1), which imply |a| = |b| and a · b = 0 in Eq. (11). In
the isotropic case, a = nx ′

j , b = ny ′
j and Eq. (10) implies then

the single solution ni = nj (uniform solution).
Lemma 4. Proof. From Eq. (6), hij

⊥ = −S[J ij nj − ni(ni ·
J ij nj )] and Eq. (12) implies

S J ij ∗ (nj − ni) = [hij

‖ + S(ni · J ij ∗ nj )]ni

− [hji

‖ + S(nj · J ij ∗ ni)]n j , (A7)

which is verified for some h
ij

‖ and h
ji

‖ iff J ij ∗ (nj − ni)
belongs to the subspace generated by ni and nj . If ni = nj

this condition is trivially satisfied (with h
ij

‖ = h
ji

‖ , arbitrary)
while if ni and nj are not collinear this condition implies
[ J ij ∗ (ni − nj )] · (ni × nj ) = 0, i.e., J ij · [(ni − nj ) ∗ (ni ×
nj )] = 0. But this equation is always fulfilled if J ij ∝ U ij ×
V ij [Eq. (9)], while if U ij and V ij are linearly dependent it is
fulfilled by any J ij , since in this case (ni − nj ) ∗ (ni × nj ) =
0. No solution exists, however, if ni = −nj .

In the last antiparallel case, it is evident from Eq. (6) that
hij

⊥ = −hji

⊥ and hence there are no parallel fields hij (ji)
‖ able to

lead to a uniform factorizing field for the pair, unless hij

⊥ = 0
(for instance, antiparallel alignment directions along the z axis
fulfill Eqs. (8) if J

ij
x = −J

ij
y and lead to hij

⊥ = 0). �
As previously discussed, in the uniform case ni = nj the

perpendicular fields are equal and h
ij

‖ = h
ji

‖ , with the strength

of h
ij

‖ remaining arbitrary. However, when ni �= nj Eq. (A7)
will lead to fixed values of the parallel fields, which we now
proceed to explicitly determine.

When U ij and V ij are linearly independent, by solv-
ing Eq. (A7) it is found that h

ij

‖ = −j ijS[Di + ni ·
(njynjz,njxnjz,njxnjy)]. The uniform factorizing field hij

s =
hij

‖ + hij

⊥ becomes then (μ,ν,σ indicate three distinct principal
axes)

(
hij

s

)
μ

= −j ijSαμναμσ , αμν = niμnjν + niνnjμ. (A8)

On the other hand, when V ij = 0, Eq. (A7) leads to h
ij

‖ =
−S

ni ·J ij ∗ni+niμJ
ij
μ +njμ(J ij

σ +J
ij
ν )

niμ+njμ
if ni and nj belong both to the

principal plane μν, and h
ij

‖ = h
ji

‖ = −S(J ij
μ + J

ij
ν ) if ni is the

reflection of nj with respect to the principal plane μν. In this
case, Eqs. (A6) lead to

(
hij

s

)
μ(ν) = −S

(
J

ij

μ(ν) + J ij
σ

)
niμ(ν),

(
hij

s

)
σ

= 0, (A9)

meaning that the σ components of hij (ji)
‖ and hij (ji)

⊥ cancel each
other such that the local uniform factorizing field belongs to
the principal plane μν.

Lemma 5. Proof. Let hi and J ij be the fields and couplings
for which the separable state |�〉 (not necessarily uniform)
is a nondegenerate GS. Then, if hi → hi + δhi and J

ij
μν →

J
ij
μν + δJ

ij
μν , the perturbed GS is |GS〉 = |�〉 + δ|GS〉, with

δ|GS〉 ≈
∑

ν

〈ν|( ∑
i δhi

⊥ · Si + ∑
i<j,μ,ν δJ

ij
μνS

μ

i Sν
j

)|�〉
Eν − E�

|ν〉

=
⎛
⎝∑

i

αiS
−′
i +

∑
i,j

βijS
−′
i S−′

j + . . .

⎞
⎠|�〉, (A10)

up to lowest nonzero order, where |ν〉 are the exact excited
eigenstates at the factorizing point (H |ν〉 = Eν |ν〉, 〈ν|�〉 =
0), normally entangled; δhi

⊥ is the component of δhi orthog-
onal to ni ; and S±′

i = RiS
±
i R

†
i are the rotated spin operators

(S±
i = Sx

i ± ıS
y

i ), such that S+′
i |�〉 = 0 ∀ i. In the rotated

standard basis {⊗i |k′
i〉} (Sz′

i |k′
i〉 = (Si − k)|k′

i〉), such that
|�〉 = |0′〉, and considering first Si = 1/2 ∀ i Eq. (A10) leads,
to lowest order in the perturbations (terms quadratic in αi , βij

discarded), to a reduced pair state of the form

ρij ≈

⎛
⎜⎝

1 αi αj βij

ᾱi 0 0 0
ᾱj 0 0 0
β̄ij 0 0 0

⎞
⎟⎠. (A11)

The partial transpose [46,47] of Eq. (A11) has eigenvalues one,
zero, and ±|β|ij up to lowest nontrivial order, so that ρij will
be entangled if βij �= 0. And the exact coefficients βij obtained
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from Eq. (A10) are, for general perturbations δhi and δJ
ij
μν , not

strictly zero for any pair i,j linked by successive applications
of the coupling in H , due to the two-spin excitations present in
the exact eigenstates |ν〉. They can, of course, be very small for
distant pairs, but not strictly zero. For higher spins S, ρij will
be more complex but will still contain a first submatrix of the
form of Eq. (A11). Hence, it will also be entangled if βij �= 0,
since the partial transpose of this block is the first block of the

full partial transpose ρ
Tj

ij and is nonpositive at lowest order,

preventing the full ρ
Tj

ij from being positive semidefinite. �
For spin 1/2, where the entanglement of formation Eij

is just an increasing function of the concurrence Cij [48],
Eq. (A11) leads at lowest order to Cij ≈ 2|βij |. At this order,
αi , αj in Eq. (A11) do not affect Cij nor the eigenvalues of the

partial transpose ρ
Tj

ij .
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